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1 Preamble 

In engineering analysis we must often predict the behavior of a system which is very com
plicated in the underlying details but which nevertheless admits a rather simple description 
as regards the distribution of the outcomes. The flip of a coin is an immensely complicated 
phenomenon which depends very sensitively on dozens or even hundreds of variables: we 
can not predict with any accuracy whether any particular flip will result in a head or a tail; 
however, we can rather easily describe the frequency of heads and tails in some long sequence 
of experiments. The life of a person is many orders of magnitude more complicated than 
the flip of a coin: we can certainly not predict (at birth) the lifespan of any given person; 
however, again, we can easily describe the distribution of lifespans of many people. In this 
nutshell, we answer the following question: How can we characterize — and make inferences 
related to — phenomena or systems which are unpredictable in any given “instance,” or 
individual, but quite readily described for an entire population? 

We consider in this nutshell the foundations of probability theory and statistical estima
tion. 

We first introduce the concepts of population, experiment, outcomes, sample space, 
sampling procedure, sample, and realization. We then define events as sets of outcomes 
— hence subsets of the sample space: we describe the set operations with which we 
can manipulate events; we introduce the concepts of mutually exclusive and collectively 
exhaustive pairs (or sets) of events; and we provide the classical sample-space Venn 
diagram visualization of outcomes and events. 

We next develop a formulation for frequency as a characterization of a (sample of) 
data: we introduce the number function and subsequently the frequency of an event; 
we provide an experiment-space Venn diagram visualization of frequency; we develop 
the rules by which frequencies associated with different events can be related and 
combined; we define and relate joint (outcome), marginal, and conditional frequencies; 

1We thank Ms Debra Blanchard for the preparation of the figures. 
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and we derive Bayes’ Theorem. We also discuss the concept of independence and 
approximate independence. 

Finally, we define probabilities (respectively, the rules of probability) as frequencies 
(respectively, the rules of frequency) in the limit of infinitely many random experiments. 
We thereby also naturally introduce the concept of statistical estimation: the process 
by which we estimate probabilities, or parameters related to probabilities, based on 
a finite number of experiments. We illustrate these concepts through a pedagogical 
experiment and associated inference questions. 

In this nutshell we emphasize the derivation and interpretation of the rules of probability 
and the connection between probability and statistical estimation. Subsequent nutshells will 
consider applications of these rules to describe random phenomena, to calculate probabili
ties of (complex) events of interest, to assess the error in statistical estimates of probabilities 
and related distribution parameters, and to develop effective (probabilistic) computational 
approaches to deterministic problems. 

Prerequisites: pre-calculus: elementary set theory, univariate functions, and (conceptual) 
limits; the letter ϕ. 

2 Motivation: Examples 

2.1 A Pedagogical Experiment 

We design the survey in the box below to be administered to students enrolled in the MIT 
Mechanical Engineering subject 2.086, “Numerical Computation for Mechanical Engineers.” 
In the survey, we ask the student to circle one and only one answer to each of two questions. 
The first question, Question 1, is related to background: has the student not taken, or 
taken, the MIT Mechanical Engineering subject 2.005, “Thermal-Fluids Engineering I”? 
The second question, Question 2, is related to knowledge: can the student correctly predict 
the heat transfer rate through a wall, and in particular the dependence of this heat transfer 
rate on wall thickness? Note Question 2 should be difficult to answer correctly for a student 
who has seen the material of 2.005, but relatively easy to answer correctly for a student who 
has seen — and mastered — the material of 2.005. 

The administration of the survey to a (single) student is denoted an experiment (or 
perhaps an observation, or a trial). A set of n experiments — administration of the survey 
to n students — constitutes a sample; n is denoted the sample size. It is important to clearly 
distinguish an experiment — administration of the survey to a single student — from the 
sample — administration of the survey to n students. 
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SURVEY 
(for background only) 

Please answer the two multiple-choice questions below. You need not put your name 
on the paper: in this exercise, you are an anonymous member of a sample realization. 

1. Heat Transfer Background 

Indicate whether you have (i) not yet taken the subject 2.005, or (ii) already taken 
the subject 2.005, by circling the appropriate option below. Note that “already 
taken” should be interpreted as “completed,” so if you are currently enrolled in 
2.005 then you should circle “(i) I have Not yet taken 2.005.” 

(i) I have Not yet taken 2.005. 

(ii) I have already T aken 2.005. 

2. Heat Transfer Knowledge 

Heat is transferred by conduction through a solid wall to ambient outside air, as 
shown below. The temperature of the inside wall is fixed at Tinside. The thermal 
conductivity of the wall is denoted k and thickness of the wall is denoted L. The 
(uniform) heat transfer coefficient from the outside of the wall to the air is given 
by h and the air temperature far from the wall is Tamb. It is known that the 
Biot number, hL/k, is very small (e.g., 10−3). You may treat the problem as 
one-dimensional: the temperature in the wall varies only in the x-direction. 

If we increase the wall thickness by a factor of two (i.e., from L to 2L), the heat 
transfer rate (measured in, say, Watts) through the wall (e.g., from the inside to 
the outside if Tinside is greater than Tamb) will 

(i) decrease by roughly a factor of 2; 

(ii) stay roughly the same; 

(iii) increase by roughly a factor of 2 

(iv) increase by roughly a factor of 4. 

Note we only change L to 2L — all else (k, 
h, Tinside, Tamb) remains fixed. 

Circle one and only one option. 

air

wall

outsideinside
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We shall represent our pedagogical experiment by two (dependent) variables: one vari
able related to B(ackground), B, associated to Question 1; the second variable related to 
K(nowledge), K, associated to Question 2. We may thus express our experiment by a vec
tor, H(eat Transfer Information) ≡ (B, K): the first element of the pair is the Background 
variable associated with Question 1, and the second element of the pair is the Knowledge 
variable associated with Question 2. We may think of B and K as procedures which yield 
outcomes B and K, respectively. 

For Question 1, represented by variable B, we encode the response (i ) as B = N , or simply 
N , for “N(ot taken)”; we encode the response (ii ) as B = T , or simply T , for “T (aken).” For 
Question 2, represented by variable K, we encode the response (ii ) — the correct answer — 
as K = R, or simply R, for “R(ight),” we encode any other response, (i ), (iii ), or (iv ) — the 
distractors — as K = W , or simply W , for “W (rong).” Since the experiment is described by 
two variables, and each variable can take on two values, there are four possible outcomes to 
our experiment: (B, K) = (N, R), (B, K) = (N, W ), (B, K) = (T,R), and (B, K) = (T,W ). 
The outcome (N, R) is read as “the student has Not taken 2.005” and “the student provides 
the Right answer to the heat transfer question”; the outcome (N, W ) is read as “the student 
has Not taken 2.005” and “the student provides the W rong answer to the heat transfer 
question”; the outcome (T,R) is read as “the student has T aken 2.005” and “the student 
provides the Right answer to the heat transfer question; and finally, the outcome (T,W ) is 
read as ‘the student has T aken 2.005” and “the student provides the W rong answer to the 
heat transfer question.” 

We shall denote our possible outcomes, in general, as O1, . . . , Onoutcomes . In our experiment 
outcomes ≡ 4, and O1 ≡ (N, R), O2 ≡— which we shall denote “pedagogical experiment” — n

(N, W ), O3 ≡ (T,R), O4 ≡ (T,W ). We denote the set of all possible outcomes — all the 
possible values for the outcome (B, K) — as the sample space: {O1, . . . , Onoutcomes }, or (for our 
pedagogical example) {(N, R), (N, W ), (T,R), (T,W )}. We emphasize that an experiment 
will yield one, and only one, outcome from the sample space. 

It is important to clearly distinguish an experiment from a realization. An experiment 
H ≡ (B, K) is the procedure for administration of the survey to any student; an experiment 
may yield any outcome in our sample space. A realization is the administration of the 
survey to a particular Student ∗ ; a realization will yield a single outcome H∗ = (B∗, K∗), 
say H∗ = (N, R) — the particular Student ∗ to whom the survey is administered has Not 
taken 2.005 and (yet!) provides the Right answer to the heat transfer question. In a similar 
fashion, we can distinguish a sample from a sample realization. A sample realization — 
administration of the survey to n particular students, labeled by number — yields data: n 
outcomes {H1, . . . , Hn}. We depict in Figure 1 the experiment, a realization and associated 
outcome, and finally the sample space. 

We elaborate briefly on this distinction between an experiment and a realization. Con
sider a function f(x) ≡ x2: given any real number x, the function f returns an outcome 
which is a real number. The function f is a rule or procedure by which, for any given x, 
we may evaluate f(x). In contrast, for a particular x ∗ , y ∗ ≡ f(x ∗) is a particular outcome 
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— a real number. In the same fashion, H is a rule or procedure by which, for any given 
student, we may evaluate H(Student) = (B(Student), K(Student)) to yield some out
come from our sample space; in our case, this rule is the administration of our survey. In 
contrast, a realization is the application of our procedure to a particular Student∗ to yield 
a single outcome H∗ = (B∗, K∗) = (B(Student ∗ ), K(Student ∗ )) from our sample space. 
Alternatively, we may develop a programming analogy: the procedure H(Student) is a 
set of instructions to be parsed and evaluated in terms of a dummy argument Student; a 
realization, H(Student ∗ ), is a “call” to the code — which yields data H∗ . 

