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Chapter 8

Introduction

8.1 Statistical Estimation and Simulation

8.1.1 Random Models and Phenomena

In science and engineering environments, we often encounter experiments whose outcome cannot
be determined with certainty in practice and is better described as random. An example of such a
random experiment is a coin flip. The outcome of flipping a (fair) coin is either heads (H) or tails
(T), with each outcome having equal probability. Here, we define the probability of a given outcome
as the frequency of its occurrence if the experiment is repeated a large number of times.1 In other
words, when we say that there is equal probability of heads and tails, we mean that there would
be an equal number of heads and tails if a fair coin is flipped a large (technically infinite) number
of times. In addition, we expect the outcome of a random experiment to be unpredictable in some
sense; a coin that consistently produces a sequence HTHTHTHT or HHHTTTHHHTTT can be
hardly called random. In the case of a coin flip, we may associate this notion of unpredictability or
randomness with the inability to predict with certainty the outcome of the next flip by knowing
the outcomes of all preceding flips. In other words, the outcome of any given flip is independent of
or unrelated to the outcome of other flips.

While the event of heads or tails is random, the distribution of the outcome over a large number
of repeated experiments (i.e. the probability density) is determined by non-random parameters. In
the case of a coin flip, the sole parameter that dictates the probability density is the probability of
heads, which is 1/2 for a fair coin; for a non-fair coin, the probability of heads is (by definition)
different from 1/2 but is still some fixed number between 0 and 1.

Now let us briefly consider why the outcome of each coin flip may be considered random. The
outcome of each flip is actually governed by a deterministic process. In fact, given a full description
of the experiment — the mass and moment of inertia of the coin, initial launch velocity, initial
angular momentum, elasticity of the landing surface, density of the air, etc — we can, in principle,
predict the outcome of our coin flip by solving a set of deterministic governing equations — Euler’s
equations for rigid body dynamics, the Navier-Stokes equations for aerodynamics, etc. However,
even for something as simple as flipping a coin, the number of variables that describe the state of
the system is very large. Moreover, the equations that relate the state to the final outcome (i.e.

1We adhere to the frequentistic view of probability throughout this unit. We note that the Baysian view is an
alternative, popular interpretation of probability.
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heads or tails) are complicated and the outcome is very sensitive to the conditions that govern
the experiments. This renders detailed prediction very difficult, but also suggests that a random
model — which considers just the outcome and not the myriad “uncontrolled” ways in which we
can observe the outcome — may suffice.

Although we will use a coin flip to illustrate various concepts of probability throughout this
unit due to its simplicity and our familiarity with the process, we note that random experiments
are ubiquitous in science and engineering. For example, in studying gas dynamics, the motion of
the individual molecules is best described using probability distributions. Recalling that 1 mole of
gas contains approximately 6× 1023 particles, we can easily see that deterministic characterization
of their motion is impractical. Thus, scientists describe their motion in probabilistic terms; in fact,
the macroscale velocity and temperature are parameters that describe the probability distribution
of the particle motion, just as the fairness of a given coin may be characterized by the probability
of a head. In another instance, an engineer studying the effect of gust on an airplane may use
probability distributions to describe the change in the velocity field affected by the gust. Again,
even though the air motion is well-described by the Navier-Stokes equations, the highly sensitive
nature of turbulence flows renders deterministic prediction of the gust behavior impractical. More
importantly, as the engineer is most likely not interested in the detailed mechanics that governs
the formation and propagation of the gust and is only interested in its effect on the airplane (e.g.,
stresses), the gust velocity is best described in terms of a probability distribution.

8.1.2 Statistical Estimation of Parameters/Properties of Probability Distribu-
tions

Statistical estimation is a process through which we deduce parameters that characterize the be-
havior of a random experiment based on a sample — a set of typically large but in any event finite
number of outcomes of repeated random experiments.2 In most cases, we postulate a probability
distribution — based on some plausible assumptions or based on some descriptive observations such
as crude histogram — with several parameters; we then wish to estimate these parameters. Alter-
natively, we may wish to deduce certain properties — for example, the mean — of the distribution;
these properties may not completely characterize the distribution, but may suffice for our predic-
tive purposes. (In other cases, we may need to estimate the full distribution through an empirical
cumulative distribution function; We shall not consider this more advanced case in this text.) In
Chapter 9, we will introduce a variety of useful distributions, more precisely parametrized discrete
probability mass functions and continuous probability densities, as well as various properties and
techniques which facilitate the interpretation of these distributions.

Let us illustrate the statistical estimation process in the context of a coin flip. We can flip
a coin (say) 100 times, record each observed outcome, and take the mean of the sample — the
fraction which are heads — to estimate the probability of heads. We expect from our frequentist
interpretation that the sample mean will well approximate the probability of heads. Note that,
we can only estimate — rather than evaluate — the probability of heads because evaluating the
probability of heads would require, by definition, an infinite number of experiments. We expect
that we can estimate the probability of heads — the sole parameter dictating the distribution of
our outcome — with more confidence as the sample size increases. For instance, if we wish to verify
the fairness of a given coin, our intuition tells us that we are more likely to deduce its fairness (i.e.
the probability of heads equal to 0.5) correctly if we perform 10 flips than 3 flips. The probability
of landing HHH using a fair coin in three flips — from which we might incorrectly conclude the
coin as unfair — is 1/8, which is not so unlikely, but that of landing HHHHHHHHHH in 10 flips is
less than 1 in 1000 trials, which is very unlikely.

2We will provide a precise mathematical definition of sample in Chapter 10.
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In Chapters 10 and 11, we will introduce a mathematical framework that not only allows us to
estimate the parameters that characterize a random experiment but also quantify the confidence
we should have in such characterization; the latter, in turn, allows us to make claims — such as the
fairness of a coin — with a given level of confidence. We consider two ubiquitous cases: a Bernoulli
discrete mass density (relevant to our coin flipping model, for example) in Chapter 10; and the
normal density in Chapter 11.

Of course, the ultimate goal of estimation is inference — prediction. In some cases the param-
eters or quantities estimated, or corresponding “hypothesis tests,” in fact suffice for our purposes.
In other cases, we can apply the rules of probability to make additional conclusions about how a
system will behave and in particular the probability of certain events. In some sense, we go from
a finite sample of a population to a probability “law” and then back to inferences about particular
events relevant to finite samples from the population.

8.1.3 Monte Carlo Simulation

So far, we have argued that a probability distribution may be effectively used to characterize the
outcome of experiments whose deterministic characterization is impractical due to a large number
of variables governing its state and/or complicated functional dependencies of the outcome on
the state. Another instance in which a probabilistic description is favored over a deterministic
description is when their use is computationally advantageous even if the problem is deterministic.

One example of such a problem is determination of the area (or volume) of a region whose
boundary is described implicitly. For example, what is the area of a unit-radius circle? Of course,
we know the answer is π, but how might we compute the area if we did not know that A = πr2?
One way to compute the area may be to tessellate (or discretize) the region into small pieces and
employ the deterministic integration techniques discussed in Chapter 7. However, application of
the deterministic techniques becomes increasingly difficult as the region of interest becomes more
complex. For instance, tessellating a volume intersected by multiple spheres is not a trivial task.
More generally, deterministic techniques can be increasingly inefficient as the dimension of the
integration domain increases.

Monte Carlo methods are better suited for integrating over such a complicated region. Broadly,
Monte Carlo methods are a class of computational techniques based on synthetically generating
random variables to deduce the implication of the probability distribution. Let us illustrate the
idea more precisely for the area determination problem. We first note that if our region of interest
is immersed in a unit square, then the area of the region is equal to the probability of a point drawn
randomly from the unit square residing in the region. Thus, if we assign a value of 0 (tail) and 1
(head) to the event of drawing a point outside and inside of the region, respectively, approximating
the area is equivalent to estimating the probability we land inside (a head). Effectively, we have
turned our area determination problem into an statistical estimation problem; the problem is now
no different from the coin flip experiment, except the outcome of each “flip” is determined by
performing a (simple) check that determines if the point drawn is inside or outside of the region.
In other words, we synthetically generate a random variable (by performing the in/out check on
uniformly drawn samples) and deduce the implication on the distribution (in this case the area,
which is the mean of the distribution). We will study Monte-Carlo-based area integration techniques
in details in Chapter 12.

There are several advantages to using Monte Carlo methods compared to deterministic inte-
gration approaches. First, Monte Carlo methods are simple to implement: in our case, we do not
need to know the domain, we only need to know whether we are in the domain. Second, Monte
Carlo methods do not rely on smoothness for convergence — if we think of our integrand as 0
and 1 (depending on outside or inside), our problem here is quite non-smooth. Third, although
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Monte Carlo methods do not converge particularly quickly, the convergence rate does not degrade
in higher dimensions — for example, if we wished to estimate the volume of a region in a three-
dimensional space. Fourth, Monte Carlo methods provide a result, along with a simple built-in
error estimator, “gradually” — useful, if not particularly accurate, answers are obtained early on
in the process and hence inexpensively and quickly. Note for relatively smooth problems in smooth
domains Monte Carlo techniques are not a particularly good idea. Different methods work better
in different contexts.

Monte Carlo methods — and the idea of synthetically generating a distribution to deduce its
implication — apply to a wide range of engineering problems. One such example is failure analysis.
In the example of an airplane flying through a gust, we might be interested in the stress on the spar
and wish to verify that the maximum stress anywhere in the spar does not exceed the yield strength
of the material — and certainly not the fracture strength so that we may prevent a catastrophic
failure. Directly drawing from the distribution of the gust-induced stress would be impractical;
the process entails subjecting the wing to various gust and directly measuring the stress at various
points. A more practical approach is to instead model the gust as random variables (based on
empirical data), propagate its effect through an aeroelastic model of the wing, and synthetically
generate the random distribution of the stress. To estimate the properties of the distribution —
such as the mean stress or the probability of the maximum stress exceeding the yield stress — we
simply need to use a large enough set of realizations of our synthetically generated distribution.
We will study the use of Monte Carlo methods for failure analysis in Chapter 14.

Let us conclude this chapter with a practical example of area determination problem in which
the use of Monte Carlo methods may be advantageous.

8.2 Motivation: An Example

A museum has enlisted a camera-equipped mobile robot for surveillance purposes. The robot will
navigate the museum’s premises, pausing to take one or more 360 degree scans in each room.
Figure 8.1 shows a typical room filled with various stationary obstructions (in black). We wish to
determine the vantage point in each room from which the robot will have the most unobstructed
view for its scan by estimating the visible area (in white) for each candidate vantage point . We may
also wish to provide the robot with an “onboard” visible area estimator for purposes of real-time
adaptivity, for example, if the room configuration is temporarily modified. This is a good candidate
for Monte Carlo: the domain is complex and non-smooth; we would like quick results based on
relatively few evaluations; and we wish to somehow certify the accuracy of our prediction. (In
actual practice, the computation would be performed over a three-dimensional museum room — a
further reason to consider Monte Carlo.)

We first define, for any vantage point xV and any surveillance point (to be watched) in the
room xW , the line segment S(xV ,xW ) that connects xV and xW . We can then express the area
visible from a vantage point xV as the integral

A(xV ) =

∫
xW∈R such that S(xV ,xW )∩O=∅

dxW , (8.1)

where R is the room and O is the collection of obstructions. The visible area is thus defined as
the integral over all points in the room such that the line segment S(xV ,xW ) between xV and xW
does not intersect an obstruction (or, equivalently, such that the intersection of sets S and O is the
null set).

There are many ways to do the visibility test S(xV ,xW )∩O ?
= ∅, but perhaps the method most

amenable to mobile robotics is to use an “occupancy grid,” a discretization of the map in which

126



Figure 8.1: A surveillance robot scanning a room. Obstructions (in black) divide the space into
visible area (in white) and non-visible area (in gray).
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Figure 8.2: Occupancy grid.

each cell’s value corresponds to the likelihood that the cell is empty or occupied. We begin by
converting our map of the room to an “occupancy grid,” a discretization of the map in which each
cell’s value corresponds to the likelihood that the cell is empty or occupied. In our case, because we
know ahead of time the layout of the room, a given cell contains either a zero if the cell is empty,
or a one if it is occupied. Figure 8.2 shows a visualization of a fairly low-resolution occupancy grid
for our map, where occupied cells are shown in black.

We can use the occupancy grid to determine the visibility of a point xW in the room from a
given vantage point xV . To do this, we draw a line between the two points, determine through
which cells the line passes and then check the occupancy condition of each of the intervening cells.
If all of the cells are empty, the point is visible. If any of the cells are occupied, the point is not
visible. Figure 8.3 shows examples of visible and non-visible cells. Once we have a method for
determining if a point is visible or non-visible, we can directly apply our Monte Carlo methods for
the estimation of area.
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Figure 8.3: Visibility checking of two points from a single vantage point. Visible cells marked in
blue, non-visible cells marked in red.
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Chapter 9

Introduction to Random Variables

9.1 Discrete Random Variables

9.1.1 Probability Mass Functions

In this chapter, we develop mathematical tools for describing and analyzing random experiments,
experiments whose outcome cannot be determined with certainty. A coin flip and a roll of a die
are classical examples of such experiments. The outcome of a random experiment is described by
a random variable X that takes on a finite number of values,

x1, . . . , xJ ,

where J is the number of values that X takes. To fully characterize the behavior of the random
variable, we assign a probability to each of these events, i.e.

X = xj , with probability pj , j = 1, . . . , J .

The same information can be expressed in terms of the probability mass function (pmf), or discrete
density function, fX , that assigns a probability to each possible outcome

fX(xj) = pj , j = 1, . . . , J .

In order for fX to be a valid probability density function, {pj} must satisfy

0 ≤ pj ≤ 1, j = 1, . . . , J ,

J∑
j=1

pj = 1 .

The first condition requires that the probability of each event be non-negative and be less than
or equal to unity. The second condition states that {x1, . . . , xJ} includes the set of all possible
values that X can take, and that the sum of the probabilities of the outcome is unity. The second
condition follows from the fact that events xi, i = 1, . . . , J , are mutually exclusive and collectively
exhaustive. Mutually exclusive means that X cannot take on two different values of the xi’s in any
given experiment. Collectively exhaustive means that X must take on one of the J possible values
in any given experiment.
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Note that for the same random phenomenon, we can choose many different outcomes; i.e. we
can characterize the phenomenon in many different ways. For example, xj = j could simply be
a label for the j-th outcome; or xj could be a numerical value related to some attribute of the
phenomenon. For instance, in the case of flipping a coin, we could associate a numerical value
of 1 with heads and 0 with tails. Of course, if we wish, we could instead associate a numerical
value of 0 with heads and 1 with tails to describe the same experiment. We will see examples of
many different random variables in this unit. The key point is that the association of a numerical
value to an outcome allows us to introduce meaningful quantitative characterizations of the random
phenomenon — which is of course very important in the engineering context.

Let us define a few notions useful for characterizing the behavior of the random variable. The
expectation of X, E[X], is defined as

E[X] =

J∑
j=1

xjpj . (9.1)

The expectation of X is also called the mean. We denote the mean by µ or µX , with the second
notation emphasizing that it is the mean of X. Note that the mean is a weighted average of the
values taken by X, where each weight is specified according to the respective probability. This is
analogous to the concept of moment in mechanics, where the distances are provided by xj and the
weights are provided by pj ; for this reason, the mean is also called the first moment. The mean
corresponds to the centroid in mechanics.

Note that, in frequentist terms, the mean may be expressed as the sum of values taken by X
over a large number of realizations divided by the number of realizations, i.e.

(Mean) = lim
(# Realizations)→∞

1

(# Realizations)

J∑
j=1

xj · (# Occurrences of xj) .

Recalling that the probability of a given event is defined as

pj = lim
(# Realizations)→∞

(# Occurrences of xj)

(# Realizations)
,

we observe that

E[X] =
J∑
j=1

xjpj ,

which is consistent with the definition provided in Eq. (9.1). Let us provide a simple gambling
scenario to clarity this frequentist interpretation of the mean. Here, we consider a “game of chance”
that has J outcomes with corresponding probabilities pj , j = 1, . . . , J ; we denote by xj the (net)
pay-off for outcome j. Then, in nplays plays of the game, our (net) income would be

J∑
j=1

xj · (# Occurrences of xj) ,

which in the limit of large nplays (= # Realizations) yields nplays ·E[X]. In other words, the mean
E[X] is the expected pay-off per play of the game, which agrees with our intuitive sense of the
mean.

