Assignment 5 2.086 Fall 2014

Due: Wednesday, 10 December at 5 PM.

Upload your solution to course website as a zip file “YOURNAME_ASSIGNMENT_5" which includes the
script for each question as well as all MaTLAE® functions and scripts (of your own creation) called
by the scripts; both scripts and functions must conform to the formats described in Instructions
and Questions below.

Instructions

Download (from the course website Assignment 5 page) the Assignment_5_Templates folder.
This folder contains a template for the script associated with each question (A5Qy_Template for
Question y), as well as a template for each function which we ask you to create (func_Template for a
function func). The Assignment_5_Templates folder also contains the grade_o_matic files for

Assignment 5 (please see Assignment 1 for a description of grade_o_matic!) as well as all auxiliary
files which you will need for Assignment 5.

We indicate here several general format and performance requirements:
(a.) Your script for Question y of Assignment 5 must be a proper MATLAB “.m” script file and
must be named A5Qy.m. In some cases the script will be trivial and you may submit the
template “as is” — just remove the _Template — in your YOURNAME_ASSIGNMENT_5 folder.
But note that you still must submit a proper A5Qy .m script or grade_o_matic will not perform
correctly.

(b.) In this assignment, for each question y, we will specify inputs and outputs both for the script
A5Qy and (as is more traditional) any requested MATLAB functions; we shall denote the former
as script inputs and script outputs and the latter as function inputs and function outputs.
For each question and hence each script, and also each function, we will identify allowable
instances for the inputs — the parameter values or “parameter domains” for which the codes
must work.

(c.) Recall that for scripts, input variables must be assigned outside your script (of course before
the script is executed) — not inside your script — in the workspace; all other variables
required by the script must be defined inside the script. Hence you should test your scripts in
the following fashion: clear the workspace; assign the input variables in the workspace; run
your script. Note for MATLAB functions you need not take such precautions: all inputs and
outputs are passed through the input and output argument lists; a function enjoys a private
workspace.

(d.) We ask that in the submitted version of your scripts and functions you suppress all display
by placing a “;” at the end of each line of code. (Of course during debugging you will often
choose to display many intermediate and final results.) We also require that before you
upload your solution to course website you run grade_o_matic (from your YOURNAME_ASSIGN-
MENT_5 folder) for final confirmation that all of your scripts and functions are in the proper
format.

Note that, in Assignment 5, four of the five questions, A5Qy for y = 1,2,3,4, are multiple choice:

you should enter your answers in the respective scripts A5Qy.m per standard grade_o_matic pro-

Note that, for display in verbose mode, grade_o_matic will “unroll” arrays and present as a row vector.

tocol; please double-check the “letters” you have chosen for each question before uploading your
YOURNAME_ASSIGNMENT_5 folder. Note that the last question, A5Q5, is not multiple choice.

Questions

1. (20 points) Preamble: You are not to use MATLAB for this question (except of course for
the multiple-choice script file A5Q1.m for grade_o_matic) either to identify or confirm the

correct result — you should develop your answer without recourse to a computer or even a
calculator. The point of this question is to make sure that you understand the basic linear
algebra.

We consider in this problem the system of linear equations
Au=f (1)

where A is a given 3 x 3 matrix, f is a given 3 x 1 vector, and wu is the 3 x 1 vector we wish
to find.

We introduce two matrices

1 -1 0
Al=11 1 0], (2)
0 0 1
and
1 -1 -1
A= 1 1 -1 |, (3)
0 0 0

which will be relevant in Parts (i),(i) and Parts (iii),(iv) respectively.

In Parts (i),(44), A of equation (1) is given by Al of equation (2). In other words, we consider
the system Alu = f given by

1 -1 0 uq bil

11 0 up | 2|,

0 0 1 u3 R E
Al U f

for f to be specified below.

(i) (5 points) For f =(1 1 1)T (recall T denotes transpose),

(a) A'u = f has a unique solution.

(b) Alu = f has no solution.

(¢) Alu = f has an infinity of solutions of the form

IS

Il
S O =

+

Q
o = O

for any (real number) a.

(d) Alu = f has an infinity of solutions of the form

1 1
u=|0[+al 0
0 1

for any (real number) «.
(ii) (5 points) For f=(1 1 0)7T,
(a) Alu = f has a unique solution.
(b) Alu = f has no solution.