A student must be enrolled in Mechanical Engineering subject 2.086 to be eligible for 
the survey; we denote this pool of candidates our population. In general, members of a pop
ulation — here, potential survey respondents — will share some characteristic that defines 
the population — here, enrollment in 2.086 — but also exhibit some heterogeneity which we 
wish to investigate — here, as represented by our four possible outcomes. Our population can 
in principle include students from many different academic years.2 From this popula-tion we 
draw our sample of n experiments: n students to which we administer the survey. We might 
choose to define our sample as all 2.086 students in a given academic year, say 
{H1, . . . , Hn2013 }2013; note Hi refers to the outcome for student “i” in the respective sample 
realizations. Alternatively, we might — and we did — administer the survey to a particular 
subset of MIT Mechanical Engineering students in a given academic year. 

We show in Table 1 an actual sample realization: the results of the survey administered 
to n = 64 distinct students — labeled 1, . . . , 64 — who take 2.086 in the Spring of 2013 and 
furthermore attend lecture on Valentine’s Day. (The survey is administered early enough 
in the semester such that students currently enrolled in 2.005 will have not yet seen the 
material tested in the heat transfer question and hence rightfully qualify as N rather than 
T in Question 1.) Note that the order in Table 1, and hence the student labels, are obtained 
(effectively) by shuffling the responses and then proceeding from the top to the bottom of the 
resulting pile of sheets.3 We shall denote the particular sample realization of Table 1 the 
“Spring2013 Dataset.” 

We may now ask the following inference questions. Note here “inference” refers to the 
process by which we deduce conclusions or test hypotheses about our population based on 
analysis of a sample realization. By way of preamble, we note that if the members of some 
group of students simply guess the answer to the heat transfer question (Question 2 of the 
Survey) then we would expect that roughly 25% of the group would obtain the correct 
answer. We then pose the two inference questions 

IQ1 Do the students who have not yet taken 2.005 perform better on the heat transfer 

2In order to consider this larger population, defined over many years, we must assume that 2.005 is 
roughly invariant in time. We must also assume that the MIT Mechanical Engineering curriculum — the 
requirements and the pre- and co-requisite structure — remains unchanged from year to year. But note that 
neither of these assumptions, in practice not strictly satisfied, affects our analysis of the data for Spring 2013, 
or our frequentist motivation and derivation of probability theory based on this pedagogical experiment. 

3In actual fact, the data is compiled in an ordered fashion and we then randomize with the MATLAB 
built-in permrand. It is important to note that we invoke permrand once and do not in any way attempt to 
influence the result for (misdirected) purposes of pedagogical point. 
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Survey 

Question 1
 
Question 2


H = (B, K) experiment 

Student

  

particular 1 Student ∗ realization 

⏐⏐⏐
H∗ = (B∗, K∗) outcome 

B: heat transfer Background (Question 1) 

K: heat transfer Knowledge (Question 2) 

outcomes 

B 

N : heat transfer 
subject 2.005 Not taken 

T : heat transfer 
subject 2.005 T aken 

K 

R: Right answer 
to heat transfer question 

(N, R) 

outcome O1 

(T, R) 

outcome O3 

W : W rong answer 
to heat transfer question 

(N, W ) 

outcome O2 

(T, W ) 

outcome O4 

{(N, R), (N, W ), (T,R), (T,W )} sample space
 

Figure 1: The pedagogical experiment (B, K), a realization and outcome, and the sample 
space of possible outcomes. 
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Student Outcome Student Outcome Student Outcome Student Outcome 

1 

5 

9 

13 

17 

21 

25 

29 

33 

37 

41 

45 

49 

53 

57 

61 

(T,W) 

(N,R) 

(T,W) 

(N,W) 

(T,W) 

(N,R) 

(N,W) 

(N,W) 

(N,W) 

(T,W) 

(T,W) 

(N,W) 

(N,W) 

(T,W) 

(T,W) 

(T,W) 

2 

6 

10 

14 

18 

22 

26 

30 

34 

38 

42 

46 

50 

54 

58 

62 

(N,R) 

(T,R) 

(T,R) 

(N,W) 

(T,R) 

(T,W) 

(T,R) 

(T,R) 

(N,W) 

(N,W) 

(N,W) 

(T,W) 

(T,W) 

(T,R) 

(N,R) 

(N,W) 

3 

7 

11 

15 

19 

23 

27 

31 

35 

39 

43 

47 

51 

55 

59 

63 

(T,W) 

(N,W) 

(N,W) 

(N,W) 

(N,R) 

(T,W) 

(N,W) 

(N,W) 

(T,W) 

(N,R) 

(T,W) 

(N,W) 

(T,R) 

(T,R) 

(T,R) 

(T,R) 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

64 

(T,W) 

(T,R) 

(T,W) 

(N,W) 

(N,W) 

(N,R) 

(N,W) 

(T,R) 

(T,W) 

(N,W) 

(N,W) 

(T,W) 

(N,R) 

(T,W) 

(T,R) 

(T,R) 

Table 1: Sample Realization “Spring2013 Dataset”: {H1, . . . , Hn=64}Spring2013. 

question than a group of guessers? 

IQ2 Do the students who have already taken 2.005 perform better on the heat transfer 
question than a group of guessers? 

We also pose an inference question which directly compares the students who have not yet 
taken 2.005 with the students who have already taken 2.005: 

IQ3 Do students who have taken 2.005 perform better on the heat transfer question than 
students who have not yet taken 2.005? 

Note we can also pose these questions as hypotheses which we wish to accept or reject based 
on the data obtained. 

Our inference questions are not really Yes or No propositions. A student who has dozed 
through 2.005 and received a well-deserved D(ozed) probably knows less heat transfer than 
a student who has not taken 2.005 but has worked one summer as an energy auditor. How 
do we develop a response to our inference question which is useful — provides some insight 
into the efficacy of 2.005 — but also reflects the variations within the Spring 2013 2.086 
student body — the literally thousands of factors which contribute to a student’s answer to 
Question 2? 

It will require some effort even to answer our inference questions for the particular stu
dents associated with the Spring2013 Dataset. But in fact, our goal is more expansive: to 
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judge the efficacy of 2.005 not just for the students in our particular Spring2013 Dataset, 
but for the entire larger population of 2.086 students, present, past, and future. This then 
raises questions about the proper choice of n — the sample size — and indeed the proper 
choice of students for our realization — the sampling procedure. We will discuss sample size, 
a question of mathematical probability and statistics, in subsequent nutshells, in particular 
related to the performance of certain estimation and numerical procedures. We shall discuss 
sampling procedure, a more subtle question of both mathematical and applied statistics, only 
rather superficially. (We assume for now only that the n experiments in a given realization 
correspond to n distinct students.) 

In the exposition that follows, we shall consider this pedagogical experiment — and the 
particular Spring2013 Dataset sample realization provided in Table 1 — as the primary vehi
cle by which to develop and illustrate the rules of frequency (and subsequently, probability). 
(We refer to this experiment as “pedagogical” because of the focus of the experiment and 
subsequent inferences, not because of the expositional role the example plays in our nutshell.) 
In most cases we shall also indicate the generalization of our exposition to any {population, 
experiment, sample space}. 

2.2 Some Games of Chance 

We introduce as examples several “games of chance” — a flipping coin(s) experiments and a 
rolling die experiment — on the basis of which you will be able to confirm your understanding 
of the material as we proceed. These particular experiments are chosen, as in all introductory 
treatments of probability, because they are simple to understand and “realize” and because 
the anticipated limiting behavior can be deduced by simple symmetry arguments (though the 
latter, in fact, belie much underlying complexity, much studied in the academic literature). 

We first consider the flipping of a single coin. (Coins shall appear in several, sometimes 
related, questions throughout this nutshell; we shall assume that in all cases we consider 
the same denomination — say, a quarter.) More precisely, we define our experiment to be 
a single flip of a particular coin. Thus in this case we represent the experiment by a single 
dependent variable, F (outcome F ) which indicates which face of the coin lands “up.” We 
may think of F as a flipping procedure which takes as argument the time of the flip — a con
venient label for an experiment. Our experiment can yield one of two outcomes, F = T (ail) 
or F = H(ead). It follows that our sample space — the set of all possible outcomes — is 

outcomesgiven by {T,H}: n = 2, and O1 ≡ T,O2 ≡ H. If we were to flip this same coin n 
times then we would create a sample of size n: for example, for n = 3, we might obtain the 
sample realization {F1, F2, F3} ≡ {H, H, T }. 

