
1

Differentiation

Draft V1.1 c From Math, Numerics, & Programming for Mechanical Engineers . . . in @MIT 2014.
a Nutshell by AT Patera and M Yano. All rights reserved.

Preamble

In engineering analysis we must often evaluate the derivatives of functions in order to predict or
optimize the performance of a system. In some cases the derivative directly serves as the quantity
of interest; for example, the derivative of the density is related to the frequency of internal gravity
waves in the ocean. In other cases, the derivative, or gradient, serves to guide a design process
towards better performance. Unfortunately, in most cases we are not provided with a closed-form
representation of the function, and instead we must base our prediction on limited (experimental)
observations or (computational) evaluations. In this nutshell we answer the following question: if
we can probe a function at some few input values near an input value of interest, how can we
estimate the (say, first and second) derivatives of the function at the input value of interest? In this
nutshell we consider one approach to this approximation problem: the venerable “finite difference”
method.

We introduce the notion of finite difference approximation, and we present several important
numerical differentiation schemes: approximation of the first derivative of a function by forward,
backward, and centered difference formulas; approximation of the second derivative of a function
by a centered difference formula. We derive error bounds for these finite difference approximations
based on Taylor series expansions, and we discuss the issues of resolution and smoothness. Fi
nally, we discuss the general concept of finite-precision arithmetic, and demonstrate the effect of
truncation and round-off errors on convergence (and indeed, divergence).

Prerequisites: univariate differential and integral calculus; basic principles of numerical methods:
discretization, convergence, convergence order, resolution, operation counts and FLOPs, asymptotic
and big-O estimates; Interpolation: formulation, error analysis, and computational considerations.

1

© The Authors. License: Creative Commons Attribution-Noncommercial-Share Alike 3.0 (CC BY-NC-SA 3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors
and MIT OpenCourseWare source are credited; the use is non-commercial; and the CC BY-NC-SA license is
retained. See also http://ocw.mit.edu/terms/.

http://ocw.mit.edu/terms/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

�

2 Motivation: Example

Let us consider a concrete example of numerical differentiation. Oscillations in a statically stable
ocean environment are characterized by the Brunt-Väisälä frequency,

g ∂ρ
N = ,

ρ ∂x

where ρ is the density of the ocean water, g is the gravitational acceleration, and x is the depth
measured from the free surface. (Depth shall always refer to vertical distance below the free surface.)
We wish to approximate the frequency at a particular depth of interest, say d = 200m.

To accomplish our task, we are given Table 1, which provides the density of ocean water at
seven different depths. (The density of ocean water depends on the salinity and temperature,
which in turn depends on depth.) How can we exploit the data of Table 1 to approximate the
derivative ∂ρ/∂x and subsequently the Brunt-Väisälä frequency at the depth of interest, d = 200m?
Can we say anything about the accuracy of this estimate? What is the cost associated with the
computation of this frequency estimate? The material provided in this nutshell will help you answer
these questions.

depth (m) 0 100 200 300 400 500 600
density (kg/m3) 1024.985 1025.375 1025.815 1026.271 1026.707 1027.086 1027.375

Table 1: Variation in the density of ocean water with depth.1

3 Forward Difference

We first consider arguably the simplest form of numerical differentiation: the forward difference
formula. Here, we wish to approximate the derivative f '(x̄0) based on function values f(x̄0) and
f(x̄1) for x̄0 < x̄1. To approximate the derivative, we first recall the definition of the derivative:

f(x̄0 + δ) − f(x̄0)
f '(x̄0) ≡ lim .

δ→0 δ

We now approximate this derivative by replacing the limit δ → 0 — a differential — with a finite
difference, h ≡ x̄1 − x̄0 > 0; the resulting approximation is the forward difference formula,

f(x̄0 + h) − f(x̄0) f(x̄1) − f(x̄0)
fh
' (x̄0) = = . (1)

h h

A geometric interpretation of the forward difference formula is provided in Figure 1. In general, a
finite difference formula approximates the derivative of a function at a point of interest x̄0 based
on the function value at x̄0 and selected additional points in the neighborhood of x̄0. The set of
points which serve to evaluate the derivative is denoted the finite difference stencil or simply the
stencil ; the stencil for the forward difference formula is {x̄0, x̄1}.