(¢) Alu = f has an infinity of solutions of the form

IS

Il
o O =

+

Q
o = O

for any (real number) a.

(d) A'u = f has an infinity of solutions of the form

1 1
u=| 0 |+al O
0 1

for any (real number) «.

Now, in Parts (iii), (iv), A of equation (1) is given by A!l of equation (3). In other words,
we consider the system Ay = f given by

1 -1 —1 uy bil

1 -1 uz || f2 |

0 0 0 u3 - f3
Al u ¥

for f to be specified below.

(iii) (5 points) For f = (1 1 1)T (recall T denotes transpose),
(a) AMu = f has a unique solution.
(b) A"u = f has no solution.

(¢) Ay = f has an infinity of solutions of the form

IS

Il
S O =

+

Q
o = O

for any (real number) a.

(d) A"y = f has an infinity of solutions of the form

1 1
u = 0 |+al O
0 1

for any (real number) a.
(iv) (5 points) For f = (1 1 0)7T,
(a) A"u = f has a unique solution.
(b) Ay = f has no solution.

(¢) Ay = f has an infinity of solutions of the form

IS

I
o O =

+

Q
o = O

for any (real number) «.

(d) Ay = f has an infinity of solutions of the form

1 1
u=|0 [+al O
0 1

for any (real number) a.

There are no inputs or outputs for this question. Your answer should be a one-line script,
with your multiple-choice answers, as indicated in A5Q1_Template.m (as always, remove the
_Template before uploading to course website in your folder YOURNAME_ASSIGNMENT_5).

. (20 points) Preamble: You are not to use MATLAB for this question (except of course for
the multiple-choice script file A5Q2.m for grade_o_matic) either to identify or confirm the
correct result — you should develop your answer without recourse to a computer or even a
calculator. The point of this question is to make sure that you understand the basic linear
algebra.

We consider the system of three springs and masses shown in Figure 1.

— — —
f1: f2: sz

R M1 LR T2 —RR— M3
1= . ky = . k3 = .

Uy U2 us
wall

Figure 1: The spring-mass system for Question 2.

The equilibrium displacements satisfy the linear system of three equations in three unknowns,
Au = f, given by

3 -2 0 Uy 0
-2 3 —1 U2 1].
= (4)
0 -1 1 U3 0
A U f

The matrix A is SPD (Symmetric Positive Definite). Note you should only consider the
particular right-hand side f (forces) indicated.

We now reduce the system by Gaussian Elimination to the form Uu = f, where U is an upper
triangular matrix. We may then find u by Back Substitution. Note that we do not perform
any partial pivoting — reordering of the rows of A — for stability (since the matrix is SPD
there is no need), and furthermore we do not perform any reordering of the columns of the
matrix A for optimization: we work directly on the matrix A as given by equation (4).

(i) (4 points) The element Uso (i.e., the entry in the ¢ = second row, j = second column)
of U is given by

(a) 2/3

(i) (4 points) The element Usg (i.e., the entry in the i = second row, j = third column) of
U is given by

(a) —1

(i) (4 points) The element fo (i.c., the second entry in the f vector) is given by

(a) 2/3

(d) 5/3

(iv) (4 points) The element f3 (i.e., the third entry in the f vector) is given by

(a) 3/5
(b) 0
(c) =3/5

(d) 8/5

(v) (4 points) The displacement of the third mass, us, is given by

(a) 3/2
(b) 2/3
(c) 5/2
(d) —2/3
There are no inputs or outputs for this question. Your answer should be a one-line script,

with your multiple-choice answers, as indicated in A5Q2_Template.m (as always, remove the
_Template before uploading to course website in your folder YOURNAME_ASSIGNMENT_5).

. (20 points) Preamble: You are not to use MATLAB for this question (except of course for
the multiple-choice script file A5Q3.m for grade_o_matic) either to identify or confirm the
correct result — you should develop your answer without recourse to a computer or even a

calculator. The point of this question is to make sure that you understand the basic linear

algebra.
kspecial =4
SRR
—> —> —> —> —> —>
f f2 I3 Ja fs fe
SRR — M1 —— M2 —I— M3 —RR— Mg [~ — M5 [(—XR— M6
k=2 — k=2 — k=2 — k=2 — k=2 L k=2 L

wall U1 U2 U3 Ua us Ug

Figure 2: The spring-mass system for Question 3. For the six springs in series the spring constants
are k = 2 whereas for the parallel “special” spring which directly links mass 3 and mass 6 the
spring constant is kspecial = 4; you may assume that all quantities are provided in consistent units.
Note that all the springs are described by the linear Hooke relation.

