
Integration

Draft V1.1 c From Math, Numerics, & Programming for Mechanical Engineers . . . in ©MIT 2014.
a Nutshell by AT Patera and M Yano. All rights reserved.

1 Preamble

In engineering analysis we must often calculate integrals of univariate functions; for example, in
order to predict the hydrostatic pressure in the ocean — to be withstood by a submersible — we
must integrate the specific weight with respect to depth. Unfortunately, in most cases we are not
provided with a closed-form representation of the function, and instead we must base our prediction
on limited (experimental) observations or (computational) evaluations. In this nutshell we answer
the following question: if we can probe a function at some finite number of input values, how we
can estimate the integral of the function over an interval? We consider here one approach to this
approximation problem: integration through interpolation.

We introduce in this nutshell the general “integration through interpolation” framework, and we
present particular integration schemes, also known as “quadrature” rules : rectangle, left; rectangle,
right; rectangle, middle (or midpoint); and trapezoid. For each scheme we develop error bounds
based on interpolation error estimates, we provide an analysis of the convergence rate, and we
summarize the associated operation counts in FLOPs. We also raise the issues of resolution and
smoothness within the context of numerical integration.

Prerequisites: univariate differential and integral calculus; basic principles of numerical methods:
discretization, convergence, convergence order, refinement, resolution, operation counts and FLOPs,
asymptotic and big-O estimates; Interpolation: formulation, error analysis, and computational
considerations.

2 Motivation: Example

Let us consider a concrete example of numerical integration. We wish to estimate the hydrostatic
pressure in the ocean at some depth of interest; recall that the hydrostatic pressure at depth of
interest d is given by d

p(d) = ρ(x)gdx + patm,
0

1

© The Authors. License: Creative Commons Attribution-Noncommercial-Share Alike 3.0 (CC BY-NC-SA 3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors
and MIT OpenCourseWare source are credited; the use is non-commercial; and the CC BY-NC-SA license is
retained. See also http://ocw.mit.edu/terms/.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://ocw.mit.edu/terms/

3

where ρ(x) is the density of the water at depth x, g is the gravitational acceleration, and patm is
the atmospheric pressure. (Note that depth shall always refer to vertical distance below the free
surface.) The gravitational acceleration can be safely assumed constant, so we effectively need to
evaluate the integral

d

I(d) = γ(x)dx,
0

for γ(x) ≡ ρ(x)g the specific weight at depth x. Note that x is the “dummy” variable of integration
and d is the depth of interest: the integral depends on the parameter d; for the most part, as
regards the focus of this nutshell, we may think of d as some fixed depth of interest.

To accomplish our task, we are given Table 1, which provides the specific weight of ocean water
at seven different depths. (The density, and hence the specific gravity, of ocean water depends on
the salinity and temperature, which in turn varies with depth.) How can we exploit the data of
Table 1 to approximate the hydrostatic pressure at a depth of interest d ≡ 600m? Can we say
anything about the accuracy of this estimate? What is the cost associated with the computation of
this pressure estimate? The material provided in this nutshell will help you answer these questions,
not just for our particular example, but also more generally for any univariate integration.

depth (m) 0 100 200 300 400 500 600
specific weight (kPa/m) 10.055 10.059 10.063 10.068 10.072 10.076 10.079

Table 1: Variation in the specific weight of ocean water with depth at a particular point.1

Rectangle, Left Rule

We are often given some function of a single variable, x, say f(x), which we wish to integrate from
x = a to x = b. We express the desired integral as

b

I = f(x) dx .
a

Geometrically, we may interpret the integral as an area, as shown in Figure 1.
To perform this integral we introduce a discretization: we shall break the interval (a, b) into

N − 1 segments each of length h = (b − a)/N . To be a bit more precise, we introduce the set of
segment endpoints a ≡ x1 < x2 < · · · < xN ≡ b, from which we may then define our segments
as S1 ≡ (x1, x2), S2 ≡ (x2, x3), . . . , SN−1 ≡ (xN−1, xN). The segment endpoints and segments are
depicted in Figure 2. In what follows, we shall assume that all segments are of the same length,
though in all cases the techniques described readily extend to the case of non-uniform grids.