As a simple example, we apply the forward difference formula to the ocean density example.
In particular, we wish to estimate the Brunt-Väisälä frequency at the depth of interest d = 200m.

1This table is derived from the representative ocean density profile provided in Windows to the Universe.

2

�

x̄0 x̄1

S

f

(x̄0, f (x̄0))

(x̄1, f (x̄1))

f ′
h(x̄0)

f ′(x̄0)

Figure 1: Illustration of the forward difference formula.

∂ρ To approximate the derivative at depth of interest d ≡ 200m we first choose the stencil {x̄0 ≡∂x
200m, x̄1 ≡ 300m}; the stencil must be a subset of the points available in Table 1. We then enlist
the forward different formula (1) to obtain

f(x̄1 ≡ 300) − f(x̄0 ≡ 200) 1026.271 − 1025.815
fh
' (d = 200) = = = 0.456 kg/m 2 .

300 − 200 100

The approximation to the Brunt-Väisälä frequency at d = 200m is then given by
g ∂ρ g 9.81' −1N = = f (d ≡ 200) = · 0.456 = 6.60 × 10−2 s . (2)hρ ∂x ρ(d ≡ 200) 1025.815

Note we evaluate the density in the denominator at the depth of interest, here d = 200m.

CYAWTP 1. Invoke the forward difference formula and the (depth, density) data of Table 1 to
estimate the Brunt-Väisälä frequency at depths of interest d = 300m and d = 500m, respectively.

We now proceed with the error analysis: we wish to understand how well the forward difference
' estimate f (x̄0) approximates the exact derivative f ' (x̄0). Towards this end, we first recall the h

Taylor series expansion with explicit remainder,

1 '' (ξ)h2f(x̄1) = f(x̄0) + f ' (x̄0)h + f ;
2

recall that the Mean-Value Theorem ensures the existence of a ξ ∈ [x̄0, x̄1] for which equality holds
(presuming f is twice differentiable). We now compare the forward difference approximation and
the exact derivative at x̄0,
 f(x̄1) − f(x̄0)

h

 f
 '' (ξ)h2

1 1
 |f
 '' (x̄0) − f ' (x̄0) − =

 f ' (x̄0) − ' (x̄0)h +h(x̄0)| = f
 f

h
 2

1

2

1
 ≤ max |f
2 x∈[x̄0,x̄1]

f
 '' (ξ)h '' (x)|h. (3)
=

The accuracy of the forward difference formula depends on two factors: the discretization resolution
parameter h — the shorter the segment, the better the estimate; the second derivative of the
function f — the slower the rate of the change of the derivative with x, the better the estimate.

' It is not surprising that f (x̄0) converges to f ' (x̄0) since the by construction f ' (x̄0) is the limit of h
' fh(x̄0) as h tends to zero. However, we also observe that the forward difference formula is first-order

accurate: the order of the scheme is p = 1.

3

4

Numerical Experiment 2. Invoke the differentiation GUI for forward difference approximation
of the derivative f ' (x = 0) for the function f(x) = exp(x): visualize the geometric interpretation
of the finite difference approximation; confirm empirically the convergence rate of the forward
difference formula.

' CYAWTP 3. Sketch the logarithmic convergence curve, log(|f ' (x̄0) − f (x̄0)|) as a function of h

log(1/h), and the associated logarithmic convergence asymptote, for forward difference approxima
tion of the function f = sin(10πx) at x̄0 = 0. Estimate very roughly the value of the discretization
parameter h at which the asymptotic regime is first apparent.

Numerical Experiment 4. Invoke the differentiation GUI to confirm your sketch and estimates
of CYAWTP 3.

We now briefly comment on the cost associated with the forward difference formula. Given
the pairs (x̄0, f(x̄0)) and (x̄1, f(x̄1)), the evaluation of the forward difference formula requires two
subtractions (x̄1 − x̄0, and f(x̄1) − f(x̄0)) and one division ((f(x̄1) − f(x̄0))/(x̄1 − x̄0)); hence the
evaluation of the derivative at x̄0 requires, in total, 3 FLOPs.