CYAWTP 1. Now consider the flipping of two coins. In particular, we define our experiment 
to be the simultaneous flip of two coins, say one launched from your left thumb, one launched 
from your right thumb. How many variables do we need to describe the outcome of our 
experiment? Introduce appropriate name(s) for the variable(s). How many values can each 
of these variables take on (for a given experiment)? Introduce appropriate name(s) for the 
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value(s). What are the possible outcomes and hence the sample space for this experiment? 
outcomesExplicitly indicate n and {O1, O2, . . . , Onoutcomes }. Now consider a sample of size n 

(corresponding to n experiments): how many single coin flips — count each thumb as a 
separate flip — are required to create this sample? Create a sample realization of size 
n = 50. 

We next turn to the roll of a die (the singular of dice). We define our experiment to be 
the roll of a single (standard, six-sided) die. In this case we represent the experiment by a 
single variable, D (outcome D), which indicates the number of Dots on that face of the die 
which lands “up.” We may think of D as a rolling procedure which takes as argument the 
time of the roll — a convenient lable for an experiment. Our experiment will yield on of 
six outcomes, D = 1, D = 2, D = 3, D = 4, D = 5, and D = 6. It follows that our sample 

outcomesspace — the set of all possible outcomes — is given by {1, 2, 3, 4, 5, 6}: n = 6, and 
O1 ≡ 1, O2 ≡ 2, O3 ≡ 3, O4 ≡ 4, O5 ≡ 5, O6 ≡ 6. If we were to roll the same die n times 
then we would create a sample of size n: for example, for n = 5, we might obtain the sample 
realization {5, 4, 1, 4, 6}. 

We note that the outcomes of our pedagogical experiment correspond to two variables 
each of which can take on two values. However, in general, the outcome of an experiment 
may be described by any number of variables, each of which may take on any number of 
values (either logical or numerical). In the flip of of a coin the outcomes correspond to 
one variable which takes on two values; in the roll of a die the outcomes correspond to one 
variable which takes on six values. The theory we describe can readily accommodate any 
number of variables, each of which can take on any number of values (or “levels”). 

3 Events 

Given any {population, experiment, sample space}, an event E is, quite simply, a subset 
of the sample space. We directly illustrate the concept as a sample-space Venn diagram 

outcomein Figure 2 for the simple case in which n ≡ 4. The event E1 is the set {O1, O2}; 
the event E2 is the set {O1, O3}. Note that the dashed lines which enclose the outcomes 
associated with E1 and E2 are schematic: a graphical version of { · }. If the result of an 
experiment is an outcome which belongs to the set E (respectively, does not belong to the 
set E) we say that “event E happens” or “event E occurs” (respectively, “event E does not 
happen” or “event E does not occur”). We consider our simple example of Figure 2: if 
the experiment yields outcome O1 then event E1 happens and also event E2 happens; if the 
experiment yields outcome O2 then event E1 happens but event E2 does not happen; if the 
experiment yields outcome O3 then event E1 does not happen but event E2 does happen; and 
finally, if the experiment yields O4 then event E1 does not happen and also event E2 does not 
happen. Alternatively, from an event perspective, if an experiment yields either outcome O1 

or outcome O2, then E1 happens; conversely, if an experiment yields neither O1 nor O2, then 
E1 does not happen. Similarly for E2: if an experiment yields either outcome O1 or outcome 
O3, then E2 happens; conversely, if an experiment yields neither O1 nor O4, then E2 does not 
happen. 
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Figure 2: A Venn diagram representation of the sample space of (noutcomes = 4) possible 
outcomes, {O1, O2, O3, O4}, and two events E1 (red dashed line) and E2 (blue dashed line). 

We now recall the elementary set operations which shall prove useful in the definition 
and manipulation of events. 

¯Complement. We denote by E the complement of E in the sample space: Ē is all the 
outcomes in the sample space which do not belong to E . We note that if event E 

¯ ¯happens then event E does not happen — since by construction E and E do not share 
any outcomes. 

Union. We denote by E1 ∪ E2 the union of two events E1 and E2: event E1 ∪ E2 is the 
set of all outcomes which appear in either E1 or E2; event E1 ∪ E2 happens if either E1 

happens or E2 happens. 

Intersection. We denote by E1 ∩ E2 the intersection of two events E1 and E2: event 
E1 ∩E2 is the set of all outcomes which appear in both E1 and E2; event E1 ∩E2 happens 
if both E1 happens and E2 happens. 

We provide an illustration of each of the above for our example of Figure 2. The complement 
¯ ¯of E1, E1, is given by E1 ≡ {O3, O4}. The union of E1 and E2, E3 ≡ E1 ∪ E2, is given by 

E3 ≡ {O1, O2, O3}. The intersection of E1 and E2, E4 ≡ E1 ∩ E2, is given by E4 ≡ {O1}. 
The set operations complement, union, and intersection correspond to the logical operations 
“not,” “or,” and “and,” respectively; the latter are convenient in reading and interpreting 
events. 

CYAWTP 2. Consider the simple example of Figure 2. What outcomes belong to the event 
(set) E1 ∪ E2? 

Let us know consider any two events, E1 and E2 (not necessarily the events of Figure 2). 
If E1 ∩ E2 = ∅ (the empty set), we say that events E1 and E2 are mutually exclusive. In 
words, E1 and E2 are mutually exclusive if they share no outcomes; equivalently, E1 and E2 

are mutually exclusive if “E1 happens” implies “E2 does not happen” (and of course also the 
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converse) — E1 and E2 can not both happen. As already indicated, for any event E , E and 
Ē are mutually exclusive. A set of M events Em, 1 ≤ m ≤ M , is mutually exclusive if each 
pair of events in the set of events is mutually exclusive: no two events in the set of events 
share an outcome; equivalently, in any given experiment, at most only one event in the set 
of events can happen. In our particular example of Figure 2, the events E1, {O3}, and {O4}
are mutually exclusive, however the events E1 and E2 are not mutually exclusive. 

Let us again consider any two events, E1 and E2 (not necessarily the events of Figure 2). 
If E1 ∪ E2 is the entire sample space, we say that E1 and E2 are collectively exhaustive. In 
words, E1 and E2 are collectively exhaustive if all possible outcomes of the experiment appear 
in either E1 or E2; equivalently, in any given experiment, either E1 or E2 must happen. For 

¯any event E , E and E are collectively exhaustive. A set of M events Em, 1 ≤ m ≤ M , is 
collectively exhaustive if the union of all the events in the set is the entire sample space; 
equivalently, in any given experiment, at least one of the events in the set of events must 
happen. In our particular example of Figure 2, the events E3 ≡ E1 ∪ E2, {O3}, and {O4} are 
collectively exhaustive, however the events E1 and E2 are not collectively exhaustive. 

A pair of events, or a set of events, may be both mutually exclusive and collectively 
exhaustive. In this case, the result of an experiment is one event, and only one event, in 
the set of events: we know that at most one event can happen since the set of events is 
mutually exclusive; we note that at least one event must happen since the set of events is 

outcomecollectively exhaustive. An important case is the set of n events {O1}, {O2}, . . . , 
{Onoutcomes }. Clearly this set of events is both mutually exclusive and collectively exhaustive: 
an experiment can yield only one outcome, hence mutually exclusive; an experiment must 

¯yield at least one outcome, hence collectively exhaustive. The pair of events E and E (for 
any event E) is another important example of a set of mutually exclusive and collectively 
exhaustive events. Finally, the event ∅ — the empty set — and the sample space are yet 
another example of mutually exclusive and collectively exhaustive events. 

To close this section, we consider events associated with our pedagogical experiment. We 
first introduce a shorthand. We shall denote the event E ≡ {(N, R), (N, W )} by N : the 
event N is the set of outcomes H = (B, K) for which B = N (and K may take on any 
value). In words, the event N reads “the student has Not taken 2.005”: if a particular 
realization of the experiment (hence student) yields outcome B = N (and any value for K), 
N happens — the student has not taken 2.005; conversely, if the result of the experiment is 
outcome B = T (and any value for K), the event N does not happen — the student has not 
not taken 2.005, or equivalently the student has taken 2.005. In a similar fashion we define 
events T (“the student has T aken 2.005”), R (“the student provides the Right answer to 
the heat transfer question”), and W (“the student provides the W rong answer to the heat 
transfer question”). 

The Venn diagram of Figure 2 provides a visualization of the sample space associated 
with our pedagogical experiment: we identify O1 ≡ (N, R), O2 ≡ (N, W ), O3 ≡ (T,R), O4 ≡ 
(T,W ). We observe that the event E1 is the event N : “the student has not T aken 2.005.” 
Similarly, the event E2 is the event R: “the student provides the Right answer to the heat 
transfer question.” The event E1 ∩ E2 is the event O1 ≡ (N, R): “the student has Not taken 
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2.005” and “the student provides the Right answer to the heat transfer question.” We can 
immediately conclude from the Venn diagram that the events N (the leftmost two events) 
and T (the rightmost two events) are mutually exclusive and collectively exhaustive; the 
student must either not have taken or have taken 2.005. Similarly, the events R and W are 
mutually exclusive and collectively exhaustive. 