We next express the area as a sum of areas associated with each of the segments,

N−1b N
I = f(x) dx = f(x) dx + f(x) dx + . . . + f(x) dx = f(x) dx ,

a S1 S2 SN −1 Sii=1

1This table is derived from the representative ocean density profile provided in Windows to the Universe.

2

∫

∫

∫ ∫ ∫ ∫ ∫

a b

f

I

x

Figure 1: Illustration of the integration process.

a = x1 x2 x3 xN−1 xN = b

S1 S2 SN−1

h h h

Figure 2: Discretization of the segment (a, b) into N − 1 segments using N data points.

where
x2

f(x) dx ≡ f(x) dx ,
S1 x1

and more generally, for 1 ≤ i ≤ N − 1,

xi+1

f(x) dx ≡ f(x) dx.
Si xi

We note that technically in each segment we may consider the limit of f from within the segment,
in that way gracefully treating discontinuities. (It is for this reason that we choose here to define
our segments as open intervals.)

CYAWTP 1. Consider the uniform discretization of Figure 2 for N = 3 and hence N − 1 = 2
segments. Sketch on Figure 1 the area which corresponds to the term S2

f(x) dx .

We now consider the integral over one segment, say S1. In general, we will not be able to
perform the requisite integrations over each segment in closed form. And very often we will only
be privy to values of f(x) — say corresponding to experimental measurements, or a complicated
mathematical expression, or perhaps even the solution of an ordinary differential equation — at a
finite number of points x. (Note that here, in our discussion of numerical integration, we do not
necessarily require that the values of x at which we know the values of f(x) are the endpoints of
the segments, though this is certainly one case of interest.) To address these two issues, we shall

3

∫ ∫

∫ ∫

respectively assume that f(x) is roughly constant over each segment Si, 1 ≤ i ≤ N − 1, and that
furthermore (only) the values f(xi), 1 ≤ i ≤ N − 1, are available.

This then leads naturally to the following approximation. To begin, we consider the integral
over S1: we write

x2

f(x) dx ≈ f(x1)dx = (x2 − x1)f(x1) = hf(x1) ;
S1 x1

recall that h is the length of each segment. Extending this simple rule to all the segments, we
obtain, for 1 ≤ i ≤ N − 1,

xi+1

f(x) ≈ f(xi) dx = (xi+1 − xi)f(xi) = hf(xi) .
Si xi

We then sum the integrals over all the segments to obtain our approximation to I, which we denote
Ih:

Ih ≡ hf(x1) + hf(x2) + · · · + hf(xN−1)

or

N−1N
Ih = hf(xi) . (1)

i=1

The procedure we have just described is an example of a quadrature rule or numerical integration
scheme. In particular, (1) is called the rectangle, left rule, as the approximation is based on
the rectangles each of whose height is specified by the function value at the left endpoint of the
associated segment. We shall refer to (1) as the “single-sum” version of our quadrature rule.

CYAWTP 2. Include in the sketch you sketched for CYAWTP 1 the area which corresponds to
the term S2

f(x2) dx.

We now apply our simple quadrature rule (1) to our ocean example to estimate the pressure at
the depth of interest d = 200m,

200m

I(200m) = γ(x)dx , (2)
0m

based on the (depth, specific weight) data of Table 1. We identify a ≡ 0m, b ≡ 200m, and
choose (given the data available in Table 1) x1 = 0m, x2 = 100m, and x3 = 200m associated
to intervals S1 = (0, 100)m and S2 = (100, 200)m each of length h = 100m. We thus obtain
Ih(200m) = hf(x1) + hf(x2) = 100 · 10.055 + 100 · 10.059 = 2011.4 kPa.

CYAWTP 3. Apply the simple quadrature rule (1) to our ocean example to estimate the pressure
at a depth of 400m based on the (depth, specific weight) data of Table 1.

We emphasize the important role of discretization: we may replace f(x) by a constant over
each segment — to evaluate the necessary integrals — only because we have first broken the full
interval (a, b) into many small segments — to ensure sufficient accuracy. The discretization process

4

∫ ∫

∫ ∫

∫

∫

4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

f
Ih

Figure 3: Illustration of the rectangle, left rule over the interval (a ≡ 0, b ≡ 1).

is depicted in Figure 3. We expect that, as we increase the number of segments, our “constant-over
each-segment” approximation f(x) ≈ f(xi) for x ∈ Si, and hence our “sum-of areas-of-rectangles”
approximation Ih ≈ I, shall be better and better. But more segments and smaller h, and thus
higher accuracy, will of course increase computational cost: we observe from (1) that the number
of FLoating-point OPerations (FLOPs) required to calculate Ih will scale linearly with N − 1; the
operation count is O(N).