130



The variance, or the second moment about the mean, measures the spread of the values about
the mean and is defined by

Var[X] ≡ E[(X − µ)2] =
J∑
j=1

(xj − µ)2pj .

We denote the variance as σ2. The variance can also be expressed as

Var[X] = E[(X − µ)2] =

J∑
j=1

(xj − µ)2pj =

J∑
j=1

(x2
j − 2xjµ+ µ2)pj

=
J∑
j=1

x2
jpj︸ ︷︷ ︸

E[X2]

−2µ
J∑
j=1

xjpj︸ ︷︷ ︸
µ

+µ2
J∑
j=1

pj︸ ︷︷ ︸
1

= E[X2]− µ2 .

Note that the variance has the unit of X squared. Another useful measure of the expected spread
of the random variable is standard deviation, σ, which is defined by

σ =
√

Var[X] .

We typically expect departures from the mean of many standard deviations to be rare. This is
particularly the case for random variables with large range, i.e. J large. (For discrete random
variables with small J , this spread interpretation is sometimes not obvious simply because the
range of X is small.) In case of the aforementioned “game of chance” gambling scenario, the
standard deviation measures the likely (or expected) deviation in the pay-off from the expectation
(i.e. the mean). Thus, the standard deviation can be related in various ways to risk; high standard
deviation implies a high-risk case with high probability of large payoff (or loss).

The mean and variance (or standard deviation) provide a convenient way of characterizing the
behavior of a probability mass function. In some cases the mean and variance (or even the mean
alone) can serve as parameters which completely determine a particular mass function. In many
other cases, these two properties may not suffice to completely determine the distribution but can
still serve as useful measures from which to make further deductions.

Let us consider a few examples of discrete random variables.

Example 9.1.1 rolling a die
As the first example, let us apply the aforementioned framework to rolling of a die. The random
variable X describes the outcome of rolling a (fair) six-sided die. It takes on one of six possible
values, 1, 2, . . . , 6. These events are mutually exclusive, because a die cannot take on two different
values at the same time. Also, the events are exhaustive because the die must take on one of the
six values after each roll. Thus, the random variable X takes on one of the six possible values,

x1 = 1, x2 = 2, . . . , x6 = 6 .

A fair die has the equal probability of producing one of the six outcomes, i.e.

X = xj = j, with probability
1

6
, j = 1, . . . , 6 ,

or, in terms of the probability mass function,

fX(x) =
1

6
, x = 1, . . . , 6 .
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Figure 9.1: Illustration of the values taken by a fair six-sided die and the probability mass function.

An example of outcome of a hundred die rolls is shown in Figure 9.1(a). The die always takes
on one of the six values, and there is no obvious inclination toward one value or the other. This is
consistent with the fact that any one of the six values is equally likely. (In practice, we would like to
think of Figure 9.1(a) as observed outcomes of actual die rolls, i.e. data, though for convenience here
we use synthetic data through random number generation (which we shall discuss subsequently).)

Figure 9.1(b) shows the probability mass function, fX , of the six equally likely events. The figure
also shows the relative frequency of each event — which is defined as the number of occurrences of
the event normalized by the total number of samples (which is 100 for this case) — as a histogram.
Even for a relatively small sample size of 100, the histogram roughly matches the probability mass
function. We can imagine that as the number of samples increases, the relative frequency of each
event gets closer and closer to its value of probability mass function.

Conversely, if we have an experiment with an unknown probability distribution, we could infer
its probability distribution through a large number of trials. Namely, we can construct a histogram,
like the one shown in Figure 9.1(b), and then construct a probability mass function that fits the
histogram. This procedure is consistent with the frequentist interpretation of probability: the
probability of an event is the relative frequency of its occurrence in a large number of samples.
The inference of the underlying probability distribution from a limited amount of data (i.e. a small
sample) is an important problem often encountered in engineering practice.

Let us now characterize the probability mass function in terms of the mean and variance. The
mean of the distribution is

µ = E[X] =
6∑
j=1

xjpj =
6∑
j=1

j · 1

6
=

7

2
.

The variance of the distribution is

σ2 = Var[X] = E[X2]− µ2
6∑
j=1

x2
jpj − µ2 =

6∑
j=1

j2 · 1

6
−
(

7

2

)2

=
91

6
− 49

4
=

35

12
≈ 2.9167 ,
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and the standard deviation is

σ =
√

Var[X] =

√
35

12
≈ 1.7078 .

·

Example 9.1.2 (discrete) uniform distribution
The outcome of rolling a (fair) die is a special case of a more general distribution, called the
(discrete) uniform distribution. The uniform distribution is characterized by each event having the
equal probability. It is described by two integer parameters, a and b, which assign the lower and
upper bounds of the sample space, respectively. The distribution takes on J = b − a + 1 values.
For the six-sided die, we have a = 1, b = 6, and J = b− a+ 1 = 6. In general, we have

xj = a+ j − 1, j = 1, . . . , J ,

fdisc.uniform(x) =
1

J
.

The mean and variance of a (discrete) uniform distribution are given by

µ =
a+ b

2
and σ2 =

J2 − 1

12
.

We can easily verify that the expressions are consistent with the die rolling case with a = 1, b = 6,
and J = 6, which result in µ = 7/2 and σ2 = 35/12.

Proof. The mean follows from

µ = E[X] = E[X − (a− 1) + (a− 1)] = E[X − (a− 1)] + a− 1

=

J∑
j=1

(xj − (a− 1))pj + a− 1 =

J∑
j=1

j
1

J
+ a− 1 =

1

J

J(J + 1)

2
+ a− 1

=
b− a+ 1 + 1

2
+ a− 1 =

b+ a

2
.

The variance follows from

σ2 = Var[X] = E[(X − E[X])2] = E[((X − (a− 1))− E[X − (a− 1)])2]

= E[(X − (a− 1))2]− E[X − (a− 1)]2

=

J∑
j=1

(xj − (a− 1))2pj −

 J∑
j=1

(xj − (a− 1))pj

2

=
J∑
j=1

j2 1

J
−

 J∑
j=1

jpj

2

=
1

J

J(J + 1)(2J + 1)

6
−
[

1

J

J(J + 1)

2

]2

=
J2 − 1

12
=

(b− a+ 1)2 − 1

12
.
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Example 9.1.3 Bernoulli distribution (a coin flip)
Consider a classical random experiment of flipping a coin. The outcome of a coin flip is either a
head or a tail, and each outcome is equally likely assuming the coin is fair (i.e. unbiased). Without
loss of generality, we can associate the value of 1 (success) with head and the value of 0 (failure)
with tail. In fact, the coin flip is an example of a Bernoulli experiment, whose outcome takes on
either 0 or 1.

Specifically, a Bernoulli random variable, X, takes on two values, 0 and 1, i.e. J = 2, and

x1 = 0 and x2 = 1.

The probability mass function is parametrized by a single parameter, θ ∈ [0, 1], and is given by

fXθ(x) = fBernoulli(x; θ) ≡
{

1− θ, x = 0

θ, x = 1 .

In other words, θ is the probability that the random variable Xθ takes on the value of 1. Flipping
of a fair coin is a particular case of a Bernoulli experiment with θ = 1/2. The θ = 1/2 case is also a
special case of the discrete uniform distribution with a = 0 and b = 1, which results in J = 2. Note
that, in our notation, fXθ is the probability mass function associated with a particular random
variable Xθ, whereas fBernoulli(·; θ) is a family of distributions that describe Bernoulli random
variables. For notational simplicity, we will not explicitly state the parameter dependence of Xθ on
θ from hereon, unless the explicit clarification is necessary, i.e. we will simply use X for the random
variable and fX for its probability mass function. (Also note that what we call a random variable
is of course our choice, and, in the subsequent sections, we often use variable B, instead of X, for
a Bernoulli random variable.)

Examples of the values taken by Bernoulli random variables with θ = 1/2 and θ = 1/4 are
shown in Figure 9.2. As expected, with θ = 1/2, the random variable takes on the value of 0 and 1
roughly equal number of times. On the other hand, θ = 1/4 results in the random variable taking
on 0 more frequently than 1.

The probability mass functions, shown in Figure 9.2, reflect the fact that θ = 1/4 results in X
taking on 0 three times more frequently than 1. Even with just 100 samples, the relative frequency
histograms captures the difference in the frequency of the events for θ = 1/2 and θ = 1/4. In
fact, even if we did not know the underlying pmf — characterized by θ in this case — we can infer
from the sampled data that the second case has a lower probability of success (i.e. x = 1) than
the first case. In the subsequent chapters, we will formalize this notion of inferring the underlying
distribution from samples and present a method for performing the task.

The mean and variance of the Bernoulli distribution are given by

E[X] = θ and Var[X] = θ(1− θ) .

Note that lower θ results in a lower mean, because the distribution is more likely to take on the
value of 0 than 1. Note also that the variance is small for either θ → 0 or θ → 1 as in these cases
we are almost sure to get one or the other outcome. But note that (say) σ/E(X) scales as 1/

√
(θ)

(recall σ is the standard deviation) and hence the relative variation in X becomes more pronounced
for small θ: this will have important consequences in our ability to predict rare events.
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Figure 9.2: Illustration of the values taken by Bernoulli random variables and the probability mass
functions.
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Proof. Proof of the mean and variance follows directly from the definitions. The mean is given by

µ = E[X] =

J∑
j=1

xjpj = 0 · (1− θ) + 1 · θ = θ .

The variance is given by

Var[X] = E[(X − µ)2] =
J∑
j=1

(xj − µ)2pj = (0− θ)2 · (1− θ) + (1− θ)2 · θ = θ(1− θ) .

·
Before concluding this subsection, let us briefly discuss the concept of “events.” We can define

an event of A or B as the random variable X taking on one of some set of mutually exclusive
outcomes xj in either the set A or the set B. Then, we have

P (A or B) = P (A ∪B) = P (A) + P (B)− P (A ∩B).

That is, probability of event A or B taking place is equal to double counting the outcomes xj in
both A and B and then subtracting out the outcomes in both A and B to correct for this double
counting. Note that, if A and B are mutually exclusive, we have A ∩ B = ∅ and P (A ∩ B) = 0.
Thus the probability of A or B is

P (A or B) = P (A) + P (B), (A and B mutually exclusive).

This agrees with our intuition that if A and B are mutually exclusive, we would not double count
outcomes and thus would not need to correct for it.

9.1.2 Transformation

Random variables, just like deterministic variables, can be transformed by a function. For example,
if X is a random variable and g is a function, then a transformation

Y = g(X)

produces another random variable Y . Recall that we described the behavior of X that takes on
one of J values by

X = xj with probability pj , j = 1, . . . , J .

The associated probability mass function was fX(xj) = pj , j = 1, . . . , J . The transformation
Y = g(X) yields the set of outcomes yj , j = 1, . . . , J , where each yj results from applying g to xj ,
i.e.

yj = g(xj), j = 1, . . . , J .

Thus, Y can be described by

Y = yj = g(xj) with probability pj , j = 1, . . . , J .
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We can write the probability mass function of Y as

fY (yj) = fY (g(xj)) = pj j = 1, . . . , J .

We can express the mean of the transformed variable in a few different ways:

E[Y ] =
J∑
j=1

yjfY (yj) =
J∑
j=1

yjpj =
J∑
j=1

g(xj)fX(xj) .

The first expression expresses the mean in terms of Y only, whereas the final expression expresses
E[Y ] in terms of X and g without making a direct reference to Y .

Let us consider a specific example.

Example 9.1.4 from rolling a die to flipping a coin
Let us say that we want to create a random experiment with equal probability of success and failure
(e.g. deciding who goes first in a football game), but all you have is a die instead of a coin. One way
to create a Bernoulli random experiment is to roll the die, and assign “success” if an odd number
is rolled and assign “failure” if an even number is rolled.

Let us write out the process more formally. We start with a (discrete) uniform random variable
X that takes on

xj = j, j = 1, . . . , 6 ,

with probability pj = 1/6, j = 1, . . . , 6. Equivalently, the probability density function for X is

fX(x) =
1

6
, x = 1, 2, . . . , 6 .

Consider a function

g(x) =

{
0, x ∈ {1, 3, 5}
1, x ∈ {2, 4, 6} .

Let us consider a random variable Y = g(X). Mapping the outcomes of X, x1, . . . , x6, to y′1, . . . , y
′
6,

we have

y′1 = g(x1) = g(1) = 0 ,

y′2 = g(x2) = g(2) = 1 ,

y′3 = g(x3) = g(3) = 0 ,

y′4 = g(x4) = g(4) = 1 ,

y′5 = g(x5) = g(5) = 0 ,

y′6 = g(x6) = g(6) = 1 .

We could thus describe the transformed variable Y as

Y = y′j with probability pj = 1/6, j = 1, . . . , 6 .

However, because y′1 = y′3 = y′5 and y′2 = y′4 = y′6, we can simplify the expression. Without loss
of generality, let us set

y1 = y′1 = y′3 = y′5 = 0 and y2 = y′2 = y′4 = y′6 = 1 .
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Figure 9.3: Transformation of X associated with a die roll to a Bernoulli random variable Y .

We now combine the frequentist interpretation of probability with the fact that x1, . . . , x6 are
mutually exclusive. Recall that to a frequentist, P (Y = y1 = 0) is the probability that Y takes on
0 in a large number of trials. In order for Y to take on 0, we must have x = 1, 3, or 5. Because
X taking on 1, 3, and 5 are mutually exclusive events (e.g. X cannot take on 1 and 3 at the same
time), the number of occurrences of y = 0 is equal to the sum of the number of occurrences of
x = 1, x = 3, and x = 5. Thus, the relative frequency of Y taking on 0 — or its probability — is
equal to the sum of the relative frequencies of X taking on 1, 3, or 5. Mathematically,

P (Y = y1 = 0) = P (X = 1) + P (X = 3) + P (X = 5) =
1

6
+

1

6
+

1

6
=

1

2
.

Similarly, because X taking on 2, 4, and 6 are mutually exclusive events,

P (Y = y2 = 1) = P (X = 2) + P (X = 4) + P (X = 6) =
1

6
+

1

6
+

1

6
=

1

2
.

Thus, we have

Y =

{
0, with probability 1/2

1, with probability 1/2 ,

or, in terms of the probability density function,

fY (y) =
1

2
, y = 0, 1 .

Note that we have transformed the uniform random variable X by the function g to create a
Bernoulli random variable Y . We emphasize that the mutually exclusive property of x1, . . . , x6 is the
key that enables the simple summation of probability of the events. In essence, (say), y = 0 obtains
if x = 1 OR if x = 3 OR if x = 5 (a union of events) and since the events are mutually exclusive
the “number of events” that satisfy this condition — ultimately (when normalized) frequency or
probability — is the sum of the individual “number” of each event. The transformation procedure
is illustrated in Figure 9.3.

Let us now calculate the mean of Y in two different ways. Using the probability density of Y ,
we can directly compute the mean as

E[Y ] =

2∑
j=1

yjfY (yj) = 0 · 1

2
+ 1 · 1

2
=

1

2
.
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Or, we can use the distribution of X and the function g to compute the mean

E[Y ] =
6∑
j=1

g(xj)fX(xj) = 0 · 1

6
+ 1 · 1

6
+ 0 · 1

6
+ 1 · 1

6
+ 0 · 1

6
+ 1 · 1

6
=

1

2
.

Clearly, both methods yield the same mean.