CYAWTP 3. Reconsider the experiment of simultaneously flipping two coins first intro
duced in CYAWTP 1. Define two events which are mutually exclusive but not collectively 
exhaustive. Define two events which are collectively exhaustive but not mutually exclusive. 
Define two events which are both mutually exclusive and collectively exhaustive. Define two 
events which are neither mutually exclusive nor collectively exhaustive. In all cases express 
each event in words but also more explicitly as the associated set of outcomes. 

4 Frequencies 

4.1 The “Number” Function 

We now define a “number” function #(E). We are given some {population, experiment, 
sample space}, an event E , and a sample realization of size n: #(E) is then the number of 
occurrences of event E in the sample (or sample realization); more explicitly, #(E) is the 
number of experiments which yield an outcome which is in the set of outcomes which defines 
E . 

We will illustrate the concept in the context of our pedagogical experiment and the sample 
realization Spring2013 of Table 1. We first consider the event E ≡ {(N, R)}: the student has 
not taken 2.005 (B = N) and has provided the right answer to the heat transfer question 
(K = R). We conclude from Table 1 that, for realization Spring2013, #(E) = 8: there are 8 
students for which this event happens. We can justify this conclusion in several equivalent 
fashions: there are 8 experiments in Spring2013 Dataset for which B takes on the value N 
and K takes on the value R — (N, R) appears in 8 entries of Table 1; more formally, there 
are 8 experiments in Spring 2013 Dataset for which the outcome is in the set E ≡ {(N, R)}. 
(Of course, for our singleton set, an outcome is in {(N, R)} if and only if the outcome is 
exactly (N, R).) We next consider the event E ≡ N , which we recall is the event “the 
student has not taken 2.005.” We determine from Table 1 that, for realization Spring2013, 
#(E) = 30: there are 30 students for which the event happens. The justification: there are 
30 experiments in Spring2013 Dataset for which B takes on the value N — N appears in 30 
entries of Table 1; more formally, there are 30 experiments in Spring2013 Dataset for which 
the outcome is in the set E ≡ N ≡ {(N, R), (N, W )} — the experiment yields as outcome 
either (N, R) or (N, W ). We tabulate in Table 2 #(E) for several important events. 

Returning to the case of a general {population, experiment, sample space}, it will be 
convenient to develop certain relationships which will, in turn, permit us to easily calculate 
the “number” function associated with two events, say E1 and E2. To begin, we introduce 
a picture — another Venn diagram — which will often help us understand the underlying 
set operations which inform the “number” calculation. In particular, we depict in Figure 3 
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#(N, R) #(N, W ) #(T, R) #(T, W ) #(N) #(T ) #(R) #(W ) 

8 22 14 20 30 34 22 42 

Table 2: The number of occurrences in the Spring2013 Dataset of some important events 
associated with our pedagogical experiment. 

Figure 3: A Venn diagram representation of the number function evaluated for events E1 

(red blob) and E2 (blue blob) over a sample realization of n = 64 experiments (black dots). 

our sample realization as a disk within which we place a dot representing the outcome of 
each of the n individual experiments. (In our pedagogical experiment, each dot represents a 
student.) We denote by the red blob the subset of the sample realization for which event E1 

happens: the red blob contains the black dots associated with those experiments for which 
the outcome is in the set E1. We denote by the blue blob the subset of the sample realization 
for which event E2 happens: the blue blob contains the black dots associated with those 
experiments for which the outcome is in the set E2. The bounding black line, which includes 
all the black dots, represents our sample realization. (Of course the depiction is schematic, 
and thus we are free to assume that the blobs form smooth connected domains. Any shapes 
which contain the requisite dots will suffice.) 

We emphasize that the Venn diagram of Figure 2 and the Venn diagram of Figure 3 
are fundamentally different: the former is in “outcome space” with each “x” representing 
an outcome; the latter is in “experiment space,” with each dot representing an experiment 
(in our pedagogical experiment, a student). The dashed lines in Figure 2 enclose a set of 
outcomes which define an event. The blobs in Figure 3 enclose a set of experiments in 
particular sample realization for which an event happens. 

CYAWTP 4. (a ) Modify Figure 3 for the case in which E1 and E2 are mutually exclusive 
but not collectively exhaustive. (b ) Modify Figure 3 for the case in which E1 and E2 are 
not mutually exhaustive but are collectively exhaustive. (c ) Modify Figure 3 for the case in 
which E1 and E2 are mutually exclusive and collectively exhaustive. 
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CYAWTP 5. The depiction of Figure 3 is generic but in fact also corresponds, in quantita
tive fidelity, to our pedagogical experiment: sample realization Spring2013 Dataset; events 
E1 ≡ N and E2 ≡ R. Provide a sketch analogous to Figure 3, again for sample realization 
Spring 2013 Datset, for the events E1 ≡ T and E2 ≡ R. 

We now demonstrate various relations for the number function by the well-known “method 
of dots.” To begin, we refer to your figure of CYAWTP 4 (c ) to directly conclude that, for 
two mutually exclusive and collectively exhaustive events, 

#(E1) + #(E2) = n ( if E1 and E2 are mutually exclusive and collectively exhaustive); (1) 

as a special case, we conclude that, for any event E , 

#(E) + #( Ē) = n , (2) 

¯since E and E are perforce mutually exclusive and collectively exhaustive. 
Let us say that we now wish to calculate #(E1 ∪ E2): the number of experiments in our 

sample for which either E1 happens or E2 happens. The appropriate number of dots (in our 
pedagogical experiment, appropriate number of students) is clearly, from inspection, 

A [the number of dots in the red blob] plus [the number of dots in the blue blob] minus 
[the number of dots in both the red blob and the blue blob (in fact, a purple blob)]; or 

B [n (the number of black dots in the sample realization)] minus [the number of dots 
not in the red blob and not in the blue blob]. 

We now develop formulas based on the two constructions A and B. 
We first consider construction A. To begin, we note that the number of dots in both the 

red blob and the blue blob (purple blob) — the intersection of the red blob and the red 
blob — is the number of experiments for which both E1 and E2 happen, or #(E1 ∩E2); recall 
that E1 ∩ E2 is the set of outcomes which belong to both E1 and E2. Hence we may express 
construction A as 

#(E1 ∪ E2) = #(E1) + #(E2) − #(E1 ∩ E2) . (3) 

This form is convenient because it is often relatively easy to evaluate the ∩, either because 
E1 and E2 are independent (a concept introduced later in this nutshell) or because E1 and E2 

are mutually exclusive — the case depicted in your figure of CYAWTP 4 (a ) (or (c )). In 
the latter case, 

#(E1 ∪ E2) = #(E1) + #(E2) ( if E1 and E2 are mutually exclusive) , (4) 

since E1 ∩ E2 is perforce empty for all experiments: no outcome belongs to both E1 and E2— the 
intersection of the red blob and blue blob is perforce empty.4 The expression (4), but less so 
(3), extends readily from two events to any number of events. 

4We note a subtlety: for a particular n and a particular sample realization it is certainly possible that (4) 
is correct even for two events E1 and E2 which are not mutually exclusive: the particular sample realization 
may not contain any experiments for which the outcome belongs to both E1 and E2. However, we wish to 
derive relationships which are valid for any sample realization. 

14
 



Next, we consider construction B. We may express this formulation as
 

#(E1 ∪ E2) = n − #(Ē1 ∩ Ē2) , (5) 

which in fact derives from De Morgan’s laws and (2) — but is readily evident in Figure 3. 
The form (5) again involves an cap and also extends readily from two events to any number 
of events. 

4.2 The “Frequency” Function 

We many now introduce a “frequency” function ϕn(E). We are given some {population, 
experiment, sample space}, an event E , and a sample realization of size n. Then 

#(E)
ϕn(E) ≡ , 

n 

which measures the fraction of experiments in our sample realization for which event E 
happens. Note that since 0 ≤ #(E) ≤ n it follows that 0 ≤ ϕn(E) ≤ 1. 

We illustrate the concept in the context of our pedagogical experiment and the sample re
alization Spring2013 of Table 1. We consider the event E ≡ (N, R): we recall from Section 4.1 
and Table 2 that #(E) = 8; it immediately follows that ϕn(E) = #(E)/n = 8/64 = 0.125. 
(Recall that our sample realization Spring2013 is of size n = 64.) We next consider the event 
E ≡ N : we recall from Section 4.1 and Table 2 that #(E) = 30; it immediately follows that 
ϕn(E) = #(E)/n = 30/64 ≈ 0.469 — 46.9% of our Spring2013 sample of students has not 
yet taken 2.005. We shall calculate many other frequencies associated with our pedagogical 
experiment in the next sections. 