It is thus clear that to understand the performance of a scheme — the number of operations
required to achieve some desired accuracy — we must investigate the convergence rate, or order,
of the integration scheme: how quickly does |I − Ih| → 0 as h → 0 (and N → ∞)? Very roughly,
a high order scheme will achieve a desired accuracy for larger segments and hence few function
evaluations — and hence lower cost. We may then further ask a more practical question: how
do we construct integration schemes to provide higher order convergence rates? To answer these
questions, we develop a more general framework.

A General Framework

We shall consider a particular framework, “integration through interpolation,” which builds directly
on the construction and analysis of interpolation schemes.

To begin, we return to the “decomposition” of our integral

N−1b N
I = f(x) dx = f(x) dx + f(x) dx + . . . + f(x) dx = f(x) dx .

a S1 S2 SN −1 Sii=1

As before, our concerns are twofold: we may not be able to perform the integrals (over each segment)
in closed form, even though we are able to evaluate f(x); we may not have access to f(x) except
at some finite number of points on the interval (a, b). Thus, over each segment, we shall replace
f with an interpolant of f over the segment. Why? First, because the interpolant involves only
low-order polynomials, and hence we can easily perform the resulting integrations. Second, because
the interpolant only requires function values at some relatively few points. And third, because the

5

∫ ∫ ∫ ∫ ∫

interpolant will be increasingly accurate as we take more and more (smaller and smaller) segments
— thus providing convergence.

We denote our interpolant over segment Si as Iif . Our approximation procedure can then be
summarized as

N−1 N−1b N N
I = f(x) dx = f(x) dx ≈ (Iif)(x) dx

a Si Sii=1 i=1

we thus define our approximation to I, denoted Ih, as

N−1N
Ih ≡ (Iif)(x) dx .

Sii=1

We recall the two ingredients to an interpolation scheme: the “what” — the form of the interpolant,
in our case the order of the polynomial; the “where” — the (interpolation) points at which (If)(x) =
f(x). Different choices for the interpolant will yield different quadrature rules, as we shall illustrate
below. Note we can view Iif as a global interpolant over [a, b], but restricted to (evaluated only
for) points x in Si, or we can view Iif as a local interpolant defined by points on Si — quadrature
points, as we introduce below.

Note that although we take advantage of our segments to motivate and derive our quadrature
rule, we may also express (for our family of interpolants) the final result in a single-sum form,

NevalN
Ih = ωif(x̃i) (3)

i=1

where Neval is the number of quadrature points and weights, the ωi, 1 ≤ i ≤ Neval, are the
quadrature weights, and the x̃i, 1 ≤ i ≤ Neval, are the quadrature points — the points at which the
function f is evaluated. Note for our simple example of the previous section, the final result, (1),
is provided in single-sum form, (3), for suitable choice of quadrature weights and points.

We now wish to understand why this “integration through interpolation” approach provides
convergent approximations Ih → I as h → 0. We recall that, for now, all segments are of the same

6

∫ ∫ ∫

∫

length, h = (b − a)/N , or equivalently xi+1 − xi = h, 1 ≤ i ≤ N − 1. We may then write

N−1 N−1N N
|I − Ih| = | f(x) dx − (Iif)(x) dx |

Sii=1 i=1

N−1N
≤ | (f(x) − (Iif)(x)) dx |

Sii=1

N−1N
≤ | (f(x) − (Iif)(x))dx |

Sii=1

N−1N
≤ | f(x) − (Iif)(x) | dx

Sii=1

N−1N
≤ max | f(x) − (Iif)(x) | dx

x∈Si Sii=1
h≡(b−a)/(N−1)

N−1N
≤ emax h = (N − 1) h emax = (b − a) emax ,

i=1

where emax is the error in the interpolant over the interval (a, b),

emax ≡ max max | f(x) − (Iif)(x) | .
i={1,...,N−1} x∈Si

In the Interpolation nutshell, for different interpolation choices, we provide bounds for emax of
the form Cf h

pI : Cf will depend on the derivatives of the function we wish to interpolate, and in
our current discussion, integrate; pI is the order, or convergence rate, of the interpolation scheme
(denoted simply p in the Interpolation nutshell). We thus arrive finally at

|I − Ih| ≤ (b − a) Cf h
pI , (4)

which is a bound for the error in our approximation Ih.
We may conclude that I → Ih as h → 0; furthermore, the convergence is at least of order pI .