Generalization: Other Finite Difference Formulas

We now introduce a more general procedure to derive finite difference formulas. The key ingredient,
just as in our develoment of quadrature rules, is interpolation. We first choose a stencil of input
values; we next construct an interpolant of the function; we then evaluate the derivative of the
interpolant at the point of interest. For the interpolant we adopt here the “point-based formu
lation” of interpolation: “what” shall be a low-order polynomial; “where” shall be the points of
our stencil. (As always, the “what” and “where” must yield a unique interpolant.) In the context
of differentiation, rather than denote our interpolation points x̄1, x̄2, . . ., we instead we shift the
indices such that x̄0 shall always be the input point of interest at which we wish to evaluate the
derivative.

Forward difference formula. We first re-derive the forward difference formula but now by our
“differentiation through interpolation” approach. We choose for our stencil {x̄0, x̄1} and hence
segment S ≡ [x̄0, x̄1]. We choose for our interpolant “what”: linear, and (from the stencil) “where”:
x̄0, and x̄1. The linear interpolant is thus given by

f(x̄1) − f(x̄0)
(If)(x) = f(x̄0) + (x − x̄0) for x in S.

x̄1 − x̄0

We now approximate the derivative of the function at x̄0, f ' (x̄0), as follows:

f(x̄1) − f(x̄0) ' f ' (x̄0) ≈ (If) ' (x̄0) = = fh(x̄0) , x̄1 − x̄0

which is consistent with the formula we obtained earlier.

Backward difference formula. To obtain the backward difference formula, we now choose for our
stencil {x̄−1, x̄0}, x̄−1 < x̄0, and hence segment S ≡ [x̄−1, x̄0]. We again choose a linear interpolant,
which for our backward stencil is now given by

f(x̄0) − f(x̄−1)
(If)(x) = f(x̄−1) + (x − x̄−1) for x in S.

x̄0 − x̄−1

4

Finally, we take the derivative of this linear interpolant at x = x̄0 to obtain

f(x̄0) − f(x̄−1)' fh(x̄0) = .
x̄0 − x̄−1

as our backward difference formula. The error bound for the backward difference formula is identical
to the error bound for the forward difference formula, (3), except that the maximum of |f ' | over
[x̄0, x̄1] is replaced by the maximum of |f ' | over [x̄−1, x̄0]. The operation count of the backward
difference formula is identical to the operation count for the forward difference formula.

CYAWTP 5. Sketch a geometric interpretation, similar to Figure 1 for the forward difference
formula, for the backward difference formula.

CYAWTP 6. Provide a lower bound and an upper bound for the Brunt-Väisälä frequency at
d = 100m and also at d = 500m.

Centered difference formula. Here we choose the stencil {x̄−1, x̄0, x̄1} for x̄−1 < x̄0 < x̄1 and
x̄0 − x̄−1 = x̄1 − x̄0 = h; our segment is then given by S ≡ [x̄−1, x̄1]. We choose for our interpolant
“where”: quadratic polynomial, and (from the stencil) “what”: x̄−1, x̄0, x̄1; recall that a quadratic
polynomial is uniquely determined by three points. We may then write our interpolant as

1 1
(If)(x) = f(x̄−1)(x − x̄0)(x − x̄1) − f(x̄0)(x − x̄−1)(x − x̄1)

2h2 h2

1
+ f(x̄1)(x − x̄−1)(x − x̄0) , x ∈ S . (4)

2h2

(Note that this interpolant as written is valid only for equispaced points.) We then differentiate
(4) at x̄0 to obtain

f(x̄1) − f(x̄−1)' fh(x̄0) = . (5)
2h

which is denoted the centered difference formula. Note that this specific formula is derived for, and
hence only applicable to, equispaced points.

CYAWTP 7. Sketch a geometric interpretation, similar to Figure 1 for the forward difference
formula, of the centered difference formula.

CYAWTP 8. Derive the centered difference formula (5) from the expression (4) for the quadratic
interpolant.

We may apply the Taylor series expansion to obtain an error bound for the centered difference
approximation:

1 |f ' (x̄0) − fh
' (x̄0)| ≤ h2 max |f ''' (x)|.