We note that the frequency function will inherits the properties described in Section 4.1: 
we need only divide through each equation by n. We list the results for future reference. 
First, it follows from (1) that, for two mutually exclusive and collectively exhaustive events 
E1 and E2, 

ϕn(E1) + ϕn(E2) = 1 ( if E1 and E2 are mutually exclusive and collectively exhaustive); (6) 

as expected, if we consider two events which exhaust the sample space, one or the other 
must happen “all the time” — hence with frequency unity. As a special case, we conclude 
from (2) that, for any event E , 

ϕn(E) + ϕn(Ē) = 1 , (7) 

¯since E and E are perforce mutually exclusive and collectively exhaustive. Second, it follows 
from (3) that, for any two events E1 and E2, 

ϕn(E1 ∪ E2) = ϕn(E1) + ϕn(E2) − ϕn(E1 ∩ E2) ; (8) 

for the case in which E1 and E2 are mutually exclusive, we obtain from (4) that 

ϕn(E1 ∩ E2) = ϕn(E1) + ϕn(E2) ( if E1 and E2 are mutually exclusive) . (9) 
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Third, it follows from (5) that, for any two events E1 and E2, 

ϕn(E1 ∪ E2) = 1 − ϕn(Ē1 ∩ Ē2) ; (10) 

recall that to derive (10) we divide both sides of (5) by n, invoke the definition of ϕn(·) = 
#(·)/n, and observe that n/n = 1. 

Lastly, we consider the case of M events Em, 1 ≤ m ≤ M . We first consider the extension 
of (6): for M events Em, 1 ≤ m ≤ M , mutually exclusive and collectively exhaustive, 

MM 
ϕn(Em) = 1 (Em, 1 ≤ m ≤ M, mutually exclusive and collectively exhaustive) . (11) 

m=1 

The proof is simple: each dot in our sample realization must appear in at most one event 
blob, since the events are mutually exclusive; each dot in our sample realization must appear 
in at least one event blob, since the events are collectively exhaustive. We next consider the 
extension of (10): for any events Em, 1 ≤ m ≤ M , not (necessarily) either mutually exclusive 
or collectively exhaustive, 

ϕn(E1 ∪ E2 ∪ · · · ∪ EM ) = 1 − ϕn(Ē1 ∩ Ē2 ∩ · · · ∩ ĒM ). (12) 

Note that the intersection of M events contains only those outcomes which appear in each 
event. 

CYAWTP 6. Provide a sketch analogous to Figure 3 and associated “proof by dots” for 
the relationship (12) for the case of K = 4 events. 

The approach above is top-down: we begin with certain events, and then deduce rela
tionships between these events. We may also pursue an approach which is more bottom-up: 
we begin with outcomes, and then express an event in terms of outcome frequencies. 

We know that an event E is a set a outcomes (which constitute a subset of the sample 
space). To be more explicit, we denote E as 

E ≡ {Oi1 , Oi2 , . . . , OiJ } ; (13) 

here J — the number of outcomes in E — and the indices ij , 1 ≤ j ≤ J — which identify 
the particular outcomes associated with event E — will of of course depend on the event E 
of interest. We now note that our outcomes are, by definition, mutually exclusive, and hence 
from (9) 

JM 
ϕn(E) = ϕn(Oij ) , (14) 

j=1 

where 

#(Ok) outcomesϕn(Ok) = , 1 ≤ k ≤ n . (15) 
n 
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Note that #(Ok) is the frequency of outcome Ok: the number of experiments in the sample 
realization which yield outcome Ok. The interpretation of (14) is simple: the number of 
occurrences of E in our sample realization is the sum of the number of the occurrences of 
the outcomes which comprise E . 

The formula (14) provides a general procedure for the calculation of frequencies of any 
event, E , for some given sample realization. First, we evaluate the outcome frequencies 

outcomesϕn(Ok), 1 ≤ k ≤ n . Second, we identify J and the indices (relevant outcomes) 
ij , 1 ≤ j ≤ J , for any particular event of interest, E . (In fact, this second step is independent 
of the realization.) Third, we perform the sum (14). 

CYAWTP 7. Consider as our experiment the roll of a single die, as introduced in Sec
tion 2.2. Create a sample realization of size n = 36. Calculate the outcome frequencies 
associated with our sample space {1, 2, 3, 4, 5, 6}. Now define the event E ≡ “D is odd”: the 
die roll yields an odd number of dots. Identify J and the ij , 1 ≤ j ≤ k, associated with this 
event. Evaluate ϕn(E) in two ways, (i ) directly from the sample, as #(“D is odd”)/n, and 
(ii ) from the formula (14). 

4.3 Joint, Marginal, and Conditional Frequencies 

4.3.1 Joint Frequencies 

We develop the concept of joint frequencies within the context of our pedagogical experiment. 
In particular, the joint frequencies are the frequencies associated with all possible values of 
the two variables, B and K, which describe the outcome of our pedagogical experiment: 
ϕn(N, R), ϕn(N, W ), ϕn(T,R), and ϕn(T,W ). We recall that for our pedagogical experiment 
the sample space is given by {O1 ≡ (N, R), O2 ≡ (N, W ), O3 ≡ (T,R), O4 ≡ (T,W )}. We 
thus observe that the joint frequencies are precisely the outcome frequencies of Section 4.2 
and in particular (15): ϕn(O1) ≡ ϕn(N, R), . . . , ϕn(O4) ≡ ϕn(T,W ). This is generally true 
for any experiment in which the outcomes are represented in terms of (any number of) 
values of (any number of) variables. We can thus understand the importance of the joint 
frequencies: a set of frequencies in terms of which we can express, through (14), the frequency 
of any event E . 

We can readily deduce the joint frequencies for the sample realization Spring2013 of 
Table 1 from the summary of Table 2: ϕn(N, R) is given by #(N, R)/n = 8/64 = 0.125; 
similarly, ϕn(N, W ) = 22/64 ≈ 0.344, ϕn(T,R) = 14/64 ≈ 0.219, and ϕn(T,W ) = 20/64 ≈ 
0.313. We summarize these joint frequencies (to three digits) in Table 3. (We could also 
present the joint frequencies graphically, as a histogram; we shall introduce histograms in 
a subsequent nutshell, in particular for the case of many outcomes.) We note from our 
calculations that 

ϕn(N, R) + ϕn(N, W ) + ϕn(T,R) + ϕn(T,W ) = 1 . (16) 

We can easily anticipate this result: each experiment (each student) yields at most one 
outcome — our outcomes are mutually exclusive — and at least one outcome — our outcomes 
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ϕn(N, R) ϕn(N, W ) ϕn(T, R) ϕn(T, W ) 

(≡ ϕn(O1)) (≡ ϕn(O2)) (≡ ϕn(O3)) (≡ ϕn(O4)) 

0.125 0.344 0.219 0.313 

Table 3: Joint frequencies (also outcome frequencies) associated with Spring2013 Dataset.
 

ϕn(N) ϕn(T ) ϕn(R) ϕn(W ) 

0.469 0.531 0.344 0.656 

Table 4: Marginal frequencies associated with Spring2013 Dataset. 

are collectively exhaustive; hence each of our n students is counted in at most one and at 
least one, and hence only one, of #(N, R), #(N, W ), #(T,R), or #(T,W ); thus #(N, R) + 
#(N, W ) + #(T,R) + #(T,W ) = n — which, upon division by n, yields (16). Our 
argument is quite general: (16) is valid for any (two-variable, two-value) experiment and any 
sample realization. 

We note that (16) is just a special case of (11). The relation (11) in fact implies, for any 
{population, experiment, sample space}, 

outcomesnM 
ϕn(Oi) = 1 . (17) 

i=1 

since our outcomes constitute a set of “elementary” events which is both mutually exclusive 
and collectively exhaustive. For an experiment for which the outcomes are represented in 
terms of (any number of) values of (any number of) variables, the ϕn(Oi) are just the joint 
frequencies. 

4.3.2 Marginal Frequencies 

We now develop the concept of marginal frequencies, again within the context of our peda
gogical experiment. We shall consider B in our exposition; K follows a parallel development. 

We recall that, in any outcome (B, K), B may take on two values, N (for Not taken 
2.005), or T (for T aken 2.005). We know that we can deduce the frequency of these events, 
ϕn(N) and ϕn(T ), respectively, directly from our sample realization (and hence, for our par
ticular sample realization Spring2013 Dataset, directly from Table 1. But we can also deduce 
the frequencies of events B = · from the joint frequencies of (B, K): we shall remove, or 
marginalize, the effect of K; the resulting frequencies are thus denoted marginal frequencies. 
(Of course, in the case of an experiment described by a single variable, we do not need the 
adjectives joint or marginal to describe the frequency.) 