Why do we say “at least”? There are quite a few absolute value signs in our derivation of the
bound for |I − Ih|, (4), and we might suspect that our bound will not be very precise. We recall
that we say that an error bound is sharp if there exists a function for which the bound is exact —
the actual error equals the error bound. In general, (4) will not be sharp. In many cases it is just
the constant in (4) (for a particular function f), (b − a)Cf , which is pessimistic. However, in some other (more special) cases, even the order pI in (4) is pessimistic: the rate p at which the error in
the integral converges will be larger than the rate pI at which the interpolant converges; we shall
encounter such an instance below.

Common Schemes

We present in this section a few common schemes based on the general formulation described above.
In many cases it suffices to specify the interpolant and then just “turn the crank” to derive and

7

5

∫
∫
∫
∫

∫

subsequently analyze the quadrature formula.

Rectangle, left rule. We re-derive the rectangle, left rule but now as a special case of the general
framework; recall we continue to assume here that the segments are all of the same length, h.
Here we choose for our interpolant the piecewise-constant, left-endpoint interpolant: hence over
each segment Si, (i) our interpolant is a constant function, and (ii) our single interpolation point
in the segment Si is the left endpoint of the segment, xi. (In fact, Si is an open interval, so the
interpolation points are chosen in the sense of the limit from within the segment.) The geometric
picture — and the motivation for the name “rectangle rule” — is developed in CYAWTP 2.
The single-sum form, (3), for the resulting quadrature formula is given by (1): Neval = N − 1;
ωi = h, 1 ≤ i ≤ N − 1; x̃i = xi, 1 ≤ i ≤ N − 1.

We know from the Interpolation nutshell that for piecewise-constant, left-endpoint interpolation,

emax ≤ max max |f '(x)| h ;
i∈{1,...,N−1} x∈Si

and thus from (4)

|I − Ih| ≤ (b − a) max max |f '(x)| h .
i∈{1,...,N−1} x∈Si

Recall that f '(x) denotes the first derivative of f evaluated at x. In fact, this bound for |I − Ih|
provides the correct order of convergence, however the constant is not sharp. With some small
additional effort we can derive

b − a |I − Ih| ≤ max max |f '(x)| h , (5)
2 i∈{1,...,N−1} x∈Si

which now is sharp: there exists a function for which the actual error equals our error bound.

CYAWTP 4. Provide a function f for which the rectangle, left rule error bound, (5), holds with
equality.

Numerical Experiment 5. Invoke the integration GUI for the function you have proposed in
CYAWTP 4 and confirm your claim.

Important to note that the rectangle, left rule is a first-order scheme: it follows from (5) that
p = 1. This implies that our logarithmic convergence curve — log10(|I − Ih|) as a function of
log10(1/h) — asymptotes to a logarithmic convergence asymptote with a slope of −p = −1 for h
sufficiently small. In general, we will not observe the asymptotic convergence rate until we resolve
all the features of f — what happens in f between the quadrature points will not be seen in our
approximation Ih.

CYAWTP 6. Consider the functions sin(πx) and sin(10πx). On the same plot, sketch the logarith
mic convergence curve and logarithmic convergence asymptote for the rectangle, left rule applied
to these two functions.

Numerical Experiment 7. Invoke the integration GUI to confirm your sketch of CYAWTP 6.

8

∫ ∫

Rectangle, right rule. Here we choose for our interpolant the piecewise constant, right endpoint
interpolant: hence over each segment Si, (i) our interpolant is a constant function, and (ii) our
single interpolation point in segment Si is the right endpoint of the segment, xi+1. The scheme is
quite similar to rectangle, left rule in terms of geometric interpretation and first-order convergence
rate.

CYAWTP 8. We are given the monotonically increasing function f(x) = exp(x) − 1 over the
b

interval (a, b). We would like to provide an approximation Ih which converges to I ≡ f(x) dx as a
h tends to zero but also satisfies Ih > I for any h — in other words, Ih is an upper bound for I.
Should you apply rectangle, left rule or rectangle, right rule?