·

9.2 Discrete Bivariate Random Variables (Random Vectors)

9.2.1 Joint Distributions

So far, we have consider scalar random variables, each of whose outcomes is described by a single
value. In this section, we extend the concept to random variables whose outcome are vectors. For
simplicity, we consider a random vector of the form

(X,Y ) ,

where X and Y take on JX and JY values, respectively. Thus, the random vector (X,Y ) takes
on J = JX · JY values. The probability mass function associated with (X,Y ) is denoted by fX,Y .
Similar to the scalar case, the probability mass function assigns a probability to each of the possible
outcomes, i.e.

fX,Y (xi, yj) = pij , i = 1, . . . , JX , j = 1, . . . , JY .

Again, the function must satisfy

0 ≤ pij ≤ 1, i = 1, . . . , JX , j = 1, . . . , JY ,

JY∑
j=1

JX∑
i=1

pij = 1 .

Before we introduce key concepts that did not exist for a scalar random variable, let us give a
simple example of joint probability distribution.

Example 9.2.1 rolling two dice
As the first example, let us consider rolling two dice. The first die takes on xi = i, i = 1, . . . , 6,
and the second die takes on yj = j, j = 1, . . . , 6. The random vector associated with rolling the
two dice is

(X,Y ) ,

where X takes on JX = 6 values and Y takes on JY = 6 values. Thus, the random vector (X,Y )
takes on J = JX · JY = 36 values. Because (for a fair die) each of the 36 outcomes is equally likely,
the probability mass function fX,Y is

fX,Y (xi, yj) =
1

36
, i = 1, . . . , 6, j = 1, . . . , 6 .

The probability mass function is shown graphically in Figure 9.4.

·
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Figure 9.4: The probability mass function for rolling two dice.
.

9.2.2 Characterization of Joint Distributions

Now let us introduce a few additional concepts useful for describing joint distributions. Throughout
this section, we consider a random vector (X,Y ) with the associated probability distribution fX,Y .
First is the marginal density , which is defined as

fX(xi) =

JY∑
j=1

fX,Y (xi, yj), i = 1, . . . , JX .

In words, marginal density of X is the probability distribution of X disregarding Y . That is, we
ignore the outcome of Y , and ask ourselves the question: How frequently does X take on the value
xi? Clearly, this is equal to summing the joint probability fX,Y (xi, jj) for all values of yj . Similarly,
the marginal density for Y is

fY (yj) =

JX∑
i=1

fX,Y (xi, yj), j = 1, . . . , JY .

Again, in this case, we ignore the outcome of X and ask: How frequently does Y take on the value
yj? Note that the marginal densities are valid probability distributions because

fX(xi) =

JY∑
j=1

fX,Y (xi, yj) ≤
JX∑
k=1

JY∑
j=1

fX,Y (xk, yj) = 1, i = 1, . . . , JX ,

and

JX∑
i=1

fX(xi) =

JX∑
i=1

JY∑
j=1

fX,Y (xi, yj) = 1 .

The second concept is the conditional probability , which is the probability that X takes on the
value xi given Y has taken on the value yj . The conditional probability is denoted by

fX|Y (xi|yj), i = 1, . . . , JX , for a given yj .
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The conditional probability can be expressed as

fX|Y (xi|yj) =
fX,Y (xi, yj)

fY (yj)
.

In words, the probability that X takes on xi given that Y has taken on yj is equal to the probability
that both events take on (xi, yj) normalized by the probability that Y takes on yj disregarding xi.
We can consider a different interpretation of the relationship by rearranging the equation as

fX,Y (xi, yj) = fX|Y (xi|yj)fY (yj) (9.2)

and then summing on j to yield

fX(xi) =

JY∑
j=1

f(xi, yj) =

JY∑
j=1

fX|Y (xi|yj)fY (yj) .

In other words, the marginal probability of X taking on xi is equal to the sum of the probabilities of
X taking on xi given Y has taken on yj multiplied by the probability of Y taking on yj disregarding
xi.

From (9.2), we can derive Bayes’ law (or Bayes’ theorem), a useful rule that relates conditional
probabilities of two events. First, we exchange the roles of x and y in (9.2), obtaining

fY,X(yj , xi) = fY |X(yj |xi)fX(xi).

But, since fY,X(yj , xi) = fX,Y (xi, yj),

fY |X(yj |xi)fX(xi) = fX|Y (xi|yj)fY (yj),

and rearranging the equation yields

fY |X(yj |xi) =
fX|Y (xi|yj)fY (yj)

fX(xi)
. (9.3)

Equation (9.3) is called Bayes’ law. The rule has many useful applications in which we might know
one conditional density and we wish to infer the other conditional density. (We also note the the-
orem is fundamental to Bayesian statistics and, for example, is exploited in estimation and inverse
problems — problems of inferring the underlying parameters of a system from measurements.)

Example 9.2.2 marginal and conditional density of rolling two dice
Let us revisit the example of rolling two dice, and illustrate how the marginal density and conditional
density are computed. We recall that the probability mass function for the problem is

fX,Y (x, y) =
1

36
, x = 1, . . . , 6, y = 1, . . . , 6 .

The calculation of the marginal density of X is illustrated in Figure 9.5(a). For each xi,
i = 1, . . . , 6, we have

fX(xi) =

6∑
j=1

fX,Y (xi, yj) =
1

36
+

1

36
+

1

36
+

1

36
+

1

36
+

1

36
=

1

6
, i = 1, . . . , 6 .

We can also deduce this from intuition and arrive at the same conclusion. Recall that marginal
density of X is the probability density of X ignoring the outcome of Y . For this two-dice rolling
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Figure 9.5: Illustration of calculating marginal density fX(x = 2) and fY (y = 3).

example, it simply corresponds to the probability distribution of rolling a single die, which is clearly
equal to

fX(x) =
1

6
, x = 1, . . . , 6 .

Similar calculation of the marginal density of Y , fY , is illustrated in Figure 9.5(b). In this case,
ignoring the first die (X), the second die produces yj = j, j = 1, . . . , 6, with the equal probability
of 1/6.

Let us now illustrate the calculation of conditional probability. As the first example, let us
compute the conditional probability of X given Y . In particular, say we are given y = 3. As
shown in Figure 9.6(a), the joint probability of all outcomes except those corresponding to y = 3
are irrelevant (shaded region). Within the region with y = 3, we have six possible outcomes, each
with the equal probability. Thus, we have

fX|Y (x|y = 3) =
1

6
, x = 1, . . . , 6 .

Note that, we can compute this by simply considering the select set of joint probabilities fX,Y (x, y =
3) and re-normalizing the probabilities by their sum. In other words,

fX|Y (x|y = 3) =
fX,Y (x, y = 3)∑6
i=1 fX,Y (xi, y = 3)

=
fX,Y (x, y = 3)

fY (y = 3)
,

which is precisely equal to the formula we have introduced earlier.
Similarly, Figure 9.6(b) illustrates the calculation of the conditional probability fY |X(y, x = 2).

In this case, we only consider joint probability distribution of fX,Y (x = 2, y) and re-normalize the
density by fX(x = 2).

·
A very important concept is independence. Two events are said to be independent if the

occurrence of one event does not influence the outcome of the other event. More precisely, two
random variables X and Y are said to be independent if their probability density function satisfies

fX,Y (xi, yj) = fX(xi) · fY (yj), i = 1, . . . , JX , j = 1, . . . , JY .
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Figure 9.6: Illustration of calculating conditional density fX|Y (x|y = 3) and fY |X(y|x = 2).

The fact that the probability density is simply a product of marginal densities means that we can
draw X and Y separately according to their respective marginal probability and then form the
random vector (X,Y ).

Using conditional probability, we can connect our intuitive understanding of independence with
the precise definition. Namely,

fX|Y (xi|yj) =
fX,Y (xi, yj)

fY (yj)
=
fX(xi)fY (yj)

fY (yj)
= fX(xi) .

That is, the conditional probability of X given Y is no different from the probability that X takes
on x disregarding y. In other words, knowing the outcome of Y adds no additional information
about the outcome of X. This agrees with our intuitive sense of independence.

We have discussed the notion of “or” and related it to the union of two sets. Let us now briefly
discuss the notion of “and” in the context of joint probability. First, note that fX,Y (x, y) is the
probability that X = x and Y = y, i.e. fX,Y (x, y) = P (X = x and Y = y). More generally,
consider two events A and B, and in particular A and B, which is the intersection of A and B,
A ∩B. If the two events are independent, then

P (A and B) = P (A)P (B)

and hence fX,Y (x, y) = fX(x)fY (y) which we can think of as probability of P (A ∩B). Pictorially,
we can associate event A with X taking on a specified value as marked in Figure 9.5(a) and event
B with Y taking on a specified value as marked in Figure 9.5(b). The intersection of A and B is the
intersection of the two marked regions, and the joint probability fX,Y is the probability associated
with this intersection.

To solidify the idea of independence, let us consider two canonical examples involving coin flips.

Example 9.2.3 independent events: two random variables associated with two inde-
pendent coin flips
Let us consider flipping two fair coins. We associate the outcome of flipping the first and second
coins with random variables X and Y , respectively. Furthermore, we associate the values of 1 and
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Figure 9.7: The probability mass function for flipping two independent coins.

0 to head and tail, respectively. We can associate the two flips with a random vector (X,Y ), whose
possible outcomes are

(0, 0), (0, 1), (1, 0), and (1, 1) .

Intuitively, the two variables X and Y will be independent if the outcome of the second flip,
described by Y , is not influenced by the outcome of the first flip, described by X, and vice versa.

We postulate that it is equally likely to obtain any of the four outcomes, such that the joint
probability mass function is given by

fX,Y (x, y) =
1

4
, (x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} .

We now show that this assumption implies independence, as we would intuitively expect. In
particular, the marginal probability density of X is

fX(x) =
1

2
, x ∈ {0, 1} ,

since (say) P (X = 0) = P ((X,Y ) = (0, 0)) + P ((X,Y ) = (0, 1)) = 1/2. Similarly, the marginal
probability density of Y is

fY (y) =
1

2
, y ∈ {0, 1} .

We now note that

fX,Y (x, y) = fX(x) · fY (y) =
1

4
, (x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} ,

which is the definition of independence.
The probability mass function of (X,Y ) and the marginal density of X and Y are shown in

Figure 9.7. The figure clearly shows that the joint density of (X,Y ) is the product of the marginal
density of X and Y . Let us show that this agrees with our intuition, in particular by considering
the probability of (X,Y ) = (0, 0). First, the relative frequency that X takes on 0 is 1/2. Second, of
the events in which X = 0, 1/2 of these take on Y = 0. Note that this probability is independent
of the value that X takes. Thus, the relative frequency of X taking on 0 and Y taking on 0 is 1/2
of 1/2, which is equal to 1/4.
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We can also consider conditional probability of an event that X takes on 1 given that Y takes
on 0. The conditional probability is

fX|Y (x = 1|y = 0) =
fX,Y (x = 1, y = 0)

fY (y = 0)
=

1/4

1/2
=

1

2
.

This probability is equal to the marginal probability of fX(x = 1). This agrees with our intuition;
given that two events are independent, we gain no additional information about the outcome of X
from knowing the outcome of Y .

·

Example 9.2.4 non-independent events: two random variables associated with a single
coin flip
Let us now consider flipping a single coin. We associate a Bernoulli random variables X and Y
with

X =

{
1, head

0, tail
and Y =

{
1, tail

0, head
.

Note that a head results in (X,Y ) = (1, 0), whereas a tail results in (X,Y ) = (0, 1). Intuitively,
the random variables are not independent, because the outcome of X completely determines Y , i.e.
X + Y = 1.

Let us show that these two variables are not independent. We are equally like to get a head,
(1, 0), or a tail, (0, 1). We cannot produce (0, 0), because the coin cannot be head and tail at the
same time. Similarly, (1, 1) has probably of zero. Thus, the joint probability density function is

fX,Y (x, y) =


1
2 , (x, y) = (0, 1)
1
2 , (x, y) = (1, 0)

0, (x, y) = (0, 0) or (x, y) = (1, 1) .

The probability mass function is illustrated in Figure 9.8.
The marginal density of each of the event is the same as before, i.e. X is equally likely to take

on 0 or 1, and Y is equally like to take on 0 or 1. Thus, we have

fX(x) =
1

2
, x ∈ {0, 1}

fY (y) =
1

2
, y ∈ {0, 1} .
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For (x, y) = (0, 0), we have

fX,Y (x, y) = 0 6= 1

4
= fX(x) · fY (y) .

So, X and Y are not independent.
We can also consider conditional probabilities. The conditional probability of x = 1 given that

y = 0 is

fX|Y (x = 1|y = 0) =
fX,Y (x = 1, y = 0)

fY (y = 0)
=

1/2

1/2
= 1 .

In words, given that we know Y takes on 0, we know that X takes on 1. On the other hand, the
conditional probability of x = 1 given that y = 1 is

fX|Y (x = 0|y = 0) =
fX,Y (x = 0, y = 0)

fY (y = 0)
=

0

1/2
= 0 .

In words, given that Y takes on 1, there is no way that X takes on 1. Unlike the previous example
that associated (X,Y ) with two independent coin flips, we know with certainty the outcome of X
given the outcome of Y , and vice versa.

·
We have seen that independence is one way of describing the relationship between two events.

Independence is a binary idea; either two events are independent or not independent. Another
concept that describes how closely two events are related is correlation, which is a normalized
covariance. The covariance of two random variables X and Y is denoted by Cov(X,Y ) and defined
as

Cov(X,Y ) ≡ E[(X − µX)(Y − µY )] .

The correlation of X and Y is denoted by ρXY and is defined as

ρXY =
Cov(X,Y )

σXσY
,

where we recall that σX and σY are the standard deviation of X and Y , respectively. The correlation
indicates how strongly two random events are related and takes on a value between −1 and 1. In
particular, two perfectly correlated events take on 1 (or −1), and two independent events take on
0.

Two independent events have zero correlation because

Cov(X,Y ) = E[(X − µX)(Y − µY )] =

JY∑
j=1

JX∑
i=1

(xi − µX)(yj − µY )fX,Y (xi, yj)

=

JY∑
j=1

JX∑
i=1

(xi − µX)(yj − µY )fX(xi)fY (yj)

=

 JY∑
j=1

(yj − µY )fY (yj)

 ·
 JX∑
i=1

(xi − µX)fX(xi)


= E[Y − µY ] · E[X − µX ] = 0 · 0 = 0 .

The third inequality follows from the definition of independence, fX,Y (xi, yj) = fX(xi)fY (yj).
Thus, if random variables are independent, then they are uncorrelated. However, the converse is
not true in general.
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9.3 Binomial Distribution

In the previous section, we saw random vectors consisting of two random variables, X and Y . Let
us generalize the concept and introduce a random vector consisting of n components

(X1, X2, . . . , Xn) ,

where each Xi is a random variable. In particular, we are interested in the case where each Xi is
a Bernoulli random variable with the probability of success of θ. Moreover, we assume that Xi,
i = 1, . . . , n, are independent. Because the random variables are independent and each variable has
the same distribution, they are said to be independent and identically distributed or i.i.d. for short.
In other words, if a set of random variables X1, . . . , Xn is i.i.d., then

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX(x1) · fX(x2) · · · fX(xn) ,

where fX is the common probability density for X1, . . . , Xn. This concept plays an important
role in statistical inference and allows us to, for example, make a probabilistic statement about
behaviors of random experiments based on observations.

Now let us transform the i.i.d. random vector (X1, . . . , Xn) of Bernoulli random variables to a
random variable Z by summing its components, i.e.

Zn =
n∑
i=1

Xi .

(More precisely we should write Zn,θ since Z depends on both n and θ.) Note Zn is a function of
(X1, X2, . . . , Xn), and in fact a simple function — the sum. Because Xi, i = 1, . . . , n, are random
variables, their sum is also a random variable. In fact, this sum of Bernoulli random variable
is called a binomial random variable. It is denoted by Zn ∼ B(n, θ) (shorthand for fZn,θ(z) =

fbinomial(z;n, θ)), where n is the number of Bernoulli events and θ is the probability of success of
each event. Let us consider a few examples of binomial distributions.

Example 9.3.1 total number of heads in flipping two fair coins
Let us first revisit the case of flipping two fair coins. The random vector considered in this case is

(X1, X2) ,

where X1 and X2 are independent Bernoulli random variables associated with the first and second
flip, respectively. As in the previous coin flip cases, we associate 1 with heads and 0 with tails.
There are four possible outcome of these flips,

(0, 0), (0, 1), (1, 0), and (1, 1) .