6 x∈[x̄−1,x̄1]

We observe that that the centered difference formula is second -order accurate; as the operation
count is only 3 FLOPs — the same as for the first-order accurate forward and backward difference
approximations — the centered difference approximation is a good buy. However, we note that,
as always, higher order schemes require more smoothness: the error in the centered difference
approximation depends on the third derivative of f .

5

5

Numerical Experiment 9. Invoke the differentiation GUI for centered difference approximation
of the derivative f(x) = x|x| at x = 0. What order convergence do you observe, and why?

CYAWTP 10. Which, if any, of the finite difference formulas above — forward difference, back
ward difference, centered difference — will differentiate exactly a linear function? How about a
quadratic function? How about a cubic function?

Finite Difference Formula for the Second Derivative

We may also develop finite difference approximations for the second derivative of a function f .
Indeed, we may follow the same procedure as for first derivatives with one crucial difference: we
select a stencil; we next construct an interpolant of f ; we then differentiate — this time twice —
the interpolant at the point of interest. Clearly since we must differentiate twice we must choose
an interpolant which is at least quadratic — otherwise our approximate derivative is identically
zero — which in turn demands at least a three-point stencil for uniqueness.

In fact, we have just described the most common finite difference approximation of the second
derivative of a function f . We choose the stencil {x̄−1, x̄0, x̄1} for x̄−1 < x̄0 < x̄1 and x̄0 − x̄−1 =
x̄1 − x̄0 = h; our segment is then given by S ≡ [x̄−1, x̄1]. We choose for our interpolant “where”:
quadratic polynomial, and (from the stencil) “what”: x̄−1, x̄0, x̄1. We thus arrive at (4), just as in
our derivation of the centered difference approximation of the first derivative of f . But now, for
the second derivative approximation, we differentiate the interpolant twice to obtain

f(x̄−1) − 2f(x̄0) + f(x̄1)'' fh (x̄0) ≡ (If) '' (x̄0) ≡
h2 ≈ f '' (x̄0) . (6)

Note that whereas for first derivative approximations h1 appears in the denominator, for second
derivative approximations h2 appears in the denominator, consistent with the differentials of the
Liebniz notation for derivatives.

The error of the centered difference formula for the second derivative may be bounded as

1 |f '' (x̄0) − fh
'' (x̄0)| ≤ h2 max |f (4)(x)| , (7)

12 x∈[x̄−1,x̄1]

where f (4) denotes the fourth derivative of the function; the approximation is second-order accurate.
Note that this specific formula is derived for, and hence only applicable to, equispaced points, and
in this case it is not possible to develop a strictly second-order accurate scheme if x̄0 −x̄−1 = x̄1 −x̄0.

CYAWTP 11. Derive the second-derivative approximation (7) from the expression (4) for the
quadratic interpolant.

There are many applications of this second-derivative formula, for example in the numerical
treatment of second-order ordinary or partial differential equations. We consider here another
application: a posteriori error estimation. Most of the estimates we present in these nutshells
are of the a priori variety, provided before we obtain our numerical result; a priori estimates
are not quantitative, in the sense that the bound references the (unknown) exact solution. In
constrast, a posteriori error estimates are provided after we obtain our numerical result; posteriori
error estimates are thus quantitative, and can serve both to assess the accuracy and adapt the
discretization (for example, to choose smaller segments in certain parts of the interval).

6

We give here a simple example. We are given a discretization of [a, b] in the form of equispaced
segment endpoints x1 ≡ a, x2, . . . , xN ≡ b. We are provided with function values f(xi), 1 ≤
i ≤ N ; we wish to predict f(x) at any point in [a, b]. We first construct a (global) piecewise
linear interpolant, If . Next, to quantitatively understand the accuracy of our interpolant, we

'' evaluate f (xi), 2 ≤ i ≤ N − 1, according to the formula (6), and compute — motivated by the h
a priori error bound for piecewise-linear interpolation presented in the Interpolation nutshell —

'' êi ≡ (h2)/8 · |fh (xi)|, 2 ≤ i ≤ N − 1. Finally, we may take (say) the maximum of êi and êi+1 as an
a posteriori error estimator for the interpolation error over segment Si, 2 ≤ i ≤ N − 2. (For our
error estimators for S1 and SN−1 we take ê2 and êN −1, respectively.)