Numerical Experiment 9. Invoke the integration GUI to confirm your choice in CYAWTP 8.

Rectangle, middle rule. (Note this rule is also referred to more commonly as the midpoint
scheme.) We choose for our interpolant the piecewise-constant, midpoint interpolant: hence over
each segment Si, (i) our interpolant is a constant function, and (ii) our single interpolation point in
segment Si is the midpoint of the segment, x̃i = (1/2)(xi + xi+1). Note that we can understand this
choice of interpolant from the local interpolation perspective of the Interpolation nutshell: we choose
x̄1 = xi, x̄2 = 1/2(xi + xi+1), and x̄3 = xi+1, which defines our interval Si = (xi, xi+1); we then
choose our interpolant as “what”: constant, and “where”: the point x̄2. (Note that, with these same
three points x̄1, x̄2, and x̄3, we could also choose the interpolant “what”: quadratic polynomial,
and “where”: x̄1, x̄2, and x̄3 — we need all three points to uniquely determine our quadratic. This
choice for the interpolant yields a well-known numerical integration scheme: Simpson’s rule. Of
course, the Simpson’s rule requires function values at all three points, x̄1, x̄2, and x̄3; the rectangle,
middle rule requires function value at only the midpoint, x̄2.)

It remains only to derive the quadrature weights. Towards that end, we note that, for our
choice of interpolant, (Iif)(x) dx = f(x̃i) dx = hf(x̃i). The single-sum form (3) of rectangle, Si Si

middle rule thus corresponds to the choices Neval ≡ N − 1, ωi = h, 1 ≤ i ≤ Neval, and x̃i =
(1/2)(xi + xi+1), 1 ≤ i ≤ Neval. We see that the rectangle, middle rule appears very similar to
the rectangle, left rule, with just a slight shift in the quadrature points. This shift, however,
substantially improves the accuracy.

CYAWTP 10. Adapt your sketch of CYAWTP 2 to now reflect the geometric picture — inter
pretation in terms of areas — associated with rectangle, middle rule. Based on your sketch, do you
anticipate that rectangle, middle rule will be more accurate, or less accurate, than rectangle, left
rule?

Numerical Experiment 11. Invoke the integration GUI (say) for the function f(x) = exp(x) − 1
to confirm your claim in CYAWTP 10.

We now proceed with the error analysis of rectangle, middle rule. If we apply the general error
estimate (4), we would predict a first-order scheme. However, a more precise analysis — which
reflects your intuition of CYAWTP 10 — yields the sharp estimate

b − a |I − Ih| ≤ max max |f '' (x)| h2 .
24 i∈{1,...,N−1} x∈Si

Recall that f '' (x) denotes the second derivative of f evaluated at x. Important to note that the
rectangle, middle rule is a second -order scheme, p = 2: if we double the number of function

9

∫

∫

∫

∫

evaluations, the error decreases by a factor of four (as h → 0). Note in particular that the order
of integration, p = 2, is larger than the order of interpolation, pI = 1. (The midpoint scheme is
an example of a Gauss quadrature rule in which the integration weights and points are chosen to
optimize the convergence rate.)

Trapezoidal rule. Here we choose for our interpolant the (global) piecewise-linear interpolant
associated with the discretization x1, x2, . . . , xN . The name of this scheme is not a coincidence.

CYAWTP 12. Adapt your sketch of CYAWTP 2 to now reflect the geometric picture — in
terpretation in terms of areas — associated with trapezoidal rule. Based on your figure, do you
anticipate that the trapezoidal rule will be more accurate, or less accurate, than rectangle, left
rule?

In order to develop our quadrature rule, we first consider a particular segment, Si. We recall that
over segment Si our piecewise-linear interpolant reduces to

f(xi+1) − f(xi)
(Iif)(x) = f(xi) + (x − xi) x ∈ Si ;

xi+1 − xi

it thus follows that xi+1 f(xi+1) − f(xi) 1
(Iif)(x)dx ≡ f(xi) + (x − xi) dx = h (f(xi) + f(xi+1)) .

xi+1 − xi 2Si xi

To derive this result we can perform the simple integrations explicitly. More simply, we can appeal
to your sketch of CYAWTP 12 and note that the area of a trapezoid of base h and left and right
heights f(xi) and f(xi+1), respectively, is given by h (1/2) (f(xi) + f(xi+1)). We can now readily
assemble the contributions from each segment: our recipe gives

N−1 N−1N N 1
Ih = (Iif)(x) dx = h (f(xi) + f(xi+1)). (6)

2Sii=1 i=1

Recall that this final result reflects our assumption of equispaced points.