From the two flips, we can construct the binomial distribution Z2 ∼ B(2, θ = 1/2), corresponding to
the total number of heads that results from flipping two fair coins. The binomial random variable
is defined as

Z2 = X1 +X2 .

Counting the number of heads associated with all possible outcomes of the coin flip, the binomial
random variable takes on the following value:

First flip 0 0 1 1
Second flip 0 1 0 1

Z2 0 1 1 2
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Because the coin flips are independent and each coin flip has the probability density of fXi(x) = 1/2,
x = 0, 1, their joint distribution is

fX1,X2(x1, x2) = fX1(x1) · fX2(x2) =
1

2
· 1

2
=

1

4
, (x1, x2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} .

In words, each of the four possible events are equally likely. Of these four equally likely events,
Z2 ∼ B(2, 1/2) takes on the value of 0 in one event, 1 in two events, and 2 in one event. Thus, the
behavior of the binomial random variable Z2 can be concisely stated as

Z2 =


0, with probability 1/4

1, with probability 1/2 (= 2/4)

2, with probability 1/4 .

Note this example is very similar to Example 9.1.4: Z2, the sum of X1 and X2, is our g(X); we
assign probabilities by invoking the mutually exclusive property, OR (union), and summation. Note
that the mode, the value that Z2 is most likely to take, is 1 for this case. The probability mass
function of Z2 is given by

fZ2(x) =


1/4, x = 0

1/2, x = 1

1/4, x = 2 .

·

Example 9.3.2 total number of heads in flipping three fair coins
Let us know extend the previous example to the case of flipping a fair coin three times. In this
case, the random vector considered has three components,

(X1, X2, X3) ,

with each X1 being a Bernoulli random variable with the probability of success of 1/2. From the
three flips, we can construct the binomial distribution Z3 ∼ B(3, 1/2) with

Z3 = X1 +X2 +X3 .

The all possible outcomes of the random vector and the associated outcomes of the binomial
distribution are:

First flip 0 1 0 0 1 0 1 1
Second flip 0 0 1 0 1 1 0 1
Third flip 0 0 0 1 0 1 1 1

Z3 0 1 1 1 2 2 2 3

Because the Bernoulli random variables are independent, their joint distribution is

fX1,X2,X3(x1, x2, x3) = fX1(x1) · fX2(x2) · fX3(x3) =
1

2
· 1

2
· 1

2
=

1

8
.

In other words, each of the eight events is equally likely. Of the eight equally likely events, Z3 takes
on the value of 0 in one event, 1 in three events, 2 in three events, and 3 in one event. The behavior
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of the binomial variable Z3 is summarized by

Z3 =


0, with probability 1/8

1, with probability 3/8

2, with probability 3/8

3, with probability 1/8 .

The probability mass function (for θ = 1/2) is thus given by

fZ3(x) =


1/8, x = 0

3/8, x = 1

3/8, x = 2

1/8, x = 3 .

·

Example 9.3.3 total number of heads in flipping four fair coins
We can repeat the procedure for four flips of fair coins (n = 4 and θ = 1/2). In this case, we
consider the sum of the entries of a random vector consisting of four Bernoulli random variables,
(X1, X2, X3, X4). The behavior of Z4 = B(4, 1/2) is summarized by

Z4 =



0, with probability 1/16

1, with probability 1/4

2, with probability 3/8

3, with probability 1/4

4, with probability 1/16 .

Note that Z4 is much more likely to take on the value of 2 than 0, because there are many equally-
likely events that leads to Z4 = 2, whereas there is only one event that leads to Z4 = 0. In general,
as the number of flips increase, the deviation of Zn ∼ B(n, θ) from nθ becomes increasingly unlikely.

·
Figure 9.9 illustrates the values taken by binomial random variables for n = 2 and n = 4, both

with θ = 1/2. The histogram confirms that the distribution is more likely to take on the values
near the mean because there are more sequences of the coin flips that realizes these values. We
also note that the values become more concentrated near the mean, nθ, relative to the range of the
values it can take, [0, n], as n increases. This is reflected in the decrease in the standard deviation
relative to the width of the range of the values Zn can take.

In general, a binomial random variable Zn ∼ B(n, θ) behaves as

Zn = k, with probability

(
n
k

)
θk(1− θ)n−k ,

where k = 1, . . . , n. Recall that

(
n
k

)
is the binomial coefficient, read “n choose k: the number

of ways of picking k unordered outcomes from n possibilities. The value can be evaluated as(
n
k

)
≡ n!

(n− k)!k!
, (9.4)
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Figure 9.9: Illustration of the values taken by binomial random variables.
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where ! denotes the factorial.
We can readily derive the formula for B(n, θ). We think of n tosses as a binary number with n

bits, and we ask how many ways k ones can appear. We can place the first one in n different places,
the second one in n− 1 different places, . . . , which yields n!/(n− k)! possibilities. But since we are
just counting the number of ones, the order of appearance does not matter, and we must divide
n!/(n− k)! by the number of different orders in which we can construct the same pattern of k ones
— the first one can appear in k places, the second one in k − 1 places, . . . , which yields k!. Thus
there are “n choose k” ways to obtain k ones in a binary number of length n, or equivalently “n
choose k” different binary numbers with k ones. Next, by independence, each pattern of k ones (and
hence n − k zeros) has probability θk(1 − θ)n−k. Finally, by the mutually exclusive property, the
probability that Zn = k is simply the number of patterns with k ones multiplied by the probability
that each such pattern occurs (note the probability is the same for each such pattern).

The mean and variance of a binomial distribution is given by

E[Zn] = nθ and Var[Zn] = nθ(1− θ) .

Proof. The proof for the mean follows from the linearity of expectation, i.e.

E[Zn] = E

 n∑
i=1

Xi

 =
n∑
i=1

E[Xi] =
n∑
i=1

θ = nθ .

Note we can readily prove that the expectation of the sum is the sum of the expectations. We
consider the n-dimensional sum over the joint mass function of the Xi weighted — per the definition
of expectation — by the sum of the Xi, i = 1, . . . , n. Then, for any given Xi, we factorize the joint
mass function: n− 1 of the sums then return unity, while the last sum gives the expectation of Xi.
The proof for variance relies on the pairwise independence of the random variables

Var[Zn] = E[(Zn − E[Zn])2] = E



 n∑
i=1

Xi

− nθ


2
 = E




n∑
i=1

(Xi − θ)


2


= E


n∑
i=1

(Xi − θ)2 +

n∑
i=1

n∑
j=1
j 6=i

(Xi − θ)(Xj − θ)


=

n∑
i=1

E[(Xi − θ)2] +
n∑
i=1

n∑
j=1
j 6=i

((((
((((

((
E[(Xi − θ)(Xj − θ)]

=
n∑
i=1

Var[Xi] =
n∑
i=1

θ(1− θ) = nθ(1− θ) .

The cross terms cancel because coin flips are independent.

Note that the variance scales with n, or, equivalently, the standard deviation scales with
√
n. This

turns out to be the key to Monte Carlo methods — numerical methods based on random variables
— which is the focus of the later chapters of this unit.
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Let us get some insight to how the general formula works by applying it to the binomial
distribution associated with flipping coins three times.

Example 9.3.4 applying the general formula to coin flips
Let us revisit Z3 = B(3, 1/2) associated with the number of heads in flipping three coins. The
probability that Z3 = 0 is, by substituting n = 3, k = 0, and θ = 1/2,

fZ3(0) =

(
n
k

)
θk(1− θ)n−k =

(
3
0

)(
1

2

)0(
1− 1

2

)3−0

=
3!

0!(3− 0)!

(
1

2

)3

=
1

8
,

which is consistent with the probability we obtained previously. Let us consider another case: the
probability of Z3 = 2 is

fZ3(2) =

(
n
k

)
θk(1− θ)n−k =

(
3
2

)(
1

2

)2(
1− 1

2

)3−2

=
3!

2!(3− 2)!

(
1

2

)3

=
3

8
.

Note that the θk(1− θ)n−k is the probability that the random vector of Bernoulli variables

(X1, X2, . . . , Xn) ,

realizes X1 = X2 = . . . = Xk = 1 and Xk+1 = . . . = Xn = 0, and hence Zn = k. Then, we multiply
the probability with the number of different ways that we can realize the sum Zn = k, which is
equal to the number of different way of rearranging the random vector. Here, we are using the
fact that the random variables are identically distributed. In the special case of (fair) coin flips,
θk(1− θ)n−k = (1/2)k(1− 1/2)n−k = (1/2)n, because each random vector is equally likely.

·

9.4 Continuous Random Variables

9.4.1 Probability Density Function; Cumulative Distribution Function

Let X be a random variable that takes on any real value in (say) an interval,

X ∈ [a, b] .

The probability density function (pdf) is a function over [a, b], fX(x), such that

fX(x) ≥ 0, ∀x ∈ [a, b] ,∫ b

a
fX(x) dx = 1 .

Note that the condition that the probability mass function sums to unity is replaced by an integral
condition for the continuous variable. The probability that X take on a value over an infinitesimal
interval of length dx is

P (x ≤ X ≤ x+ dx) = fX(x) dx ,

or, over a finite subinterval [a′, b′] ⊂ [a, b],

P (a′ ≤ X ≤ b′) =

∫ b′

a′
fX(x) dx .
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In other words, the probability that X takes on the value between a′ and b′ is the integral of the
probability density function fX over [a′, b′].

A particular instance of this is a cumulative distribution function (cdf), FX(x), which describes
the probability that X will take on a value less than x, i.e.

FX(x) =

∫ x

a
fX(x) dx .

(We can also replace a with −∞ if we define fX(x) = 0 for −∞ < x < a.) Note that any cdf
satisfies the conditions

FX(a) =

∫ a

a
fX(x) dx = 0 and FX(b) =

∫ b

a
fX(x) dx = 1 .

Furthermore, it easily follows from the definition that

P (a′ ≤ X ≤ b′) = FX(b′)− FX(a′).

That is, we can compute the probability of X taking on a value in [a′, b′] by taking the difference
of the cdf evaluated at the two end points.

Let us introduce a few notions useful for characterizing a pdf, and thus the behavior of the
random variable. The mean, µ, or the expected value, E[X], of the random variable X is

µ = E[X] =

∫ b

a
f(x) x dx .

The variance, Var(X), is a measure of the spread of the values that X takes about its mean and is
defined by

Var(X) = E[(X − µ)2] =

∫ b

a
(x− µ)2f(x) dx .

The variance can also be expressed as

Var(X) = E[(X − µ)2] =

∫ b

a
(x− µ)2f(x) dx

=

∫ b

a
x2f(x) dx− 2µ

∫ b

a
xf(x) dx︸ ︷︷ ︸
µ

+µ2

∫ b

a
f(x) dx

= E[X2]− µ2 .

The α-th quantile of a random variable X is denoted by z̃α and satisfies

FX(z̃α) = α.

In other words, the quantile z̃α partitions the interval [a, b] such that the probability of X taking
on a value in [a, z̃α] is α (and conversely P (z̃α ≤ X ≤ b) = 1 − α). The α = 1/2 quantile is the
median.

Let us consider a few examples of continuous random variables.
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Figure 9.10: Uniform distributions

Example 9.4.1 Uniform distribution
Let X be a uniform random variable. Then, X is characterized by a constant pdf,

fX(x) = funiform(x; a, b) ≡ 1

b− a .

Note that the pdf satisfies the constraint∫ b

a
fX(x) dx =

∫ b

a
funiform(x; a, b) dx =

∫ b

a

1

b− a dx = 1 .

Furthermore, the probability that the random variable takes on a value in the subinterval [a′, b′] ∈
[a, b] is

P (a′ ≤ X ≤ b′) =

∫ b′

a′
fX(x) dx =

∫ b′

a′
funiform(x; a, b) dx =

∫ b′

a′

1

b− a dx =
b′ − a′
b− a .

In other words, the probability that X ∈ [a′, b′] is proportional to the relative length of the interval
as the density is equally distributed. The distribution is compactly denoted as U(a, b) and we
write X ∼ U(a, b). A straightforward integration of the pdf shows that the cumulative distribution
function of X ∼ U(a, b) is

FX(x) = F uniform(x; a, b) ≡ x− a
b− a .

The pdf and cdf for a few uniform distributions are shown in Figure 9.10.
An example of the values taken by a uniform random variable U(0, 1) is shown in Figure 9.11(a).

By construction, the range of values that the variable takes is limited to between a = 0 and b = 1.
As expected, there is no obvious concentration of the values within the range [a, b]. Figure 9.11(b)
shows a histrogram that summarizes the frequency of the event that X resides in bins [xi, xi + δx],
i = 1, . . . , nbin. The relative frequency of occurrence is normalized by δx to be consistent with
the definition of the probability density function. In particular, the integral of the region filled
by the histogram is unity. While there is some spread in the frequencies of occurrences due to
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Figure 9.11: Illustration of the values taken by an uniform random variable (a = 0, b = 1).

the relatively small sample size, the histogram resembles the probability density function. This is
consistent with the frequentist interpretation of probability.

The mean of the uniform distribution is given by

E[X] =

∫ b

a
xfX(x) dx =

∫ b

a
x

1

b− a dx =
1

2
(a+ b) .

This agrees with our intuition, because if X is to take on a value between a and b with equal
probability, then the mean would be the midpoint of the interval. The variance of the uniform
distribution is

Var(X) = E[X2]− (E[X])2 =

∫ b

a
x2fX(x) dx−

(
1

2
(a+ b)

)2

=

∫ b

a

x2

b− a dx−
(

1

2
(a+ b)

)2

=
1

12
(b− a)2 .

·

Example 9.4.2 Normal distribution
Let X be a normal random variable. Then the probability density function of X is of the form

fX(x) = fnormal(x;µ, σ2) ≡ 1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

The pdf is parametrized by two variables, the mean µ and the variance σ2. (More precisely we
would thus write Xµ,σ2 .) Note that the density is non-zero over the entire real axis and thus in
principle X can take on any value. The normal distribution is concisely denoted by X ∼ N (µ, σ2).
The cumulative distribution function of a normal distribution takes the form

FX(x) = F normal(x;µ, σ2) ≡ 1

2

[
1 + erf

(
x− µ√

2σ

)]
,
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Figure 9.12: Normal distributions

where erf is the error function, given by

erf(x) =
2

π

∫ x

0
e−z

2
dz .

We note that it is customary to denote the cdf for the standard normal distribution (i.e. µ = 0,
σ2 = 1) by Φ, i.e.

Φ(x) = F normal(x;µ = 0, σ2 = 1).

We will see many use of this cdf in the subsequent sections. The pdf and cdf for a few normal
distributions are shown in Figure 9.12.

An example of the values taken by a normal random variable is shown in Figure 9.13. As
already noted, X can in principle take on any real value; however, in practice, as the Gaussian
function decays quickly away from the mean, the probability of X taking on a value many standard
deviations away from the mean is small. Figure 9.13 clearly illustrates that the values taken by
X is clustered near the mean. In particular, we can deduce from the cdf that X takes on values
within σ, 2σ, and 3σ of the mean with probability 68.2%, 95.4%, and 99.7%, respectively. In other
words, the probability of X taking of the value outside of µ± 3σ is given by

1−
∫ µ+3σ

µ−3σ
fnormal(x;µ, σ2) dx ≡ 1− (F normal(µ+ 3σ;µ, σ2)− F normal(µ− 3σ;µ, σ2)) ≈ 0.003 .

We can easily compute a few quantiles based on this information. For example,

z̃0.841 ≈ µ+ σ, z̃0.977 ≈ µ+ 2σ, and z̃0.9987 ≈ µ+ 3σ.

It is worth mentioning that z̃0.975 ≈ µ + 1.96σ, as we will frequently use this constant in the
subsequent sections.

·
Although we only consider either discrete or continuous random variables in this notes, random

variables can be mixed discrete and continuous in general. Mixed discrete-continuous random
variables are characterized by the appearance of discontinuities in their cumulative distribution
function.
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Figure 9.13: Illustration of the values taken by a normal random variable (µ = 0, σ = 1).