6 Finite-Precision Arithmetic

In a digital computer, a floating-point number is represented as a mantissa — with 1 non-zero digit
before the decimal, and n digits after the decimal — and an exponent. (In reality, the representation
is binary, not digital, but the arguments are similar.) Representation of a number such as e thus
involves a truncation error or representation error : of the infinite number of non-repeating digits,
we retain only the first n digits. We denote by E ≡ 10−n the machine precision.

CYAWTP 12. Consider the two numbers x = 1.000000 and y = 1.000001. Calculate z = x + y;
how many significant figures does z retain? Now calculate w = y − z; how many significant figures
does w retain?

In some cases, truncation error can corrupt our numerical approximation. As a simple example,
we consider the forward difference formula (1). As h approaches E (machine precision), the conver
gence as h decreases will be replaced by divergence: the 1/h in the denominator of the difference
formula will amplify the truncation error; for h < E (roughly) we can no longer distinguish f(x0) and
f(x1) in the numerator and (1) will evaluate to zero — hence we obtain a fixed order-unity error.
In the appendix we analyze the convergence of finite difference approximations (of first derivatives)
in the presence of finite-precision effects: we can predict the value of the discretization parameter h
(as a function of E) at which divergence is first observed; we can further demonstrate that the error
which can be achieved in the presence of finite-precision effects is lower for higher-order schemes.
We confirm these effects empirically in Figure 2.

7 Perspectives

We have only here provided a first look at the topic of numerical differentiation. A more in-
depth study may be found in Math, Numerics, and Programming (for Mechanical Engineers), M
Yano, JD Penn, G Konidaris, and AT Patera, available on MIT OpenCourseWare, which adopts
similar notation to these nutshells and hence can serve as a companion reference. For an even
more comprehensive view from both the computational and theoretical perspectives we recommend
Numerical Mathematics, A Quarteroni, R Sacco, F Saleri, Springer, 2000.

Of the many further topics of interest, perhaps the most important is the treatment of noisy
data. In this nutshell we consider noise-free function evaluations. However, our analysis of finite-
precision arithmetic effects suggests that differentiation — unlike integration — can be very sensitive
to noise. In a subsequent nutshell we consider an alternative approach to numerical differentiation
which is more suitable for noisy data: least-squares projection.

7

10
0
10

2
10

4
10

6
10

8
10

10
10

12
10

14
10

16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

1/h

|f
′ (
0
)
−

f
′ h
(0
)|

-1.0

-2.0

forward difference
centered difference

Figure 2: The error in the finite difference approximation of the first derivative of f(x) = exp(x)/3
at x = 0 in finite-precision (E ≈ 1.0 × 10−16) arithmetic. We observe the anticipated convergence
result (of infinite-precision arithmetic) until h is on the order of E1/(1+p) where p is the order of the
scheme.

8

�

Appendix A Finite Difference in Finite-Precision Arithmetic

We have so far assumed exact arithmetics. In practice, a floating-point number is represented in the
computer as a mantissa — with 1 non-zero digit before the decimal, and n digits after the decimal
— and an exponent. (In reality, the representation is binary, not base-10, but the arguments are
similar.) Thus, in a computer, a real number x is approximated by its floating-point approximation
fl(x), which satisfies

|x − fl(x)| ≤ E|x|,

where E is the machine precision. In other words, for any real number x, we can find fl(x) such
that x = fl(x) + Ẽ|x| for some |Ẽ| ≤ E. The floating-point number system used in a typical modern
computer carries n ≈ 16 significant digits, and hence E ≈ 10−16 . We note that the floating-point
number system can represent any real number quite accurately, and hence the errors arising from
finite-precision arithmetics can often be ignored.