CYAWTP 13. Derive the single-sum quadrature formula for the trapezoidal rule. In particular, in
(3), for the trapezoidal rule, how must we choose Neval? the quadrature weights, ωi, 1 ≤ i ≤ Neval?
the quadrature points, x̃i, 1 ≤ i ≤ Neval?

We know from the Interpolation nutshell that for piecewise-linear interpolation,

1
emax ≤ max max |f '' (x)| h2 .

8 i∈{1,...,N−1} x∈Si

and thus

b − a |I − Ih| ≤ max max |f '' (x)| h2 .
8 i∈{1,...,N−1} x∈Si

(This bound can be sharpened slightly: the (1/8) may be replaced with (1/12).) Important to
note that the “trapezoidal rule” is a second -order scheme: if we double the number of function
evaluations, the error decreases by a factor of four (as h → 0). Recall that this bound will not
be applicable if the integrand is not sufficiently differentiable, though in general smoothness is less
crucial for integration than for interpolation.

10

∫

∫ ∫

∫

6

CYAWTP 14. Which, if any, of the schemes rectangle, left rule, rectangle, right rule, rectangle,
middle rule, and trapezoidal rule will integrate exactly a linear function f(x) = mx + c (for m and
c given constants).

1
CYAWTP 15. Consider the integral I = 0 f(x)dx for

0, 0 ≤ x < 1/3
f(x) = .

1, 1/3 ≤ x ≤ 1

Sketch the logarithmic convergence curve and the corresponding logarithmic convergence asymp
tote for trapezoidal rule for a “doubling” uniform refinement strategy. We recall that the latter
corresponds to discretization parameters h = 1, h = 1/2, h = (1/2)2, h = (1/2)3 , . . ., such that the
jump in the function at x = 1/3 will always reside inside a segment and not at a segment endpoint.
What is the slope of the logarithmic convergence curve?

Numerical Experiment 16. Invoke the integration GUI to confirm your claims in CYAWTP 15.
Note that the Integration GUI considers a “doubling” uniform refinement strategy h = 1, h = 1/2,
h = (1/2)2 , h = (1/2)3, . . . , such that the jump in the function at x = 1/3 will always reside inside
a segment and not at a segment endpoint.

CYAWTP 17. Consider the trapezoidal rule for the more general situation in which the segments
Si, 1 ≤ i ≤ N − 1, are of variable length: for 1 ≤ i ≤ N − 1, Si is of length hi ≡ xi+1 − xi. Repeat
CYAWTP 13 but now for this case of variable-length segments.

CYAWTP 18. Propose functions f(x) for which the variable-length trapezoidal rule (or more
generally, variable-length versions of any of our schemes) could prove advantageous in terms of
reduced computational cost? Note that your functions f(x) should not depend on the discretization
grid (or h).

Perspectives

We have only here provided a first look at the topic of numerical integration. A more in-depth study
may be found in Math, Numerics, and Programming (for Mechanical Engineers), M Yano, JD Penn,
G Konidaris, and AT Patera, available on MIT OpenCourseWare, which adopts similar notation to
these nutshells and hence can serve as a companion reference. For an even more comprehensive view
from both the computational and theoretical perspectives we recommend Numerical Mathematics,
A Quarteroni, R Sacco, F Saleri, Springer, 2000.

Of the many further topics of interest, perhaps the most important is the treatment of integra
tion in higher dimensions. In this nutshell we consider integration of a univariate function over an
integral. In many engineering situations we must evaluate integrals over surfaces or volumes, for
example to assess overall performance metrics related to heat transfer rates or flowrates or forces
and moments. In two or three dimensions, the methods described in this nutshell extend quite
easily: we replace our small segments with (in two dimensions) small triangles or small rectan
gles. However, there are also cases in which the domain is very high dimensional. In such cases
discretization is simply too expensive, and a very different approach is warranted: Monte Carlo
methods. We discuss the latter in a later nutshell.

11

∫

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