We consider the system of springs and masses shown in Figure 2. Equilibrium — force balance
on each mass and Hooke’s law for the spring constitutive relation — leads to the system of
six equations in six unknowns, Au = f,

4 =2 0 0 0 0 5 fi
-2 4 -2 0 0 © U2 p)
0 -2 a -2 0 ¢ us f3

0 0 -2 4 -2 0 u | = | fa ; (5)
0 0 0 —2 4 -2 us f5
0 0 ¢ 0 -2 b ug fe
A U f

where we will ask you to specify a, b, and ¢ in the questions below. Note for the correct
choices of a, b, and ¢, the matrix A is SPD.

We now reduce the system Au = f by Gaussian Elimination to form Uu = f , where U is an
upper triangular matrix. Note that we do not perform any partial pivoting — reordering of
the rows of A — for stability (since the matrix is SPD there is no need), and furthermore
we do not perform any reordering of the columns of the matrix A for optimization: we work
directly on the matrix A as given by equation (5). Recall that since A is SPD we are sure
that we will not encounter a zero pivot.

(i) (4 points) The value of a is

(#ii) (4 points) The value of ¢ is

(b) —4
(c) =6
(d) -8
(e) —12

(iv) (4 points) The number of nonzero elements in the (upper triangular) matrix U is
(a) 21

Hint: Consider Gaussian Elimination (and the fill-in process) to deduce the only possibly
correct option from the available choices.

(v) (4 points) The entry (A~1)gg, (i.e., the entry in the i = sixth row, j = sixth column of
the inverse matrix of A) is

(a) 1/Ussg

(b) 1/As6

(¢) Use

(d) Aso

(e) (St fot fa+ fat f5+ f6)/Uss

where in each case subscript ¢ refers to the entry in the ¢ = sixth row, j = sixth column.
Hint: Recall the physical interpretation of the sixth column of A~1.

There are no inputs or outputs for this question. Your answer should be a one-line script,
with your multiple-choice answers, as indicated in A5Q3_Template.m (as always, remove the
_Template before uploading to course website in your folder YOURNAME_ASSIGNMENT_5).

. (20 points) Preamble: You should develop your responses based on theoretical considerations.
However, you may use MATLAB to motivate or confirm (or perhaps rectify) your theoretical
predictions.

We consider the system of n springs and masses shown in Figure 3. We consider the particular
case in which k; = 1,1 <7 <n, and f; = 1,1 <1i < n; you may assume that all quantities are

— — — —
fl f2 f3 fn

LSRR M1 IR T2 | —SEIR—] T3 | SRRR— e+ — S| P

kl T k2 T kd T k/'n,
— 3 :_> —3
Uy U2 us Un
wall free

Figure 3: The spring-mass system for Question 4.

provided in consistent units. The displacements of the masses, u, satisfies a linear system of
n equations in n unknowns, Au = f. The MATLAB script provided below forms the stiffness
matrix A (= A in MATLAB) and force vector f (= f in MATLAB) and then solves for the
displacements u (= u in MATLAB) in three different fashions. You may assume that prior to
execution of the script the workspace contains only n (MATLAB n) which is a positive integer
scalar.

% begin script
% form A and f

A = spalloc(n,n,3*n);

A(1,1) = 2;

A(1,2) = -1;

for i = 2:n-1
A(i,i) = 2;
A(i,i-1) = -1;
A(i,i+1) = -1;

end
A(n,n) = 1;
A(nsn_l) = _1;

numnonzero_of_A = nnz(A);

f = ones(n,1);

% solve A u = f in three different ways
numtimes_compute = 20;

tic
for itimes = 1:numtimes_compute
u = A\f; % REFER TO THIS LINE in Question 4(ii)
end
avg_time_first_way = toc/numtimes_compute;