We first note that the event B = N is equivalent to the event {(N, R), (N, W )}: in words, 
we include in the event B = N all the outcomes for which B = N without consideration 
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of the value of the other variable, K. We can then apply the relation (14) for J ≡ 2 
and i1 ≡ 1, i2 ≡ 2 — recall our outcomes are given by O1 ≡ (N, R), O2 ≡ (N, W ), O3 ≡ 
(T,R), O4 ≡ (T,W ) — to obtain 

ϕn(N) = ϕn(N, R) + ϕn(N, W ) ,	 (18) 

We illustrate the result for our particular sample realization, Spring2013 Dataset of Table 1: 
we recall from Table 3 that the relevant joint frequencies are given by ϕn(N, R) = 8/64 = 
0.125, ϕn(N, W ) = 22/64 ≈ 0.344; it then follows from (18) that ϕn(N) = (8 + 22)/64 = 
30/64 ≈ 0.469 — just as we derived in Section 4.2 by directly counting events in Table 1. 
We can similarly calculate all of the marginal frequencies, associated with both B and K, 
as summarized (to three digits) in Table 4. 

CYAWTP 8. Derive expressions for ϕn(T ), ϕn(R), and ϕn(W ) analogous to (18) for ϕn(N) 
and confirm the numerical values provided in Table 4. Demonstrate that ϕn(N)+ ϕn(T ) = 1 
and also ϕn(R) + ϕn(W ) = 1 for any sample realization, and then confirm these relations 
empirically for the particular sample realization Spring2013. 

We can readily extend (18) to an experiment for which the outcomes are described by 
any number of variables each of which may take on any number of values. In particular, to 
obtain the marginal frequency for any particular value of a given variable, we simply sum 
the joint frequencies for the particular value of the given variable over all possible values of 
all the other variables. 

4.3.3 Conditional Frequencies 

Definition and Interpretation. We shall first derive expressions for particular conditional 
frequencies in the context of our pedagogical experiment and the particular Spring2013 
sample realization of Table 1. We shall subsequently consider extension to any {population, 
experiment, sample space}. 

Say we wish to understand the effect of N on R: if a student has Not yet taken 2.086, 
how will this affect the ability of the student to provide the Right answer to the heat transfer 
question? We proceed in two stages. 

1. We are interested in students who have Not yet taken 2.086. We denote by Spring2013' 

the subset of the sample realization Spring2013 which contains only those experiments 
for which the outcome is (N, K) for any value of K — in short, B = N ; we further 
denote by n' the sample size of Spring2013'. We present Spring2013' in Table 5; we 
observe from Table 5 that n' = 30. Note that n' will depend on the event on which we 
condition; in our example here, we “condition on” B = N . 

2. We are interested in those students who have	 Not yet taken 2.086 who furthermore 
provide the Right answer to the heat transfer question. We denote by m' the number 
of experiments in Spring2013' for which K = R. We find from Table 5 — we simply 
count the number of entries for which K = R — that m' = 8. 
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Student Outcome Student Outcome Student Outcome Student Outcome 

5 

13 

21 

25 

29 

33 

45 

49 

(N,R) 

(N,W) 

(N,R) 

(N,W) 

(N,W) 

(N,W) 

(N,W) 

(N,W) 

2 

14 

34 

38 

42 

58 

62 

(N,R) 

(N,W) 

(N,W) 

(N,W) 

(N,W) 

(N,R) 

(N,W) 

7 

11 

15 

19 

27 

31 

39 

47 

(N,W) 

(N,W) 

(N,W) 

(N,R) 

(N,W) 

(N,W) 

(N,R) 

(N,W) 

16 

20 

24 

28 

40 

44 

52 

(N,W) 

(N,W) 

(N,R) 

(N,W) 

(N,W) 

(N,W) 

(N,R) 

Table 5: Sample Realization “Spring2013’ Dataset.” Spring2013’ Dataset is the subset of 
Spring2013 Dataset which includes only those students who have Not yet taken 2.086. 
Spring2013’ Dataset is of size n ' = 30: only 30 of the students in Spring2013 have Not yet 
taken 2.086. Spring2013’ Dataset retains the student identification number from Spring2013 
Dataset of Table 1 to emphasize that Spring2013’ Dataset is extracted from Spring2013 
Dataset. 

20
 



Finally, we denote the conditional frequency of R given N — we write the latter as R | N 
— by ϕn(R | N) ≡ m ' /n ' . From Table 5, we conclude that ϕn(R | N) = 8/30 ≈ 0.267. The 
interpretation of the conditional frequency should now be clear: ϕn(R | N) is the fraction 
of the students who have not T aken 2.005 who (also) gave the Right answer to the heat 
transfer question. 

Figure 4: Graphical demonstration: m 

The process above perhaps appears somewhat involved. Fortunately, it is possible to 
express ϕn(R | N) very simply in terms of the joint and marginal frequencies already devel
oped. We first note that n ' is simply #(N) – the number of entries of Table 1 for which 
B = N — which we can also write as #(N) = nϕn(N). We next note that m ' is not 
just the number of experiments in Spring2013 ' for which K = R, but also the number of 
experiments in Spring2013 for which K = R and B = N — which is simply nϕn(N, R): we 
“demonstrate” this equivalence in Figure 4 by the method of dots. We thus obtain the final 
result ϕn(R | N) = (m ' /n ' ) = (nϕn(N, R))/(nϕn(N)), or 

ϕn(N, R)
ϕn(R | N) ≡ . (19)

ϕn(N) 

We know that ϕn(N, R) = 0.125 and ϕn(N) ≈ 0.469 and hence (19) evaluates to ϕn(R | N) ≈ 
0.125/0.469 ≈ 0.267 — in agreement with our results calculated through the intermediary 
of Spring2013 ' . 

CYAWTP 9. Provide expressions analogous to (19) but now for ϕn(N | R), ϕn(W | N), 
ϕn(N | W ), ϕn(R | T ), ϕn(T | R), ϕn(W | T ), and ϕn(T | W ). Evaluate these conditional fre
quencies for the the particular sample realization Spring2013 of Table 1. Show that, for any 
sample realization, ϕn(R | N) + ϕn(W | N) = 1, and confirm this result for the particular 
sample realization Spring2013 of Table 1. 

We have obtained ϕn(R | N) ≈ 0.267 and in CYAWTP 9 you (should) have obtained 
ϕn' (R | T ) = ϕn(T,R)/ϕn(T ) ≈ 0.219/.531 ≈ 0.412. We can now propose some answers 
to our inference questions. For IQ1, we note that ϕn(R | N) is conspicuously close to the 

' = #(N, R) = nϕn(N, R). 
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guessers result of 0.25. For IQ2, we note that ϕn(R | T ) is substantially larger than the 
guessers result of 0.25.5 And finally, for IQ3, we note that ϕn(R | T ) is indeed larger, by some 
considerable margin, than ϕn(R | N): as a group, the students who have taken 2.005 appear to 
perform better on the heat transfer question than the group of students who have not taken 
2.005. 

But what is the interpretation of these results? 

We must ask if the small difference between the guessers result of 0.25 and ϕn(R | N) ≈ 
0.267, and the larger difference between the guessers result of 0.25 and ϕn(R | T ) ≈ 
0.412, reflect a true distinction between the two groups — the “haves” and “have nots” 
— or, rather, intrinsic variations within the two groups of students. In other words, 
are the differences in frequencies we note statistically significant, or instead just the 
result of a likely fluctuation? 

On a related note, we must ask if our sample is large enough. As we increase the 
sample size, n, we attenuate the effect of natural variations with the groups: we reduce 
the magnitude of likely fluctuations in the frequencies. Certainly we would all agree 
that we could not draw any conclusions for a sample realization of size n = 1, or even 
n = 4 — but is n = 64 sufficiently large? 

Finally, we must ask if our (rather casual) sampling procedure is adequate. Perhaps 
“presence at lecture” — recall that our Spring2013 Dataset comprises students present 
in lecture on a particular day in February — inadvertently selects the more interested 
students, and misleadingly lifts ϕn(R | T ) above the guessers reference of 0.25; had we 
surveyed all students in 2.086 in the Spring of 2013 we might have obtained ϕn(R | T ) 
closer to 0.25. Is our sample realization Spring2013 Datset representative of the larger 
2.086 population about which we wish to draw conclusions? 

Mathematics alone is not sufficient to address these issues: we must also carefully consider 
the “implementation” of the mathematics. 

But even murkier waters lurk. We (should) know from CYAWTP 9 that ϕn(T | R) ≈ 
0.637, which is noticeably larger than ϕn(T ) ≈ 0.531. We also know that ϕn(R | T ) ≈ 0.412, 
which is noticeably larger than ϕn(R) ≈ 0.344. But these two quantitatively similar facets 
of our sample realization do not necessarily share a common interpretation. 

Is it plausible that to provide a Right answer to the heat transfer question causes a 
student to have already T aken 2.005? The arrow of time would suggest that no, there is 
clearly no causality — no cause and effect. On the other hand, ϕn(T | R) is higher than 
ϕn(T ), and thus there is some correlation between the two events: we could exploit 
the event Right to help us predict the event T aken. 