However, it is certainly possible to observe the effect of finite-precision arithmetics, in particular
when the difference between two nearly identical numbers plays an important role in a calculation.
As a simple example, we consider the forward-difference formula (1). The function values f(x̄0)
and f(x̄1) in the numerator are represented in the floating-point number system as fl(f(x̄0)) =
f(x̄0) + Ẽ0 and fl(f(x̄1)) = f(x̄1) + Ẽ1 for Ẽ0 ≤ E and Ẽ1 ≤ E. (For simplicity we assume the rest
of the arithmetic is carried out exactly; of course in a computer all intermediate steps must also
adhere to the floating-point number system.) The error in our forward difference approximation is
then

f ' (x̄0) − f ' h,fp(x̄0) = f ' (x̄0) −
fl(f(x̄1)) − fl(f(x̄0))

h

= f ' (x̄0) −
f(x̄1) + Ẽ1f(x̄1) − f(x̄0) − Ẽ0f(x̄0)

h

= f ' (x̄0) −
f(x̄1) − f(x̄0)

h
−

Ẽ1f(x̄1) − Ẽ0f(x̄0)
h

= f ' (x̄0) − f ' h(x̄0) −
Ẽ1f(x̄1) − Ẽ0f(x̄0)

h

' Ẽ1f(x̄1) − Ẽ0f(x̄0)≤ f ' (x̄0) − fh(x̄0) +
h

1 E ≤ h max |f '' (x)| + 2 max |f(x)|; (8)
2 x∈[x̄0,x̄1] h x∈[x̄0,x̄1]

in the last step, the bound for the first term follows from our forward difference error bound (3)
and the bound for the second term follows from Ẽ1 ≤ E and Ẽ2 ≤ E. The finite-precision forward
difference error consists of two contributions: the first is the standard finite-difference error; the
second is the error due to the finite-precision arithmetic. In particular, note that the second error
diverges as h → E.

We can readily show that the value of h that minimizes the bound (8) is

4 max
h ∗ = E1/2 x∈[x̄0,x̄1] |f(x)|

'' (x)|maxx∈[x̄0,x̄1] |f

9

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣ ∣∣ ∣∣∣∣ ∣∣∣∣

√

 �

and the bound associated with the optimal h is

' f ' (x̄0) − fh∗ ,fp(x̄0) ≤ E1/2 4 max |f(x)| max |f '' (x)| .
x∈[x̄0,x̄1] x∈[x̄0,x̄1]

For the forward difference formula evaluated in finite-precision arithmetics, h that leads to the
minimum error bound is O(E1/2) and the minimum error bound is O(E1/2).

We may analyze the finite-precision centered difference error in a similar manner:

fl(f(x̄1)) − fl(f(x̄−1))' |f ' (x̄0) − fh,fp(x̄0)| = f ' (x̄0) −
2h

Ẽ1f(x̄1) − Ẽ−1f(x̄−1)
' ≤ |f ' (x̄0) − fh(x̄0)| +
2h

1 E ≤ h2 max |f '' (x)| + max |f(x)|;
6 x∈[x̄−1,x̄1] h x∈[x̄−1,x̄1]

the finite difference error converges at the rate of h2, and the finite precision error diverges at the
rate of h−1 . The value of h that minimizes the bound is

1/33 max x1] |f(x)|x∈[x̄0,¯h ∗ = E1/3

maxx∈[¯ x1] |f ''' (x)|x0,¯

and the bound associated with the optimal h is

' f ' (x̄0) − fh∗ ,fp(x̄0) 1/32 21 1 ≤ E2/3 max |f(x)| max |f ''' (x)| + max |f(x)| max |f ''' (x)| .
24 x∈[x̄0,x̄1] x∈[x̄0,x̄1] 3 x∈[x̄0,x̄1] x∈[x̄0,x̄1]

For the centered difference formula evaluated in finite-precision arithmetic, h that leads to the
minimum error bound is O(E1/3) and the minimum error bound is O(E2/3). Note that, for respective
optimal h, the centered difference formula attains smaller error (bound) than the forward difference
formula: O(E2/3) vs. O(E1/2).

We can in fact generalize the analysis to show the following for an order p scheme: (i) the optimal
1 p

h, h∗, is O(E p+1); (ii) the error bound for the optimal h is O(E p+1); (iii) the error converges as
hp for h > h∗; (iv) the error diverges as h−1 for h < h∗ . The behavior for the forward difference
formula (p = 1) and the centered difference formula (p = 2) is captured in Figure 2.

10

∣∣ ∣∣ √ ()()

() ()

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣

)

()

()
∣∣ ∣∣(

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