A_declare_full = full(A);
tic
for itimes = 1:numtimes_compute
u = A_declare_full\f;
end
avg_time_second_way = toc/numtimes_compute;

Ainv_declare_sparse = sparse(inv(A));
% in fact if A is "declared sparse" then inv(A) will automatically be "declared sparse"
tic

for itimes = 1l:numtimes_compute
u = Ainv_declare_sparsexf;
end
avg_time_third_way = toc/numtimes_compute;
% note that we do not include the time to compute inv(A) in avg_time_third_way

% end script

The MATLAB backslash operator will not perform any partial pivoting — reordering of the
rows of A — for stability (since the matrix is SPD there is no need); furthermore MATLAB
will not perform any reordering of the columns of the matrix A for efficiency (since the matrix

10

is tri-diagonal the structure is already optimal). In short, MATLAB backslash works directly
on the matrix A as given — Gaussian Elimination to obtain U (= U in MATLAB) and f
followed by Back Substitution to obtain u.

We now run the script. In the questions below you should assume that the computational
time to perform the operations is proportional to the number of FLOPs. (In actual practice,
computational time and FLOPs is not synonymous since the former is affected by memory
access, competition for cores, network speed, and other “real-life” considerations; furthermore,
these “real-life” considerations become more important for the larger n of interest in this
question. Inasmuch, your computational times should serve to guide, but not dictate, your
answers.)

(4)

(ii)

(5 points) For n = 5000 the script will set the value of numnonzero_of_A to
(a) 14,998

(b) 30,000
(¢) 5,000
(d) 25,000,000

(5 points) For n = 5000 the number of nonzero elements of U will be

(a) 15,000
(b) 12,507,501
(¢) 9,999

(d) 5,000

Note you do not see U explicitly in the script of the previous page. Here U is the upper
triangular matrix U formed internally as part of the backslash operation u = A\f on the
line of the script with comment % REFER TO THIS LINE in Question 4(ii).

Hint: Recall Gaussian Elimination for tridiagonal matrices.

(5 points) The ratio
avg_time_second_way

avg_time_first_way

will behave asymptotically as Cn? for n — oo, where C' is a constant independent of n,
and p is given by

(a) 3

11

Note we ask here for the value of p, not for the value of C.

(iv) (5 points) The ratio
avg_time_third_way

avg_time_first_way

will behave asymptotically as Cn” for n — oo, where C is a constant independent of n,
and p is given by

(a) 3

Note we ask here for the value of p, not for the value of C.

There are no inputs or outputs for this question. Your answer should be a one-line script,
with your multiple-choice answers, as indicated in A5Q4_Template.m (as always, remove the
_Template before uploading to course website in your folder YOURNAME_ASSIGNMENT_5).

. (20 points) We would like you to write a MATLAB function with signature

function [root] = root_finder(alpha)

which, given a parameter v (MATLAB alpha) such that 12 < o < 20, finds a root z* (MATLAB
root) of a function fyigely (2,) such that

fwigely (2" ;) =0 and 0< 2" <1; (6)
the value of z* will of course depend on the value of the parameter ««. Two comments: we

have chosen fyige1y and the allowable instances of o to ensure that there will always be at

12

least one z* which satisfies (6); we ask you only to find @ root in the interval [0, 1], not all
roots in the interval [0, 1].

Your function must be named root_finder and furthermore must be stored in a file named
root_finder.m. Your function takes a single input: the value of the parameter o (MATLAB
alpha); allowable instances must satisfy 12 < a < 20. Your function yields a single output:
a z* (MATLAB root) which satisfies a “numerical” version of (6),

| fwigely (2"5a)| < 1e-2 and 0<2"<1. (7)

We provide you with the MATLAB function f_wiggly.p with signature

function [f_value] = f_wiggly(z,alpha)

such that f_wiggly(z,alpha) returns the output f_value = fyigey(2;@). The MATLAB
function f_wiggly will accept an input 1 x M array z to yield output 1 x M array f_value

such that f_value(i) = fuigay(2(i),a),i = 1,..., M; this could prove convenient if you
wish (electively) to plot the z-dependence of fyigely. Note however, that input alpha must
be a scalar.