9.4.2 Transformations of Continuous Random Variables

Just like discrete random variables, continuous random variables can be transformed by a function.
The transformation of a random variable X by a function g produces another random variable, Y ,
and we denote this by

Y = g(X) .

We shall consider here only monotonic functions g.
Recall that we have described the random variable X by distribution

P (x ≤ X ≤ x+ dx) = fX(x) dx .

The transformed variable follows

P (y ≤ Y ≤ y + dy) = fY (y) dy .

Substitution of y = g(x) and dy = g′(x)dx and noting g(x) + g′(x)dx = g(x+ dx) results in

fY (y) dy = P (g(x) ≤ g(X) ≤ g(x) + g′(x) dx) = P (g(x) ≤ g(X) ≤ g(x+ dx))

= P (x ≤ X ≤ x+ dx) = fX(x) dx .

In other words, fY (y)dy = fX(x) dx. This is the continuous analog to fY (yj) = pj = fX(xj) in the
discrete case.

We can manipulate the expression to obtain an explicit expression for fY in terms of fX and g.
First we note (from monotonicity) that

y = g(x) ⇒ x = g−1(y) and dx =
dg−1

dy
dy .

Substitution of the expressions in fY (y)dy = fX(x) dx yields

fY (y) dy = fX(x) dx = fX(g−1(y)) · dg
−1

dy
dy
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or,

fY (y) = fX(g−1(y)) · dg
−1

dy
.

Conversely, we can also obtain an explicit expression for fX in terms of fY and g. From y = g(x)
and dy = g′(x) dx, we obtain

fX(x) dx = fY (y) dy = fY (g(x)) · g′(x) dx ⇒ fX(x) = fY (g(x)) · g′(x) .

We shall consider several applications below.
Assuming X takes on a value between a and b, and Y takes on a value between c and d, the

mean of Y is

E[Y ] =

∫ d

c
yfY (y) dy =

∫ b

a
g(x)fX(x) dx ,

where the second equality follows from fY (y) dy = fX(x) dx and y = g(x).

Example 9.4.3 Standard uniform distribution to a general uniform distribution
As the first example, let us consider the standard uniform distribution U ∼ U(0, 1). We wish to
generate a general uniform distribution X ∼ U(a, b) defined on the interval [a, b]. Because a uniform
distribution is uniquely determined by the two end points, we simply need to map the end point 0
to a and the point 1 to b. This is accomplished by the transformation

g(u) = a+ (b− a)u .

Thus, X ∼ U(a, b) is obtained by mapping U ∼ U(0, 1) as

X = a+ (b− a)U .

Proof. Proof follows directly from the transformation of the probability density function. The
probability density function of U is

fU (u) =

{
1, u ∈ [0, 1]

0, otherwise
.

The inverse of the transformation x = g(u) = a+ (b− a)u is

g−1(x) =
x− a
b− a .

From the transformation of the probability density function, fX is

fX(x) = fU (g−1(x)) · dg
−1

dx
= fU

(
x− a
b− a

)
· 1

b− a .

We note that fU evaluates to 1 if

0 ≤ x− a
b− a ≤ 1 ⇒ a ≤ x ≤ b ,

and fU evaluates to 0 otherwise. Thus, fX simplifies to

fX(x) =

{
1
b−a , x ∈ [a, b]

0, otherwise ,

which is precisely the probability density function of U(a, b).
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·

Example 9.4.4 Standard uniform distribution to a discrete distribution
The uniform distribution can also be mapped to a discrete random variable. Consider a discrete
random variable Y takes on three values (J = 3), with

y1 = 0, y2 = 2, and y3 = 3

with probability

fY (y) =


1/2, y1 = 0

1/4, y2 = 2

1/4, y3 = 3

.

To generate Y , we can consider a discontinuous function g. To get the desired discrete probability
distribution, we subdivide the interval [0, 1] into three subintervals of appropriate lengths. In
particular, to generate Y , we consider

g(x) =


0, x ∈ [0, 1/2)

2, x ∈ [1/2, 3/4)

3, x ∈ [3/4, 1]

.

If we consider Y = g(U), we have

Y =


0, U ∈ [0, 1/2)

2, U ∈ [1/2, 3/4)

3, U ∈ [3/4, 1]

.

Because the probability that the standard uniform random variable takes on a value within a
subinterval [a′, b′] is equal to

P (a′ ≤ U ≤ b′) =
b′ − a′
1− 0

= b′ − a′ ,

the probability that Y takes on 0 is 1/2−0 = 1/2, on 2 is 3/4−1/2 = 1/4, and on 3 is 1−3/4 = 1/4.
This gives the desired probability distribution of Y .

·

Example 9.4.5 Standard normal distribution to a general normal distribution
Suppose we have the standard normal distribution Z ∼ N (0, 1) and wish to map it to a general
normal distribution X ∼ N (µ, σ2) with the mean µ and the variance σ2. The transformation is
given by

X = µ+ σZ .

Conversely, we can map any normal distribution to the standard normal distribution by

Z =
X − µ
σ

.
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Proof. The probability density function of the standard normal distribution Z ∼ N (0, 1) is

fZ(z) =
1√
2π

exp

(
−z

2

2

)
.

Using the transformation of the probability density and the inverse mapping, z(x) = (x−µ)/σ, we
obtain

fX(x) = fZ(z(x))
dz

dx
= fZ

(
x− µ
σ

)
· 1

σ
.

Substitution of the probability density function fZ yields

fX(x) =
1√
2π

exp

(
−1

2

(
x− µ
σ

)2
)
· 1

σ
=

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
,

which is exactly the probability density function of N (µ, σ2).

·

Example 9.4.6 General transformation by inverse cdf, F−1

In general, if U ∼ U(0, 1) and FZ is the cumulative distribution function from which we wish to
draw a random variable Z, then

Z = F−1
Z (U)

has the desired cumulative distribution function, FZ .

Proof. The proof is straightforward from the definition of the cumulative distribution function, i.e.

P (Z ≤ z) = P (F−1
Z (U) ≤ z) = P (U ≤ FZ(z)) = FZ(z).

Here we require that FZ is monotonically increasing in order to be invertible.

·

9.4.3 The Central Limit Theorem

The ubiquitousness of the normal distribution stems from the central limit theorem. (The normal
density is also very convenient, with intuitive location (µ) and scale (σ2) parameters.) The central
limits theorem states that the sum of a sufficiently larger number of i.i.d. random variables tends
to a normal distribution. In other words, if an experiment is repeated a larger number of times, the
outcome on average approaches a normal distribution. Specifically, given i.i.d. random variables
Xi, i = 1, . . . , N , each with the mean E[Xi] = µ and variance Var[Xi] = σ2, their sum converges to

N∑
i=1

Xi → N (µN, σ2N), as N →∞ .
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Figure 9.14: Illustration of the central limit theorem for continuous and discrete random variables.

(There are a number of mathematical hypotheses which must be satisfied.)
To illustrate the theorem, let us consider the sum of uniform random variablesXi ∼ U(−1/2, 1/2).

The mean and variance of the random variable are E[Xi] = 0 and Var[Xi] = 1/3, respectively. By
central limit theorem, we expect their sum, ZN , to approach

ZN ≡
N∑
i=1

Xi → N (µN, σ2N) = N (0, N/3) as N →∞ .

The pdf of the sum Zi, i = 1, 2, 3, and the normal distribution N (0, N/3)|N=3 = N (0, 1) are shown
in Figure 9.14(a). Even though the original uniform distribution (N = 1) is far from normal and
N = 3 is not a large number, the pdf for N = 3 can be closely approximated by the normal
distribution, confirming the central limit theorem in this particular case.

The theorem also applies to discrete random variable. For example, let us consider the sum of
(shifted) Bernoulli random variables,

Xi =

{
−1/2, with probability 1/2

1/2, with probability 1/2
.

Note that the value that X takes is shifted by −1/2 compared to the standard Bernoulli random
variable, such that the variable has zero mean. The variance of the distribution is Var[Xi] = 1/4.
As this is a discrete distribution, their sum also takes on discrete values; however, Figure 9.14(b)
shows that the probability mass function can be closely approximated by the pdf for the normal
distribution.

9.4.4 Generation of Pseudo-Random Numbers

To generate a realization of a random variable X — also known as a random variate — compu-
tationally, we can use a pseudo-random number generator. Pseudo-random number generators are
algorithms that generate a sequence of numbers that appear to be random. However, the actual
sequence generated is completely determined by a seed — the variable that specifies the initial state
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of the generator. In other words, given a seed, the sequence of the numbers generated is completely
deterministic and reproducible. Thus, to generate a different sequence each time, a pseudo-random
number generator is seeded with a quantity that is not fixed; a common choice is to use the current
machine time. However, the deterministic nature of the pseudo-random number can be useful, for
example, for debugging a code.

A typical computer language comes with a library that produces the standard continuous uni-
form distribution and the standard normal distribution. To generate other distributions, we can
apply the transformations we considered earlier. For example, suppose that we have a pseudo-
random number generator that generates the realization of U ∼ U(0, 1),

u1, u2, . . . .

Then, we can generate a realization of a general uniform distribution X ∼ U(a, b),

x1, x2, . . . ,

by using the transformation

xi = a+ (b− a)ui, i = 1, 2, . . . .

Similarly, we can generate given a realization of the standard normal distribution Z ∼ N (0, 1),
z1, z2, . . . , we can generate a realization of a general normal distribution X ∼ N (µ, σ2), x1, x2, . . . ,
by

xi = µ+ σzi, i = 1, 2, . . . .

These two transformations are perhaps the most common.
Finally, if we wish to generate a discrete random number Y with the probability mass function

fY (y) =


1/2, y1 = 0

1/4, y2 = 2

1/4, y3 = 3

,

we can map a realization of the standard continuous uniform distribution U ∼ U(0, 1), u1, u2, . . . ,
according to

yi =


0, ui ∈ [0, 1/2)

2, ui ∈ [1/2, 3/4)

3, ui ∈ [3/4, 1]

i = 1, 2, . . . .

(Many programming languages directly support the uniform pmf.)
More generally, using the procedure described in Example 9.4.6, we can sample a random vari-

able Z with cumulative distribution function FZ by mapping realizations of the standard uniform
distribution, u1, u2, . . . according to

zi = F−1
Z (ui), i = 1, 2, . . . .

We note that there are other sampling techniques which are even more general (if not always
efficient), such as “acceptance-rejection” approaches.
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9.5 Continuous Random Vectors

Following the template used to extend discrete random variables to discrete random vectors, we
now introduce the concept of continuous random vectors. Let X = (X1, X2) be a random variable
with

a1 ≤ X1 ≤ b1
a2 ≤ X2 ≤ b2 .

The probability density function (pdf) is now a function over the rectangle

R ≡ [a1, b1]× [a2, b2]

and is denoted by

fX1,X2(x1, x2) (or, more concisely, fX(x1, x2)) .

The pdf must satisfy the following conditions:

fX(x1, x2) ≥ 0, ∀ (x1, x2) ∈ R∫ b1

a1

∫ b2

a2

fX(x1, x2) = 1 .

The value of the pdf can be interpreted as a probability per unit area, in the sense that

P (x1 ≤ X1 ≤ x1 + dx1, x2 ≤ X2 ≤ x2 + dx2) = fX(x1, x2) dx1 dx2 ,

and

P (X ∈ D) =

∫∫
D
fX(x1, x2) dx1 dx2 ,

where
∫∫
D refers to the integral over D ⊂ R (a subset of R).

Let us now revisit key concepts used to characterize discrete joint distributions in the continuous
setting. First, the marginal density function of X1 is given by

fX1(x1) =

∫ b2

a2

fX1,X2(x1, x2) dx2 .

Recall that the marginal density of X1 describes the probability distribution of X1 disregarding the
state of X2. Similarly, the marginal density function of X2 is

fX2(x2) =

∫ b1

a1

fX1,X2(x1, x2) dx1 .

As in the discrete case, the marginal densities are also valid probability distributions.
The conditional probability density function of X1 given X2 is

fX1|X2
(x1|x2) =

fX1,X2(x1, x2)

fX2(x2)
.

Similar to the discrete case, the marginal and conditional probabilities are related by

fX1,X2(x1, x2) = fX1|X2
(x1|x2) · fX2(x2) ,
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or

fX1(x1) =

∫ b2

a2

fX1,X2(x1, x2) dx2 =

∫ b2

a2

fX1|X2
(x1|x2) · fX2(x2) dx2 .

In words, the marginal probability density function of X1 is equal to the integration of the condi-
tional probability density of fX1,X2 weighted by the probability density of X2.

Two continuous random variables are said to be independent if their joint probability density
function satisfies

fX1,X2(x1, x2) = fX1(x1) · fX2(x2) .

In terms of conditional probability, the independence means that

fX1|X2
(x1, x2) =

fX1,X2(x1, x2)

fX2(x2)
=
fX1(x1) · fX2(x2)

fX2(x2)
= fX1(x1) .

In words, knowing the outcome of X2 does not add any new knowledge about the probability
distribution of X1.

The covariance of X1 and X2 in the continuous case is defined as

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)] ,

and the correlation is given by

ρX1X2 =
Cov(X1, X2)

σX1σX2

.

Recall that the correlation takes on a value between −1 and 1 and indicates how strongly the
outcome of two random events are related. In particular, if the random variables are independent,
then their correlation evaluates to zero. This is easily seen from

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)] =

∫ b2

a2

∫ b1

a1

(x1 − µ1)(x2 − µ2)fX1,X2(x1, x2) dx1 dx2

=

∫ b2

a2

∫ b1

a1

(x1 − µ1)(x2 − µ2)fX1(x1)fX2(x2) dx1 dx2

=

[∫ b2

a2

(x2 − µ2)fX2(x2) dx2

]
·
[∫ b1

a1

(x1 − µ1)fX1(x1) dx1

]
= 0 · 0 = 0 .

Note the last step follows from the definition of the mean.

Example 9.5.1 Bivariate uniform distribution
A bivariate uniform distribution is defined by two sets of parameters [a1, b1] and [a2, b2] that specify
the range that X1 and X2 take on, respectively. The probability density function of (X1, X2) is

fX1,X2(x1, x2) =
1

(b1 − a1)(b2 − a2)
.

Note here X1 and X2 are independent, so

fX1,X2(x1, x2) = fX1(x1) · fX2(x2) ,
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where

fX1(x1) =
1

b1 − a1
and fX2(x2) =

1

b2 − a2
.

As for the univariate case, we have

P (X ∈ D) =
AD
AR

,

where AD is the area of some arbitrary region D and AR is the area of the rectangle. In words,
the probability that a uniform random vector — a random “dart” lands in D — is simply the ratio
of AD to the total area of the dartboard (AR).1 This relationship — together with our binomial
distribution — will be the key ingredients for our Monte Carlo methods for area calculation.

Note also that if AD is itself a rectangle aligned with the coordinate directions, AD ≡ c1 ≤
x1 ≤ d1, c2 ≤ x2 ≤ d2, then P (X ∈ D) simplifies to the product of the length of D in x1, (d1 − c1),
divided by b1 − a1, and the length of D in x2, (d2 − c2), divided by b2 − a2. Independence is
manifested as a normalized product of lengths, or equivalently as the AND or intersection (not OR
or union) of the two “event” rectangles c1 ≤ x1 ≤ d1, a2 ≤ x2 ≤ b2 and a1 ≤ x1 ≤ b1, c2 ≤ x2 ≤ d2.

To generate a realization ofX = (X1, X2), we express the vector as a function of two independent
(scalar) uniform distributions. Namely, let us consider U1 ∼ U(0, 1) and U2 ∼ U(0, 1). Then, we
can express the random vector as

X1 = a1 + (b1 − a1)U1

X2 = a2 + (b2 − a2)U2

X = (X1, X2) .

We stress that U1 and U2 must be independent in order for X1 and X2 to be independent.