5Further inspection of the survey results reveals a possible explanation for ϕn(R | T ) close to 0.5: a student 
who has taken 2.005, even if sleepily, can largely rule out the distractors (i ) and (ii ) in Question 2; if these 
T students then “guess” between the two remaining options, we arrive at an R | T frequency of 0.5. 
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Is it plausible that to have T aken 2.005 causes a student to provide the Right answer to 
the heat transfer question? Yes, there is clearly in this case there is correlation but also 
an argument for causality. (If you do not believe there is any causality, you may wish to 
reconsider your tuition payments.) But we must be careful: perhaps stronger students 
elect to take 2.005 earlier in the curriculum — hence by the time they take 2.086 — 
and thus the true reason for the correlation ϕn(R | T ) > ϕn(R) is not causality between 
the two events but rather a common underlying factor. (In which case, perhaps you 
should reconsider your tuition payments.) 

In general, solely on the basis of data, we can only identify correlation, not causality. On the 
other hand, we can often introduce additional variables to refine correlation and better inform 
our interpretation of the data and hence also the plausibility of causality. For example, in 
our pedagogical experiment, we might include a third variable, in addition to Background 
and Knowledge: GPA, as a measure of general academic strength or effort. In this way we 
could perhaps separate the effects of acquired knowledge versus natural inclinations. 

To close this section, we define conditional frequencies in the most general context. Given 
any {population, experiment, sample space}, and two events E1 and E2, the conditional 
frequency of E2 given E1 — we write the latter as E2 | E1 — can be expressed as 

ϕn(E1 ∩ E2)
ϕn(E2 | E1) ≡ . (20)

ϕn(E1) 
The schematic of Figure 4 directly applies to (20) if we interpret the red blob as E1 and the 
blue blob as E2 — the purple blob is hence E1 ∩ E2. 
CYAWTP 10. Show from the definition (20) that we must obtain for our pedagogical 
experiment, for any sample, (i ) ϕn(T | N) ≡ ϕn(B = T | B = N) = 0, and (ii ) ϕn(T | T ) ≡ 
ϕn(B = T | B = T ) = 1. 

CYAWTP 11. We can also view the conditional frequency (20) from the outcome perspec
tive: only the outcomes in E1 shall play a role — a kind of restricted sample space. Express 
the conditional frequency (20) with reference to the particular sample space and events of 
Figure 2 in terms of the outcome frequencies, ϕn(O1), ϕn(O2), ϕn(O3), ϕn(O4). Apply the 
resulting expression to the pedagogical experiment — recall the outcome frequencies are 
summarized in Table 3 — to evaluate ϕn(R | N). 

Bayes’ Theorem. We can rewrite our relation (20) to isolate the joint frequency 

ϕn(E1 ∩ E2) = ϕn(E2 | E1)ϕn(E1) ; (21) 

similarly, exchanging E1 and E2, we obtain 

ϕn(E2 ∩ E1) = ϕn(E1 | E2)ϕn(E2) . (22) 

However, the two events E1 ∩ E2 and E2 ∩ E2 are equivalent, and thus we may combine our 
two expressions (21) and (22) to obtain 

ϕn(E2 | E1)ϕn(E1)
ϕn(E1 | E2) = . (23)

ϕn(E2) 
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The relationship (23) is known as Bayes’ Theorem. Bayes’ Theorem relates two conditional 
frequencies in which we exchange the conditioner and conditionee; note that Bayes’ Theorem 
per se says nothing about causality. 

Bayes’ Theorem is valid for any {population, experiment, sample space} and any two 
events E1 and E2 defined over the sample space. 

CYAWTP 12. For our pedagogical experiment, and events E1 ≡ B = T and E2 ≡ K = R, 
Bayes’ Theorem tells us that 

ϕn(R | T )ϕn(T )
ϕn(T | R) = . (24)

ϕn(R) 

Confirm (24) for the particular sample realization Spring2013 Dataset of Table 1. 

Independence. We are given a {population, experiment, sample space} and two events E1 

and E2 defined over the sample space. We say that E1 and E2 are independent for a particular 
sample realization if 

ϕn(E1 ∩ E2) = ϕn(E1)ϕn(E2) ( if E1 and E2 are independent for sample realization). (25) 

An immediate consequence of (20) and (25) is ϕn(E2 | E1) = ϕn(E2): the frequency of E2 is 
not affected by whether E1 happens or not — hence the term independence. Conversely, if 
two events are not independent — but rather “dependent” — then ϕn(E2 | E1)  = ϕn(E2) and 
ϕn(E1 | E2)  (E1).= ϕn

In fact, the relation (25) will be rarely satisfied for a particular finite sample. However, 
in many cases, we can demonstrate or plausibly assume that independence, (25), is indeed 
valid in the limit that the sample size n tends to infinity (but note that lack of causality 
is not sufficient argument for independence). In such cases, the relationship (25) will be 
approximately satisfied, 

ϕn(E1 ∩ E2) ≈ ϕn(E1)ϕn(E2) , (26) 

for any samples of size n sufficiently large. Approximate independence, (26), in particular 
in conjunction with (8) or (12), can serve to more easily calculate the frequency of events 
which can not otherwise be evaluated due to limitations in the data (or in how the data is 
recorded or presented). 

In fact, it is in the limit n → ∞ that independence is most useful, in particular to greatly 
facilitate the calculation of probabilities, as introduced in the next section. 

CYAWTP 13. Reconsider the experiment of CYAWTP 1 in which we simultaneously flip 
two coins. Define two events: E1 ≡ “coin flipped from the left thumb is a Tail” and E2 ≡ 
“coin flipped from the right thumb is a Tail.” Do you expect that E2 is independent of E1, 
at least for larger sample sizes n? Calculate, for your particular sample realization of size 
n = 50, the frequencies ϕn(E1)ϕn(E2), ϕn(E1)ϕn(E1), and finally ϕn(E1 ∩ E2). 
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CYAWTP 14. Now consider an experiment in which we simultaneously flip three coins; 
you may borrow a friend for the third thumb. Define three events: 

E1 ≡ “coin flip from your left thumb is a Tail”; 

E2 ≡ “coin flip from your right thumb is a Tail”; 

E3 ≡ “coin flip from your friend’s thumb is Tail.” 

Based on your empirical evaluation of ϕn=50(E1) from CYAWTP 13, estimate — with
out any recourse to new (three-coin) data — the frequency of the event E1 ∩ E2 ∩ E3 for a 
(sufficiently large) simultaneously-flip-three-coins sample realization. Note that the event 
E1 ∩ E2 ∩ E3 corresponds in words to “all three coin flips are Tails.” 

5 Probabilities 

5.1 From Frequencies to Probabilities 

5.1.1 Closure: Pegagogical Experiment 

We shall motivate the concept of probability from our pedagogical experiment and the par
ticular data associated with the sample realization Spring2013 Dataset of Table 1. We 
recall that Spring2013 Dataset is given by {H1 ≡ (B1, K1), H2 ≡ (B2, K2), . . . , Hn≡64 ≡ 
(B64, K64)}2013; for example, from Table 1, we observe that H1 ≡ (B1 = T,K1 = W ). In this 
section, Hj = (Bj , Kj ), 1 ≤ j ≤ 64, shall refer to the particular outcomes associated with 
Spring2013 Dataset. 

For any given event E , we now define a cumulative number function ##k(E), for k ≤ n, as 
the number of occurrences of E in the set {H1, H2, . . . , Hk}; we then define our cumulative 
frequency — a “running” average — as ϕ#k(E) ≡ ##k(E)/k. In words, ϕ#k(E) is the cumulative 
frequency of the event E for a subsample of Spring2013 Dataset — in particular, the outcomes 
associated with the first k students of Spring2013 Dataset. Note that ϕ#k=64(E) = ϕn≡64(E) 
since for ϕ#k=64 our subsample is in fact the entire sample realization Spring2013 Dataset. 
We can extend this concept to conditional frequencies: given two events E1 and E2, we define 
the cumulative conditional frequency ϕ#k(E2 | E1) as 

ϕ#k(E2 | E1) ≡ ϕ#k(E1 ∩ E2)/ϕ#k(E1) ≡ ## k(E1 ∩ E2)/## k(E1) : (27) 

we first extract from {H1, H2, . . . , Hk} the subsample of experiments for which E1 occurs; we 
then calculate the fraction of experiments in this subsample for which E2 (also) occurs. 