We ask that your function root_finder call the MATLAB built-in nonlinear equation solver
fsolve. Please read the Appendix to familiarize yourself with this MATLAB routine. Three
comments: although fsolve will take care of all the details related to the solution proce-
dure, you (in your root_finder function) must check and ultimately ensure (7); for reasons
explained in the Appendix, your function root_finder will need to consider a sequence of
initial guesses for fsolve to ensure that success — a z* which satisfies (7) — is ultimately
realizedi; you should use the default values for the various fsolve tolerances.

We provide you with a script A5Q5_Template.m which you should not modify (but as always,
please remove the _Template before uploading to course website). The deliverables for this que-
stion are the script A5Q5.m and most importantly your function root_finder (and any other
scripts or functions of your own creation which are called by root_finder); please upload
these deliverables to course website in your folder YOURNAME_ASSIGNMENT_5.

Appendix: MATLAB fsolve

We consider the problem of finding a real root (or “zero”) of a univariate function: given a function

f(2),a < z < b, we wish to find a real number z* such that f(z*) = 0; there could be no (real) roots,
one root, or many roots. (The ostensibly more general problem of solving a nonlinear equation is
in fact equivalent to the problem of finding a root.) Although in this assignment we consider only
univariate functions, fsolve can readily treat the general multivariate case.

In the textbook we discuss Newton iteration for root finding. The MATLAB function fsolve
implements an alternative, though often related, route: application of optimization procedures to
a nonlinear least-squares re-formulation of the root-finding problem. It is simple to describe the
framework. If f(z*) = 0, then clearly f2(z*) = 0, and furthermore — since f?(z) > 0 for all z — 2*
is a minimizer of f(z). Hence to find a root of f(z) we can instead search for a minimizer of f2(z);

2For each input instance of the parameter o, grade_o_matic shall test your root_finder code 10 times (for this
same value of a), to make sure that success is not a matter of good luck.

13

the latter is an easier problem than the former, as we can “simply” proceed downhill until we arrive
at the minimum. There is one subtlety, however: though a root of f(z) is necessarily a minimizer
of f2(2), a minimizer of f2(z) is not necessarily a root of f(z). A simple example of the latter is
f(2) =1+ 22 2z =0 is clearly a minimizer of f2(z), but f(0) = 1, not zero, and hence z = 0 is not
a root of f(z). The approach must thus be formulated in two steps: in the first step we look for
a minimizer z** of f2(z); in the second step we evaluate f2(z**) and we accept z** as a root — in
other words, we identify z* = 2** — only if f2(2**) = 0 (or, in actual practice, sufficiently small).

The syntax for £solve is very simple:

[zstarstar,fval,exitflag] = fsolve(@func, z_0)

where zstarstar is the alleged root, fval is the value of func at zstarstar, exitflag is an exit
flag which provides information on the minimization process and alleged root, func is the MATLAB
embodiment of the function for which we seek a root, and z_0 is the initial guess. In more detail,
func is a user-defined function with signature

function [func_value] = func(z)

which returns func_value = f(z) for given z.

We note that, as is typical in the (iterative) solution of nonlinear equations, fsolve — which
effectively goes “downhill” to find a minimizer of f2(z) (or the norm squared of f in the case of a
system of nonlinear equations) — will typically find the minimizer at the bottom of the valley to
which the initial guess zp belongs. Thus, first, if the minimum of this valley does not constitute
a root, then fsolve will not find a root, and second, in any event fsolve will only find the one
root associated with the particular valley implicitly selected by zg. In actual practice, the initial
guess — often several initial guesses will be required — plays an important role in the solution
of nonlinear equations. You can visualize this result with the small script fsolve_demo_2014.m
included in the Assignment_5_Templates folder.

As already indicated, the output zstarstar is z**, a minimizer of f?(z). In addition, fsolve
indicates whether z** corresponds to “Equation solved” in the sense that f2(z**) is zero or very
small, or “No solution found” in the sense that f?(z**) is far from zero. You can and should
also obtain this information yourself directly from fval (or func(zstarzstar)). In the “Equation
solved” case — fval sufficiently close to zero — we have found a minimizer of f2(z) which is
indeed a root of f(z); in the “No solution found” case we have found an extremum of f2(z),
typically though not always a minimum of f2(z), which is not a zero of f(z) — fval is not close
to zero.

14

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