·

Advanced Material

Example 9.5.2 Bivariate normal distribution
Let (X1, X2) be a bivariate normal random vector. The probability density function of (X1, X2) is
of the form

fX1,X2(x1, x2) = fbi−normal(x1, x2;µ1, µ2, σ1, σ2, ρ)

≡ 1

2πσ1σ2

√
1− ρ2

exp

− 1

2(1− ρ2)

[
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

] ,

where (µ1, µ2) are the means, (σ2
1, σ

2
2) are the variances, and ρ is the correlation. The pairs {µ1, σ

2
1}

and {µ2, σ
2
2} describe the marginal distributions of X1 and X2, respectively. The correlation coef-

ficient must satisfy

−1 < ρ < 1

and, if ρ = 0, then X1 and X2 are uncorrelated. For a joint normal distribution, uncorrelated
implies independence (this is not true for a general distribution).

1 A bullseye (highest score) in darts is not difficult because it lies at the center, but rather because it occupies the
least area.

165



−10 −5 0 5 10

−5

0

5

 

 

c=0.5

c=1.0

c=2.0

realizations

Figure 9.15: A bivariate normal distribution with µ1 = µ2 = 0, σ1 = 3, σ2 = 2, and ρ = 1/2.

The probability density function for the bivariate normal distribution with µ1 = µ2 = 0,
σ1 = 3, σ2 = 2, and ρ = 1/2 is shown in Figure 9.15. The lines shown are the lines of equal
density. In particular, the solid line corresponds to the 1σ line, and the dashed lines are for σ/2
and 2σ as indicated. 500 realizations of the distribution are also shown in red dots. For a bivariate
distribution, the chances are 11.8%, 39.4%, and 86.5% that (X1, X2) takes on the value within σ/2,
1σ, and 2σ, respectively. The realizations shown confirm this trend, as only a small fraction of the
red dots fall outside of the 2σ contour. This particular bivariate normal distribution has a weak
positive correlation, i.e. given that X2 is greater than its mean µX2 , there is a higher probability
that X1 is also greater than its mean, µX1 .

To understand the behavior of bivariate normal distributions in more detail, let us consider
the marginal distributions of X1 and X2. The marginal distribution of X1 of a bivariate normal
distribution characterized by {µ1, µ2, σ

2
1, σ

2
2, ρ} is a univariate normal distribution with the mean

µ1 and the variance σ2
1, i.e.

fX1(x1) ≡
∫ ∞
x2=−∞

fX1,X2(x1, x2)dx2 = fnormal(x1;µ1, σ1) .

In words, if we look at the samples of the binormal random variable (X1, X2) and focus on the
behavior of X1 only (i.e. disregard X2), then we will observe that X1 is normally distributed.
Similarly, the marginal density of X2 is

fX2(x2) ≡
∫ ∞
x1=−∞

fX1,X2(x1, x2)dx1 = fnormal(x2;µ2, σ2) .

This rather surprising result is one of the properties of the binormal distribution, which in fact
extends to higher-dimensional multivariate normal distributions.

Proof. For convenience, we will first rewrite the probability density function as

fX1,X2(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

(
−1

2
q(x1, x2)

)
where the quadratic term is

q(x1, x2) =
1

1− ρ2

[
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

]
.
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We can manipulate the quadratic term to yield

q(x1, x2) =
(x1 − µ1)2

σ2
1

+
1

1− ρ2

[
ρ2(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

]

=
(x1 − µ1)2

σ2
1

+
1

1− ρ2

[
ρ(x1 − µ1)

σ1
− x2 − µ2

σ2

]2

=
(x1 − µ1)2

σ2
1

+
1

σ2
2(1− ρ2)

[
x2 −

(
µ2 + ρ

σ2

σ1
(x1 − µ1)

)]2

.

Substitution of the expression into the probability density function yields

fX1,X2(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

(
−1

2
q(x1, x2)

)
=

1√
2πσ1

exp

(
−1

2

(x1 − µ1)2

σ2
1

)

× 1√
2πσ2

√
1− ρ2

exp

(
−1

2

(x2 − (µ2 + ρ(σ2/σ1)(x1 − µ1)))2

σ2
2(1− ρ2)

)

= fnormal(x1;µ1, σ
2
1) · fnormal

(
x2;µ2 + ρ

σ2

σ1
(x1 − µ1), σ2

2(1− ρ2)

)
.

Note that we have expressed the joint probability as the product of two univariate Gaussian func-
tions. We caution that this does not imply independence, because the mean of the second dis-
tribution is dependent on the value of x1. Applying the definition of marginal density of X1 and
integrating out the x2 term, we obtain

fX1(x1) =

∫ ∞
x2=−∞

fX1,X2(x1, x2)dx2

=

∫ ∞
x2=−∞

fnormal(x1;µ1, σ
2
1) · fnormal

(
x2;µ2 + ρ

σ2

σ1
(x1 − µ1), σ2

2(1− ρ2)

)
dx2

= fnormal(x1;µ1, σ
2
1) ·
∫ ∞
x2=−∞

fnormal

(
x2;µ2 + ρ

σ2

σ1
(x1 − µ1), σ2

2(1− ρ2)

)
dx2

= fnormal(x1;µ1, σ
2
1) .

The integral of the second function evaluates to unity because it is a probability density function.
Thus, the marginal density of X1 is simply the univariate normal distribution with parameters µ1

and σ1. The proof for the marginal density of X2 is identical due to the symmetry of the joint
probability density function.

Figure 9.16 shows the marginal densities fX1 and fX2 along with the σ = 1- and σ = 2-contours
of the joint probability density. The dots superimposed on the joint density are 500 realizations
of (X1, X2). The histogram on the top summarizes the relative frequency of X1 taking on a value
within the bins for the 500 realizations. Similarly, the histogram on the right summarizes relative
frequency of the values that X2 takes. The histograms closely matches the theoretical marginal
distributions for N (µ1, σ

2
1) and N (µ2, σ

2
2). In particular, we note that the marginal densities are

independent of the correlation coefficient ρ.
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Figure 9.16: Illustration of marginal densities for a bivariate normal distribution (µ1 = µ2 = 0,
σ1 = 3, σ2 = 2, ρ = 3/4).

Having studied the marginal densities of the bivariate normal distribution, let us now consider
conditional probabilities. Combining the definition of conditional density and the expression for
the joint and marginal densities, we obtain

fX1|X2
(x1|x2) =

fX1,X2(x1, x2)

fX2(x2)
= fnormal

(
x1;µ1 + ρ

σ1

σ2
(x2 − µ2), (1− ρ2)σ2

1

)
=

1√
2πσ1

√
1− ρ2

exp

(
−1

2

(x1 − (µ1 + ρ(σ1/σ2)x2))2

σ2
1(1− ρ2)

)
.

Similarly, the conditional density of X2 given X1 is

fX2|X1
(x2, x1) =

fX1,X2(x1, x2)

fX1(x1)
= fnormal

(
x2;µ2 + ρ

σ2

σ1
(x1 − µ1), (1− ρ2)σ2

2

)
.

Note that unlike the marginal probabilities, the conditional probabilities are function of the cor-
relation coefficient ρ. In particular, the standard deviation of the conditional distribution (i.e. its
spread about its mean) decreases with |ρ| and vanishes as ρ → ±1. In words, if the correlation is
high, then we can deduce with a high probability the state of X1 given the value that X2 takes.
We also note that the positive correlation (ρ > 0) results in the mean of the conditional probability
X1|X2 shifted in the direction of X2. That is, if X2 takes on a value higher than its mean, then it
is more likely than not that X1 takes on a value higher than its mean.

Proof. Starting with the definition of conditional probability and substituting the joint and marginal

168



probability density functions,

fX1|X2
(x1|x2) =

fX1,X2(x1, x2)

fX2(x2)

=
1

2πσ1σ2

√
1− ρ2

exp

− 1

2(1− ρ2)

[
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

]
×
√

2πσ2

1
exp

(
1

2

(x2 − µ2)2

σ2
2

)

=
1√

2πσ1

√
1− ρ2

exp

{
−1

2
s(x1, x2)

}
where

s(x1, x2) =
1

1− ρ2

[
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
− (1− ρ2)

(x2 − µ2)2

σ2
2

]
.

Rearrangement of the quadratic term s(x1, x2) yields

s(x1, x2) =
1

1− ρ2

[
(x1 − µ1)2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+
ρ2(x2 − µ2)2

σ2
2

]

=
1

1− ρ2

[
x1 − µ1

σ1
− ρ(x2 − µ2)

σ2

]2

=
1

σ2
1(1− ρ2)

[
x1 −

(
µ1 + ρ

σ1

σ2
(x2 − µ2)

)]2

.

Substitution of the quadratic term into the conditional probability density function yields

fX1|X2
(x1|x2) =

1√
2πσ1

√
1− ρ2

exp

−1

2

1

σ2
1(1− ρ2)

[
x1 −

(
µ1 + ρ

σ1

σ2
(x2 − µ2)

)]2


= fnormal

(
x1;µ1 + ρ

σ1

σ2
(x2 − µ2), (1− ρ2)σ2

1

)
,

where the last equality follows from recognizing the univariate normal probability distribution
function.

Figure 9.17 shows the conditional densities fX1|X2
(x1|x2 = −2) and fX2|X1

(x2|x1 = 3) for a
bivariate normal distribution (µ1 = µ2 = 0, σ1 = 3, σ2 = 2, ρ = 3/4). The histograms are
constructed by counting the relative frequency of occurrence for those realizations that falls near
the conditional value of x2 = −2 and x1 = 3, respectively. Clearly, the mean of the conditional
probability densities are shifted relative to the respective marginal densities. As ρ = 3/4 > 0 and
x2 − µ2 = −2 < 0, the mean for X1|X2 is shifted in the negative direction. Conversely, ρ > 0
and x1 − µ1 = 3 > 0 shifts the mean for X2|X1 in the positive direction. We also note that
the conditional probability densities are tighter than the respective marginal densities; due to the
relative strong correlation of ρ = 3/4, we have a better knowledge of the one state when we know
the value of the other state.

Finally, to solidify the idea of correlation, let us consider the 1σ-contour for bivariate normal
distributions with several different values of ρ, shown in Figure 9.18. A stronger (positive) cor-
relation implies that there is a high chance that a positive value of x2 implies a positive value of
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Figure 9.17: Illustration of conditional densities fX1|X2
(x1|x2 = −2) and fX2|X1

(x2|x1 = 3) for a
bivariate normal distribution (µ1 = µ2 = 0, σ1 = 3, σ2 = 2, ρ = 3/4).

x1. Conversely, a strong negative correlation implies that there is a high chance a positive value
of x2 implies a negative value of x1. Zero correlation — which implies independence for normal
distributions — means that we gain no additional information about the value that X1 takes on
by knowing the value of X2; thus, the contour of equal probability density is not tilted.
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Figure 9.18: Bivariate normal distributions with µ1 = µ2 = 0, σ1 = 3, σ2 = 2, and several values
of ρ.
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Chapter 10

Statistical Estimation: Bernoulli
(Coins)

10.1 Introduction

Recall that statistical estimation is a process through which we deduce parameters of the density
that characterize the behavior of a random experiment based on a sample — a typically large but
in any event finite number of observable outcomes of the random experiment. Specifically, a sample
is a set of n independent and identically distributed (i.i.d.) random variables; we recall that a set
of random variables

X1, X2, . . . , Xn

is i.i.d. if

fX1,...,Xn(x1, . . . , xn) = fX(x1) · · · fX(xn),

where fX is the common probability density for X1, . . . , Xn. We also define a statistic as a function
of a sample which returns a random number that represents some attribute of the sample; a statistic
can also refer to the actual variable so calculated. Often a statistic serves to estimate a parameter.
In this chapter, we focus on statistical estimation of parameters associated with arguably the
simplest distribution: Bernoulli random variables.

10.2 The Sample Mean: An Estimator / Estimate

Let us illustrate the idea of sample mean in terms of a coin flip experiment, in which a coin is
flipped n times. Unlike the previous cases, the coin may be unfair, i.e. the probability of heads,
θ, may not be equal to 1/2. We assume that we do not know the value of θ, and we wish to
estimate θ from data collected through n coin flips. In other words, this is a parameter estimation
problem, where the unknown parameter is θ. Although this chapter serves as a prerequisite for
subsequence chapters on Monte Carlo methods — in which we apply probabilistic concepts to
calculates areas and more generally integrals — in fact the current chapter focuses on how we
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might deduce physical parameters from noisy measurements. In short, statistics can be applied
either to physical quantities treated as random variables or deterministic quantities which are re-
interpreted as random (or pseudo-random).

As in the previous chapter, we associate the outcome of n flips with a random vector consisting
of n i.i.d. Bernoulli random variables,

(B1, B2, . . . , Bn) ,

where each Bi takes on the value of 1 with probably of θ and 0 with probability of 1 − θ. The
random variables are i.i.d. because the outcome of one flip is independent of another flip and we
are using the same coin.

We define the sample mean of n coin flips as

Bn ≡
1

n

n∑
i=1

Bi ,

which is equal to the fraction of flips which are heads. Because Bn is a transformation (i.e. sum) of
random variables, it is also a random variable. Intuitively, given a large number of flips, we “expect”
the fraction of flips which are heads — the frequency of heads — to approach the probability of a
head, θ, for n sufficiently large. For this reason, the sample mean is our estimator in the context of
parameter estimation. Because the estimator estimates the parameter θ, we will denote it by Θ̂n,
and it is given by

Θ̂n = Bn =
1

n

n∑
i=1

Bi .

Note that the sample mean is an example of a statistic — a function of a sample returning a random
variable — which, in this case, is intended to estimate the parameter θ.

We wish to estimate the parameter from a particular realization of coin flips (i.e. a realization
of our random sample). For any particular realization, we calculate our estimate as

θ̂n = b̂n ≡
1

n

n∑
i=1

bi ,

where bi is the particular outcome of the i-th flip. It is important to note that the bi, i = 1, . . . , n,
are numbers, each taking the value of either 0 or 1. Thus, θ̂n is a number and not a (random)
distribution. Let us summarize the distinctions:

r.v.? Description

θ no Parameter to be estimated that governs the behavior of underlying distribution

Θ̂n yes Estimator for the parameter θ

θ̂n no Estimate for the parameter θ obtained from a particular realization of our sample

In general, how the random variable Θ̂n is distributed — in particular about θ — determines if
Θ̂n is a good estimator for the parameter θ. An example of convergence of θ̂n to θ with n is shown
in Figure 10.1. As n increases, θ̂ converges to θ for essentially all realization of Bi’s. This follows
from the fact that Θ̂n is an unbiased estimator of θ — an estimator whose expected value is equal
to the true parameter. We shall prove this shortly.

To gain a better insight into the behavior of Θ̂n, we can construct the empirical distribution
of Θ̂n by performing a large number of experiments for a given n. Let us denote the number of
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Figure 10.1: Convergence of estimate with n from a particular realization of coin flips.

experiments by nexp. In the first experiment, we work with a realization (b1, b2, . . . , bn)exp 1 and
obtain the estimate by computing the mean, i.e.

exp 1 : (b1, b2, . . . , bn)exp 1 ⇒ b
exp 1
n =

1

n

n∑
i=1

(bi)
exp 1 .

Similarly, for the second experiment, we work with a new realization to obtain

exp 2 : (b1, b2, . . . , bn)exp 2 ⇒ b
exp 2
n =

1

n

n∑
i=1

(bi)
exp 2 .

Repeating the procedure nexp times, we finally obtain

exp nexp : (b1, b2, . . . , bn)exp nexp ⇒ b
exp nexp

n =
1

n

n∑
i=1

(bi)
exp nexp .

We note that bn can take any value k/n, k = 0, . . . , n. We can compute the frequency of bn taking
on a certain value, i.e. the number of experiments that produces bn = k/n.

The numerical result of performing 10,000 experiments for n = 2, 10, 100, and 1000 flips are
shown in Figure 10.2. The empirical distribution of Θ̂n shows that Θ̂n more frequently takes on the
values close to the underlying parameter θ as the number of flips, n, increases. Thus, the numerical
experiment confirms that Θ̂n is indeed a good estimator of θ if n is sufficiently large.