What purpose do these cumulative number functions serve? In Figure 5 we present 
ϕ#k(R | T ) — arguably our frequency of greatest import from an inference perspective — for 
1 ≤ k ≤ 64. We can in fact better visualize the result in Figure 6, in which we plot the 
cumulative conditional frequency only for those values of k for which Bk = T : we thus 
consider only those elements of Spring2013 Dataset which contribute to (and hence change) 
the cumulative conditional frequency; we thereby eliminate the “plateaus” of Figure 5. We 
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Figure 5: Cumulative conditional frequency ϕ#k(R | T ) as a function of sample size k for 
1 ≤ k ≤ n ≡ 64. 
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Figure 6: Cumulative conditional frequency ϕ#k(R | T ) as a function of sample size k for 
1 ≤ k ≤ n ≡ 64; we plot the result only for k such that Bk = T . 

observe that ϕ#k(R | T ) exhibits large oscillations for small k but much smaller fluctuations for 
larger k. We can indeed imagine from Figure 6 that if we replace Spring2013 Dataset with a 
much larger sample realization of 2.086 students, say collected over a many-year period, we 
would observe ϕ#k(R | T ) approach a limit: ϕ#k(R | T ) → P (R | T ) ≡ pR | T as k → ∞. Here 
P (·) refers in general to “the probability of,” and hence P (R | T ) is read the “the probability 
of R given T ” — which we also provide with the specific label pR | T . In short, we define 
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probability as the limit of frequency. 
On a more pragmatic note, we will of course never enjoy the luxury of an infinite number 

of 2.086 students. We must thus develop an estimate for pR | T , which we shall denote PpR | T . 
For example, in our current example, we would choose PpR | T ≡ ϕ#k=64(R | T ) ≈ 0.412. We 
must now ask in what sense we can estimate the error PpR | T − pR | T in particular relative to 
the inference questions described in Section 2.1. We shall focus on IQ2, which we can now 
pose more precisely: 

IQ2 Is pR | T > .25 (the guessers reference)? 

(We can also pose IQ2 as a hypothesis we wish to test.) Note our interest in pR | T derives 
precisely from the interpretation of probability as frequency in the limit of a large sample 
— and hence relevant to the entire population. 

It would certainly appear from Figure 6 that already for k = n = 64 the fluctuations are 
relatively small. And indeed, it would further appear that the cumulative conditional fre
quency curve is approaching a limit which is comfortably greater than the group of “guessers” 
reference of 0.25. But can we improve on these “eyeball” estimates and provide some kind 
of quantitative assurances that our sample size is indeed sufficiently large? We shall discuss 
this issue of statistical estimation in a subsequent nutshell. We provide here, solely for ped
agogical closure and without explanation, the result, as an in-line appendix: 

Appendix 

With confidence level (which you can think of, informally, as probability) 95%,  
p̂R | T (1 − p̂R | T ) 

pR | T ≥ p̂R | T − 1.64
#(T ) 

≈ 0.412 − 0.138 ≈ 0.274 

≥ 0.25 (the guessers reference) . (28) 

This estimate is known as a one-sided normal-approximation confidence interval. 

End Appendix 

It would appear that we are safe: students who take 2.005 do indeed perform better than a 
group of “guessers” on the heat transfer question posed in the Survey. But the safety margin 
is not generous, and certainly a larger sample size would be welcome, in particular since our 
error estimate (28) is itself subject to error. 

5.1.2 The Empirical Approach — and Alternatives 

We now generalize the treatment of the previous subsection. We are given a {population, 
experiment, sample space} and some event E defined over the sample space. We form a 
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sample of sample size n in terms of which we can then evaluate the cumulative frequency 
ϕ#k(E), 1 ≤ k ≤ n. We then define P (E), which may also write as pE , as the limit of ϕ#k(E) as 
k (and hence n) tends to infinity. Properly speaking, we can only associate probabilities to 
random experiments. We shall more precisely define “random experiment” in a subsequent 
nutshell. For our present purposes we simply agree that an experiment (flipping a coin, 
rolling a die, administering a survey) is random if for any particular realization we can not 
predict the outcome; we can, of course, predict the frequency of the different outcomes (in our 
sample space) in the limit of infinitely many realizations — which is precisely our probability. 
We shall henceforth assume that our experiments are in all cases random experiments. 

There are several ways to develop and motivate the notion of probability. In this nutshell 
we adopt a highly simplified version of the frequentist, or empirical, approach espoused by 
von Mises and further elaborated by Church. However, in some cases, a mechanistic approach 
may be preferred: we posit the outcome probabilities — anticipate the limiting behavior — 
based on physical arguments; in essence, we propose a “random” model for the physical 
phenomenon. (In fact, the physical arguments are often quite subtle, implicitly assuming 
that the phenomenon in question is very sensitive to very small perturbations such that the 
outcome of an experiment is largely dictated by symmetry or homogeneity.) There are many 
classic examples in which the mechanistic approach is very successful. 

CYAWTP 15. Consider the experiment of flipping a single coin: what would you anticipate 
for the probability of a Head, P (H)? the probability of a Tail, P (T )? Now consider the 
experiment of rolling a single die: what would you anticipate for the probability of rolling a 
four, P (4)? 

Most often, probabilities are deduced by a combination of the empirical approach and 
the mechanistic approach: we posit not the probabilities (of all outcomes) but rather a 
parametrized distribution of the probabilities over the sample space; we then form a sample 
realization and conduct experiments to estimate (not the many outcome probabilities but 
rather) the relatively few parameters which characterize the assumed distribution. We shall 
study the topic of statistical parameter estimation in a subsequent nutshell. 

Finally, to close, we introduce another major “school” of probabilistic thought. In some 
cases, experiments are impossible, very expensive, or dangerous to perform: there is therefore 
no data, or very little data. Nevertheless, we may wish to understand how the uncertainty 
in an event may “propagate” to other events. We thus ascribe a subjective probability — in 
this context, a probability is best interpreted as a degree of belief — to the event and sub
sequently apply the laws of probability (to be deduced in the next section, from our rules of 
frequency). The adjective “Bayesian” is often applied to adherents of this subjective school 
of probability philosophy. As you can appreciate, the distinction between the “mechanistic” 
and “subjective” viewpoints can be blurred, and indeed for this reason there is some debate 
as to whether Bayes himself would be considered a 20th–century Bayesian. (The associa
tion of Bayes with subjective probability may also be artifically reinforced by the frequent 
application of Bayes’ Theorem within the subjective context.) 
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5.2 The Rules of Probability 

We now take advantage of the relationship between frequencies and probabilities to deduce 
the rules of probability. In particular, we may take as our point of departure the results of 
Section 4.2 for frequencies; we then consider the limit of an arbitrarily large sample, n → ∞, 
to derive the analogous expressions for probabilities. In practice, the recipe is simple: in all 
the equations of Section 4 we simply replace ϕn(E) with P (E) (or alternatively, pE ). 

We shall suppose that we are given a population, an experiment, and an associated 
sample space {O1, O2, . . . , Onoutcomes }. We further presume that we are provided with outcome 

outcomesprobabilities P (Oi), 1 ≤ i ≤ n . The outcome probabilities can be deduced from the 
empirical or mechanistic or even subjective approaches: although we motivate and “derive” 
the rules of probability from a frequentist perspective, in fact the rules are agnostic to the 
underlying philosophy. 

We first note that, since frequencies lie between 0 and 1, so too must probabilities: 
outcomes0 ≤ P (Oi) ≤ 1, 1 ≤ i ≤ n . We next note from (14) that for any event E , defined as in 

(13), E ≡ {Oi1 , Oi2 , . . . , OiJ }, 

JM 
P (E) = P (Oij ) : (29) 

i=1 

the probability of any event may be evaluated as the sum of the probabilities of the outcomes 
which comprise the event. We further conclude from (17) that 

outcomesnM 
P (Oi) = 1 . (30) 

i=1 

outcomesFor example, in Figure 2, 0 ≤ P (Oi) ≤ 1, 1 ≤ i ≤ n ≡ 4, P (E1) is the the sum of 
P (O1) and P (O2), and P (O1) + P (O2) + P (O3) + P (O4) = 1. 

We may now proceed to the various relations which relate and combine the frequencies 
— now also probabilties — of events. In what follows, E is any event, and E1 and E2 are any 
pair of events. The recipe directly yields 

P (E) + P (Ē) = 1 ; (31) 

P (E1) + P (E2) = 1 ( if E1 and E2 are mutually exclusive and collectively exhaustive); (32) 

P (E1 ∪ E2) = P (E1) + P (E2) − P (E1 ∩ E2) ; (33) 

P (E1 ∪ E2) = P (E1) + P (E2) ( if E1 and E2 are mutually exclusive) ; (34) 

P (E1 ∪ E2) = 1 − P (Ē1 ∩ Ē2) ; (35) 
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P (E1 ∩ E2)
P (E2 | E1) = ; (36)

P (E1) 

P (E1 ∩ E2) = P (E1) P (E2) ( if E1 and E2 are independent) . (37) 

We may also import Bayes’ Theorem: 

P (E2 | E1) P (E1)
P (E1 | E2) = . (38)

P (E2) 

Finally, for M events, Em, 1 ≤ m ≤ M , 

MM 
P (Em) = 1 ( if Em, 1 ≤ m ≤ M , mutually exclusive and collectively exhaustive) ; (39) 

m=1 

P (E1 ∪ E2 ∪ · · · ∪ EM ) = 1 − P (Ē1 ∩ Ē2 ∩ · · · ∩ ĒM ) ; (40) 

MM 
P (E1 ∩ E2 ∩ · · · ∩ EM ) = P (Em) ( if Em, 1 ≤ m ≤ M mutually independent) , (41) 

m=1  
where refers to the product. 
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