Having seen that our estimate converges to the true parameter θ in practice, we will now
analyze the convergence behavior to the true parameter by relating the sample mean to a binomial
distribution. Recall, that the binomial distribution represents the number of heads obtained in
flipping a coin n times, i.e. if Zn ∼ B(n, θ), then

Zn =
n∑
i=1

Bi ,

where Bi, i = 1, . . . , n, are the i.i.d. Bernoulli random variable representing the outcome of coin
flips (each having the probability of head of θ). The binomial distribution and the sample mean
are related by

Θ̂n =
1

n
Zn .
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Figure 10.2: Empirical distribution of Θ̂n for n = 2, 10, 100, and 1000 and θ = 1/2 obtained from
10,000 experiments.
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The mean (a deterministic parameter) of the sample mean (a random variable) is

E[Θ̂n] = E

[
1

n
Zn

]
=

1

n
E[Zn] =

1

n
(nθ) = θ .

In other words, Θ̂n is an unbiased estimator of θ. The variance of the sample mean is

Var[Θ̂n] = E[(Θ̂n − E[Θ̂n])2] = E

[(
1

n
Zn −

1

n
E[Zn]

)2
]

=
1

n2
E
[
(Zn − E[Zn])2

]
=

1

n2
Var[Zn] =

1

n2
nθ(1− θ) =

θ(1− θ)
n

.

The standard deviation of Θ̂n is

σΘ̂n
=

√
Var[Θ̂n] =

√
θ(1− θ)

n
.

Thus, the standard deviation of Θ̂n decreases with n, and in particular tends to zero as 1/
√
n.

This implies that Θ̂n → θ as n → ∞ because it is very unlikely that Θ̂n will take on a value
many standard deviations away from the mean. In other words, the estimator converges to the true
parameter with the number of flips.

10.3 Confidence Intervals

10.3.1 Definition

Let us now introduce the concept of confidence interval. The confidence interval is a probabilistic a
posteriori error bound. A posteriori error bounds, as oppose to a priori error bounds, incorporate
the information gathered in the experiment in order to assess the error in the prediction.

To understand the behavior of the estimator Θ̂n, which is a random variable defined by

B1, . . . , Bn ⇒ Θ̂n = Bn =
1

n

n∑
i=1

Bi ,

we typically perform (in practice) a single experiment to generate a realization (b1, . . . , bn). Then,
we estimate the parameter by a number θ̂n given by

b1, . . . , bn ⇒ θ̂n = bn =
1

n

n∑
i=1

bi .

A natural question: How good is the estimate θ̂n? How can we quantify the small deviations of Θ̂n

from θ as n increases?
To answer these questions, we may construct a confidence interval, [CI], defined by

[CI]n ≡

Θ̂n − zγ

√
Θ̂n(1− Θ̂n)

n
, Θ̂n + zγ

√
Θ̂n(1− Θ̂n)

n


such that

P (θ ∈ [CI]n) = γ(zγ) .
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We recall that θ is the true parameter; thus, γ is the confidence level that the true parameter
falls within the confidence interval. Note that [CI]n is a random variable because Θ̂n is a random
variable.

For a large enough n, a (oft-used) confidence level of γ = 0.95 results in zγ ≈ 1.96. In other
words, if we use zγ = 1.96 to construct our confidence interval, there is a 95% probability that the
true parameter lies within the confidence interval. In general, as γ increases, zγ increases: if we
want to ensure that the parameter lies within a confidence interval at a higher level of confidence,
then the width of the confidence interval must be increased for a given n. The appearance of 1/

√
n

in the confidence interval is due to the appearance of the 1/
√
n in the standard deviation of the

estimator, σ
Θ̂n

: as n increases, there is less variation in the estimator.
Strictly speaking, the above result is only valid as n→∞ (and θ /∈ {0, 1}), which ensures that

Θ̂n approaches the normal distribution by the central limit theorem. Then, under the normality
assumption, we can calculate the value of the confidence-level-dependent multiplication factor zγ
according to

zγ = z̃(1+γ)/2,

where z̃α is the α quantile of the standard normal distribution, i.e. Φ(z̃α) = α where Φ is the
cumulative distribution function of the standard normal distribution. For instance, as stated above,
γ = 0.95 results in z0.95 = z̃0.975 ≈ 1.96. A practical rule for determining the validity of the
normality assumption is to ensure that

nθ > 5 and n(1− θ) > 5.

In practice, the parameter θ appearing in the rule is replaced by its estimate, θ̂n; i.e. we check

nθ̂n > 5 and n(1− θ̂n) > 5. (10.1)

In particular, note that for θ̂n = 0 or 1, we cannot construct our confidence interval. This is not
surprising, as, for θ̂n = 0 or 1, our confidence interval would be of zero length, whereas clearly there
is some uncertainty in our prediction. We note that there are binomial confidence intervals that
do not require the normality assumption, but they are slightly more complicated and less intuitive.
Note also that in addition to the “centered” confidence intervals described here we may also develop
one-sided confidence intervals.

10.3.2 Frequentist Interpretation

To get a better insight into the behavior of the confidence interval, let us provide an frequentist
interpretation of the interval. Let us perform nexp experiments and construct nexp realizations of
confidence intervals, i.e.

[ci]jn =

θ̂jn − zγ
√
θ̂jn(1− θ̂jn)

n
, θ̂jn + zγ

√
θ̂jn(1− θ̂jn)

n

 , j = 1, . . . , nexp ,

where the realization of sample means is given by

(b1, . . . , bn)j ⇒ θ̂j =
1

n

n∑
i=1

bji .

Then, as nexp → ∞, the fraction of experiments for which the true parameter θ lies inside [ci]jn
tends to γ.
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Figure 10.3: An example of confidence intervals for estimating the mean of a Bernoulli random
variable (θ = 0.5) using 100 samples.

An example of confidence intervals for estimating the mean of Bernoulli random variable
(θ = 0.5) using samples of size n = 100 is shown in Figure 10.3. In particular, we consider
sets of 50 different realizations of our sample (i.e. 50 experiments, each with a sample of size 100)
and construct 80% (zγ = 1.28) and 95% (zγ = 1.96) confidence intervals for each of the realizations.
The histograms shown in Figure 10.3(b) and 10.3(d) summarize the relative frequency of the true
parameter falling in and out of the confidence intervals. We observe that 80% and 95% confidence
intervals include the true parameter θ in 82% (9/51) and 94% (47/50) of the realizations, respec-
tively; the numbers are in good agreement with the frequentist interpretation of the confidence
intervals. Note that, for the same number of samples n, the 95% confidence interval has a larger
width, as it must ensure that the true parameter lies within the interval with a higher probability.
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10.3.3 Convergence

Let us now characterize the convergence of our prediction to the true parameter. First, we define
the half length of the confidence interval as

Half Lengthθ;n ≡ zγ

√
θ̂n(1− θ̂n)

n
.

Then, we can define a relative error a relative error estimate in our prediction as

RelErrθ;n =
Half Lengthθ;n

θ̂
= zγ

√
1− θ̂n
θ̂nn

.

The appearance of 1/
√
n convergence of the relative error is due to the 1/

√
n dependence in the

standard deviation σ
Θ̂n

. Thus, the relative error converges in the sense that

RelErrθ;n → 0 as n→∞ .

However, the convergence rate is slow

RelErrθ;n ∼ n−1/2 ,

i.e. the convergence rate if of order 1/2 as n→∞. Moreover, note that rare events (i.e. low θ) are
difficult to estimate accurately, as

RelErrθ;n ∼ θ̂−1/2
n .

This means that, if the number of experiments is fixed, the relative error in predicting an event
that occurs with 0.1% probability (θ = 0.001) is 10 times larger than that for an event that occurs
with 10% probability (θ = 0.1). Combined with the convergence rate of n−1/2, it takes 100 times
as many experiments to achieve the similar level of relative error if the event is 100 times less likely.
Thus, predicting the probability of a rare event is costly.

10.4 Cumulative Sample Means

In this subsection, we present a practical means of computing sample means. Let us denote the
total number of coin flips by nmax, which defines the size of our sample. We assume nexp = 1, as is
almost always the case in practice. We create our sample of size nmax, and then for n = 1, . . . , nmax

we compute a sequence of cumulative sample means. That is, we start with a realization of nmax

coin tosses,

b1, b2, . . . , bn, . . . , bnmax ,
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Figure 10.4: Cumulative sample mean, confidence intervals, and their convergence for a Bernoulli
random variable (θ = 0.5).

and then compute the cumulative values,

θ̂1 = b1 =
1

1
· b1 and [ci]1 =

θ̂1 − zγ

√
θ̂1(1− θ̂1)

1
, θ̂1 + zγ

√
θ̂1(1− θ̂1)

1


θ̂2 = b2 =

1

2
(b1 + b2) and [ci]2 =

θ̂2 − zγ

√
θ̂2(1− θ̂2)

2
, θ̂2 + zγ

√
θ̂2(1− θ̂2)

2


...

θ̂n = bn =
1

n

n∑
i=1

bi and [ci]n =

θ̂n − zγ
√
θ̂n(1− θ̂n)

n
, θ̂n + zγ

√
θ̂n(1− θ̂n)

n


...

θ̂nmax = bnmax =
1

n

nmax∑
i=1

bi and [ci]nmax =

θ̂nmax − zγ

√
θ̂nmax(1− θ̂nmax)

nmax
, θ̂nmax + zγ

√
θ̂nmax(1− θ̂nmax)

nmax

 .

Note that the random variables B1, . . . , Bnmax realized by b1, . . . , bnmax are not independent because
the sample means are computed from the same set of realizations; also, the random variable, [CI]n
realized by [ci]n are not joint with confidence γ. However in practice this is a computationally
efficient way to estimate the parameter with typically only small loss in rigor. In particular, by
plotting θ̂n and [ci]n for n = 1, . . . , nmax, one can deduce the convergence behavior of the simulation.
In effect, we only perform one experiment, but we interpret it as nmax experiments.

Figure 10.4 shows an example of computing the sample means and confidence intervals in a
cumulative manner. The figure confirms that the estimate converges to the true parameter value
of θ = 0.5. The confidence interval is a good indicator of the quality of the solution. The error
(and the confidence interval) converges at the rate of n−1/2, which agrees with the theory.
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Chapter 11

Statistical Estimation: the Normal
Density

We first review the “statistical process.” We typically begin with some population we wish to
characterize; we then draw a sample from this population; we then inspect the data — for example
as a histogram — and postulate an underlying probability density (here taking advantage of the
“frequency as probability” perspective); we then estimate the parameters of the density from the
sample; and finally we are prepared to make inferences about the population. It is critical to note
that in general we can “draw” from a population without knowing the underlying density; this in
turn permits us to calibrate the postulated density.

We already observed one instance of this process with our coin flipping experiment. In this
case, the population is all possible “behaviours” or flips of our coin; our sample is a finite number,
n, of coin flips; our underlying probability density is Bernoulli. We then estimate the Bernoulli
parameter — the probability of heads, θ — through our sample mean and associated (normal-
approximation) confidence intervals. We are then prepared to make inferences: is the coin suitable
to decide the opening moments of a football game? Note that in our experiments we effectively
sample from a Bernoulli probability mass function with parameter θ but without knowing the value
of θ.

Bernoulli estimation is very important, and occurs in everything from coin flips to area and
integral estimation (by Monte Carlo techniques as introduced in Chapter 12) to political and
product preference polls. However, there are many other important probability mass functions
and densities that arise often in the prediction or modeling of various natural and engineering
phenomena. Perhaps premier among the densities is the normal, or Gaussian, density.

We have introduced the univariate normal density in Section 9.4. In this chapter, to avoid confu-
sion with typical variables in our next unit, regression, we shall denote our normal random variable
as W = Wµ,σ ∼ N (µ, σ2) corresponding to probability density function fW (w) = fnormal(w;µ, σ2).
We recall that the normal density is completely determined by the two parameters µ and σ which
are in fact the mean and the standard deviation, respectively, of the normal density.

The normal density is ubiquitous for several reasons. First, more pragmatically, it has some
rather intuitive characteristics: it is symmetric about the mean, it takes its maximum (the mode) at
the mean (which is also the median, by symmetry), and it is characterized by just two parameters
— a center (mean) and a spread (standard deviation). Second, and more profoundly, the normal
density often arises “due” to the central limit theorem, described in Section 9.4.3. In short (in
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fact, way too short), one form of the central limit theorem states that the average of many random
perturbations — perhaps described by different underlying probability densities — approaches the
normal density. Since the behavior of many natural and engineered systems can be viewed as the
consequence of many random influences, the normal density is often encountered in practice.

As an intuitive example from biostatistics, we consider the height of US females (see L Winner
notes on Applied Statistics, University of Florida, http://www.stat.ufl.edu/~winner/statnotescomp/
appstat.pdf Chapter 2, p 26). In this case our population is US females of ages 25–34. Our sam-
ple might be the US Census data of 1992. The histogram appears quite normal-like, and we can
thus postulate a normal density. We would next apply the estimation procedures described below
to determine the mean and standard deviation (the two parameters associated with our “chosen”
density). Finally, we can make inferences — go beyond the sample to the population as whole —
for example related to US females in 2012.

The choice of population is important both in the sampling/estimation stage and of course
also in the inference stage. And the generation of appropriate samples can also be a very thorny
issue. There is an immense literature on these topics which goes well beyond our scope and also,
to a certain extent — given our focus on engineered rather than social and biological systems —
beyond our immediate needs. As but one example, we would be remiss to apply the results from
a population of US females to different demographics such as “females around the globe” or “US
female jockeys” or indeed “all genders.”

We should emphasize that the normal density is in almost all cases an approximation. For
example, very rarely can a quantity take on all values however small or large, and in particular
quantities must often be positive. Nevertheless, the normal density can remain a good approxima-
tion; for example if µ− 3σ is positive, then negative values are effectively “never seen.” We should
also emphasize that there are many cases in which the normal density is not appropriate — not
even a good approximation. As always, the data must enter into the decision as to how to model
the phenomenon — what probability density with what parameters will be most effective?

As an engineering example closer to home, we now turn to the Infra-Red Range Finder distance-
voltage data of Chapter 1 of Unit I. It can be motivated that in fact distance D and voltage V
are inversely related, and hence it is plausible to assume that DV = C, where C is a constant
associated with our particular device. Of course, in actual practice, there will be measurement
error, and we might thus plausibly assume that

(DV )meas = C +W

where W is a normal random variable with density N (0, σ2). Note we assume that the noise is
centered about zero but of unknown variance. From the transformation property of Chapter 4,
Example 9.4.5, we can further express our measurements as

(DV )meas ∼ N (C, σ2)

since if we add a constant to a zero-mean normal random variable we simply shift the mean. Note we
now have a classical statistical estimation problem: determine the mean C and standard deviation
σ of a normal density. (Note we had largely ignored noise in Unit I, though in fact in interpolation
and differentiation noise is often present and even dominant; in such cases we prefer to “fit,” as
described in more detail in Unit III.)

In terms of the statistical process, our population is all possible outputs of our IR Range Finder
device, our sample will be a finite number of distance-voltage measurements, (DV )meas

i , 1 ≤ i ≤ n,
our estimation procedure is presented below, and finally our inference will be future predictions of
distance from voltage readings — through our simple relation D = C/V . Of course, it will also be
important to somehow justify or at least inspect our assumption that the noise is Gaussian.
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We now present the standard and very simple estimation procedure for the normal density. We
present the method in terms of particular realization: the connection to probability (and random
variables) is through the frequentist interpretation. We presume that W is a normal random
variable with mean µ and standard deviation σ.

We first draw a sample of size n, wj , 1 ≤ j ≤ n, from fW (w) = fnormal(w;µ, σ2). We then
calculate the sample mean as

wn =
1

n

n∑
j=1

wj ,

and the sample standard deviation as

sn =

√√√√ 1

n− 1

n∑
j=1

(wj − wn)2 .

(Of course, the wj , 1 ≤ j ≤ n, are realizations of random variables Wj , 1 ≤ j ≤ n, wn is a realization
of a random variable Wn, and sn is a realization of a random variable Sn.) Not surprisingly, wn,
which is simply the average of the data, is an estimate for the mean, µ, and sn, which is simply the
standard deviation of the data, is an estimate for the standard deviation, σ. (The n−1 rather than
n in the denominator of sn is related to a particular choice of estimator and estimator properties;
in any event, for n large, the difference is quite small.)

Finally, we calculate the confidence interval for the mean

[ci]µ;n =

[
wn − tγ,n−1

sn√
n
,wn + tγ,n−1

sn√
n

]
,

where γ is the confidence level and tγ,n−1 is related to the Student-t distribution.1 For the par-
ticular case of γ = 0.95 you can find values for tγ=0.95,n for various n (sample sizes) in a table in
Unit III. Note that for large n, tγ,n−1 approaches zγ discussed earlier in the context of (normal–
approximation) binomial confidence intervals.

We recall the meaning of this confidence interval. If we perform nexp realizations (with nexp →
∞) — in which each realization corresponds to a (different) sample w1, . . . , wn, and hence different
sample mean wn, different sample standard deviation sn, and different confidence interval [ci]µ;n —
then in a fraction γ of these realizations the true mean µ will reside within the confidence interval.
(Or course this statement is only completely rigorous if the underlying density is precisely the
normal density.)

We can also translate our confidence interval into an “error bound” (with confidence level γ).
In particular, unfolding our confidence interval yields

|µ− wn| ≤ tγ,n−1
sn√
n
≡ Half Lengthµ;n .

We observe the “same” square root of n, sample size, that we observed in our Bernoulli estimation
procedure, and in fact for the same reasons. Intuitively, say in our female height example, as we
increase our sample size there are many more ways to obtain a sample mean close to µ (with much
cancellation about the mean) than to obtain a sample mean say σ above µ (e.g., with all heights
well above the mean). As you might expect, as γ increases, tγ,n−1 also increases: if we insist upon
greater certainty in our claims, then we will lose some accuracy as reflected in the Half Length of
the confidence interval.

1 The multiplier tγ,n−1 satisfies F student−t(tγ,n−1;n − 1) = (γ + 1)/2 where F student−t( · ;n − 1) is the cdf of
the Student’s-t distribution with n − 1 degrees of freedom; i.e. tγ,n−1 is the (γ + 1)/2 quantile of the Student’s-t
distribution.
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Chapter 12

Monte Carlo: Areas and Volumes

12.1 Calculating an Area

We have seen in Chapter 10 and 11 that parameters that describe probability distributions can be
estimated using a finite number of realizations of the random variable and that furthermore we can
construct an error bound (in the form of confidence interval) for such an estimate. In this chapter,
we introduce Monte Carlo methods to estimate the area (or volume) of implicitly-defined regions.
Specifically, we recast the area determination problem as a problem of estimating the mean of a
certain Bernoulli distribution and then apply the tools developed in Chapter 10 to estimate the
area and also assess errors in our estimate.

12.1.1 Objective

We are given a two-dimensional domain D in a rectangle R = [a1, b1]×[a2, b2]. We would like to find,
or estimate, the area ofD, AD. Note that the area of the bounding rectangle, AR = (b1−a1)(b2−a2),
is known.

12.1.2 A Continuous Uniform Random Variable

Let X ≡ (X1, X2) be a uniform random variable over R. We know that, by the definition of uniform
distribution,

fX1,X2(x1, x2) =

{
1/AR, (x1, x2) ∈ R
0, (x1, x2) /∈ R

,

and we know how to sample from fX1,X2 by using independence and univariate uniform densities.
Finally, we can express the probability that X takes on a value in D as

P (X ∈ D) =

∫∫
D
fX1,X2(x1, x2) dx1 dx2 =

1

AR

∫∫
D
dx1 dx2 =

AD
AR

.

Intuitively, this means that the probability of a random “dart” landing in D is equal to the fraction
of the area that D occupies with respect to R.
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12.1.3 A Bernoulli Random Variable

Let us introduce a Bernoulli random variable,

B =

{
1 X ∈ D with probability θ

0 X /∈ D with probability 1− θ
.

But,

P (X ∈ D) = AD/AR ,

So, by our usual transformation rules,

θ ≡ AD
AR

.

In other words, if we can estimate θ we can estimate AD = ARθ. We know how to estimate θ —
same as coin flips. But, how do we sample B if we do not know θ?

12.1.4 Estimation: Monte Carlo

We draw a sample of random vectors,

(x1, x2)1, (x1, x2)2, . . . , (x1, x2)n, . . . , (x1, x2)nmax

and then map the sampled pairs to realization of Bernoulli random variables

(x1, x2)i → bi, i = 1, . . . , nmax .

Given the realization of Bernoulli random variables,

b1, . . . , bn, . . . , bnmax ,

we can apply the technique discussed in Section 10.4 to compute the sample means and confidence
intervals: for n = 1, . . . , nmax,

θ̂n = b̄n =
1

n

n∑
i=1

bi and [ci]n =

θ̂n − zγ
√
θ̂n(1− θ̂n)

n
, θ̂n + zγ

√
θ̂n(1− θ̂n)

n

 .
Thus, given the mapping from the sampled pairs to Bernoulli variables, we can estimate the pa-
rameter.

The only remaining question is how to construct the mapping (x1, x2)n → bn, n = 1, . . . , nmax.
The appropriate mapping is, given (x1, x2)n ∈ R,

bn =

{
1, (x1, x2)n ∈ D
0, (x1, x2)n /∈ D

.

To understand why this mapping works, we can look at the random variables: given (X1, X2)n,

Bn =

{
1, (X1, X2)n ∈ D
0, (X1, X2)n /∈ D

.
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Figure 12.1: Estimation of π by Monte Carlo method.

But,

P ((X1, X2)n ∈ D) = θ ,

so

P (Bn = 1) = θ ,

for θ = AD/AR.
This procedure can be intuitively described as

1. Throw n “random darts” at R

2. Estimate θ = AD/AR by fraction of darts that land in D

Finally, for AD, we can develop an estimate

(ÂD)n = ARθ̂n

and confidence interval

[ciAD ]n = AR[ci]n .

Example 12.1.1 Estimating π by Monte Carlo method
Let us consider an example of estimating the area using Monte Carlo method. In particular, we
estimate the area of a circle with unit radius centered at the origin, which has the area of πr2 = π.
Noting the symmetry of the problem, let us estimate the area of the quarter circle in the first
quadrant and then multiply the area by four to obtain the estimate of π. In particular, we sample
from the square

R = [0, 1]× [0, 1]

having the area of AR = 1 and aim to determine the area of the quarter circle D with the area of
AD. Clearly, the analytical answer to this problem is AD = π/4. Thus, by estimating AD using
the Monte Carlo method and then multiplying AD by four, we can estimate the value π.
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Figure 12.2: Convergence of the π estimate with the number of samples.

The sampling procedure is illustrated in Figure 12.1. To determine whether a given sample
(x1, x2)n is in the quarter circle, we can compute its distance from the center and determine if the
distance is greater than unity, i.e. the Bernoulli variable is assigned according to

bn =

{
1,

√
x2

1 + x2
2 ≤ 1

0, otherwise
.

The samples that evaluates to bn = 1 and 0 are plotted in red and blue, respectively. Because the
samples are drawn uniformly from the square, the fraction of red dots is equal to the fraction of the
area occupied by the quarter circle. We show in Figure 12.2 the convergence of the Monte Carlo
estimation: we observe the anticipated square-root behavior. Note in the remainder of this section
we shall use the more conventional N rather than n for sample size.

·

12.1.5 Estimation: Riemann Sum

As a comparison, let us also use the midpoint rule to find the area of a two-dimensional region D.
We first note that the area of D is equal to the integral of a characteristic function

χ(x1, x2) =

{
1, (x1, x2) ∈ D
0, otherwise

,

over the domain of integration R that encloses D. For simplicity, we consider rectangular domain
R = [a1, b1] × [a2, b2]. We discretize the domain into N/2 little rectangles, each with the width
of (b1 − a1)/

√
N/2 and the height of (b2 − a2)/

√
N/2. We further divide each rectangle into

two right triangles to obtain a triangulation of R. The area of each little triangle K is AK =
(b1 − a1)(b2 − a2)/N . Application of the midpoint rule to integrate the characteristic function
yields

AD ≈ (ÂRie
D )N =

∑
K

AKχ(xc,K) =
∑
K

(b1 − a1)(b2 − a2)

N
χ(xc,K) ,
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Figure 12.3: Estimation of π by deterministic Riemann sum.

where xc,K is the centroid (i.e. the midpoint) of the triangle. Noting that AR = (b1 − a1)(b2 − a2)
and rearranging the equation, we obtain

(ÂRie
D )N = AR

1

N

∑
K

χ(xc,K) .

Because the characteristic function takes on either 0 or 1, the summation is simply equal to the
number of times that xc,K is in the region D. Thus, we obtain our final expression

(ÂRie
D )N
AR

=
number of points in D

N
.

Note that the expression is very similar to that of the Monte Carlo integration. The main difference
is that the sampling points are structured for the Riemann sum (i.e. the centroid of the triangles).

We can also estimate the error incurred in this process. First, we note that we cannot directly
apply the error convergence result for the midpoint rule developed previously because the derivation
relied on the smoothness of the integrand. The characteristic function is discontinuous along the
boundary of D and thus is not smooth. To estimate the error, for simplicity, let us assume the
domain size is the same in each dimension, i.e. a = a1 = a2 and b = b1 = b2. Then, the area of
each square is

h2 = (b− a)2/N .

Then,

(ÂRie
D )N = (number of points in D) · h2 .

There are no errors created by little squares fully inside or fully outside D. All the error is due to
the squares that intersect the perimeter. Thus, the error bound can be expressed as

error ≈ (number of squares that intersect D) · h2 ≈ (PerimeterD/h) · h2

= O(h) = O(
√
AR/N) .
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Figure 12.4: Convergence of the π estimate with the number of samples using Riemann sum.

Note that this is an example of a priori error estimate. In particular, unlike the error estimate
based on the confidence interval of the sample mean for Monte Carlo, this estimate is not constant-
free. That is, while we know the asymptotic rate at which the method converges, it does not tell us
the actual magnitude of the error, which is problem-dependent. A constant-free estimate typically
requires an a posteriori error estimate, which incorporates the information gathered about the
particular problem of interest. We show in Figure 12.3 the Riemann sum grid, and in Figure 12.4
the convergence of the Riemann sum approach compared to the convergence of the Monte Carlo
approach for our π example.

Example 12.1.2 Integration of a rectangular area
In the case of finding the area of a quarter circle, the Riemann sum performed noticeably better
than the Monte Carlo method. However, this is not true in general. To demonstrate this, let us
consider integrating the area of a rectangle. In particular, we consider the region

D = [0.2, 0.7]× [0.2, 0.8] .

The area of the rectangle is AD = (0.7− 0.2) · (0.8− 0.2) = 0.3.
The Monte Carlo integration procedure applied to the rectangular area is illustrated in Fig-

ure 12.5(a). The convergence result in Figure 12.5(b) confirms that both Monte Carlo and Riemann
sum converge at the rate of N−1/2. Moreover, both methods produce the error of similar level for
all ranges of the sample size N considered.

·

Example 12.1.3 Integration of a complex area
Let us consider estimating the area of a more complex region, shown in Figure 12.6(a). The region
D is implicitly defined in the polar coordinate as

D =

{
(r, θ) : r ≤ 2

3
+

1

3
cos(4βθ), 0 ≤ θ ≤ π

2

}
,

where r =
√
x2 + y2 and tan(θ) = y/x. The particular case shown in the figure is for β = 10. For

any natural number β, the area of the region D is equal to

AD =

∫ π/2

θ=0

∫ 2/3+1/3 cos(4βθ)

r=0
r dr dθ =

π

8
, β = 1, 2, . . . .
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Figure 12.5: The geometry and error convergence for the integration over a rectangular area.
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Figure 12.6: The geometry and error convergence for the integration over a more complex area.

Thus, we can again estimate π by multiplying the estimated area of D by 8.
The result of estimating π by approximating the area of D is shown in Figure 12.6(b). The

error convergence plot confirms that both Monte Carlo and Riemann sum converge at the rate of
N−1/2. In fact, their performances are comparable for this slightly more complex domain.

·

12.2 Calculation of Volumes in Higher Dimensions

12.2.1 Three Dimensions

Both the Monte Carlo method and Riemann sum used to estimate the area of region D in two
dimensions trivially extends to higher dimensions. Let us consider their applications in three
dimensions.
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Monte Carlo

Now, we sample (X1, X2, X3) uniformly from a parallelepiped R = [a1, b1]× [a2, b2]× [a3, b3], where
the Xi’s are mutually independent. Then, we assign a Bernoulli random variable according to
whether (X1, X2, X3) is inside or outside D as before, i.e.

B =

{
1, (X1, X2, X3) ∈ D
0, otherwise

.

Recall that the convergence of the sample mean to the true value — in particular the convergence
of the confidence interval — is related to the Bernoulli random variable and not the Xi’s. Thus,
even in three dimensions, we still expect the error to converge as N−1/2, where N is the size of the
sample.

Riemann Sum

For simplicity, let us assume the parallelepiped is a cube, i.e. a = a1 = a2 = a3 and b = b1 = b2 = b3.
We consider a grid of N points centered in little cubes of size

h3 =
b− a
N

,

such that Nh3 = VR. Extending the two-dimensional case, we estimate the volume of the region D
according to

V̂ Rie
D

VR
=

number of points in D

N
.

However, unlike the Monte Carlo method, the error calculation is dependent on the dimension.
The error is given by

error ≈ (number of cubes that intersect D) · h3

≈ (surface area of D/h2) · h3

≈ h ≈ N−1/3 .

Note that the convergence rate has decreased from N−1/2 to N−1/3 in going from two to three
dimensions.

Example 12.2.1 Integration of a sphere
Let us consider a problem of finding the volume of a unit 1/8th sphere lying in the first octant. We
sample from a unit cube

R = [0, 1]× [0, 1]× [0, 1]

having a volume of VR = 1.0. As in the case of circle in two dimensions, we can perform simple
in/out check by measuring the distance of the point from the origin; i.e the Bernoulli variable is
assigned according to

bn =

{
1,

√
x2

1 + x2
2 + x2

3 ≤ 1

0, otherwise
.

The result of estimating the value of π based on the estimate of the volume of the 1/8th sphere is
shown in Figure 12.7. (The raw estimated volume of the 1/8th sphere is scaled by 6.) As expected

194



10
0

10
1

10
2

10
3

10
4

10
5

10
6

2.5

3

3.5

4

4.5

5

5.5

6

N

π
 e

s
ti
m

a
te

 

 

π est. (MC)

π est. (RM)

π

(a) value

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−2

10
0

N

e
rr

o
r

 

 

π est. (MC)

π est. (RM)

N
−1/2

N
−1/3

(b) error

Figure 12.7: Convergence of the π estimate using the volume of a sphere.

both the Monte Carlo method and the Riemann sum converge to the correct value. In particular,
the Monte Carlo method converges at the expected rate of N−1/2. The Riemann sum, on the other
hand, converges at a faster rate than the expected rate of N−1/3. This superconvergence is due
to the symmetry in the tetrahedralization used in integration and the volume of interest. This
does not contradict our a priori analysis, because the analysis tells us the asymptotic convergence
rate for the worst case. The following example shows that the asymptotic convergence rate of the
Riemann sum for a general geometry is indeed N−1/2.

·

Example 12.2.2 Integration of a parallelpiped
Let us consider a simpler example of finding the volume of a parallelpiped described by

D = [0.1, 0.9]× [0.2, 0.7]× [0.1, 0.8] .

The volume of the parallelpiped is VD = 0.28.
Figure 12.8 shows the result of the integration. The figure shows that the convergence rate of

the Riemann sum is N−1/3, which is consistent with the a priori analysis. On the other hand, the
Monte Carlo method performs just as well as it did in two dimension, converging at the rate of
N−1/2. In particular, the Monte Carlo method performs noticeably better than the Riemann sum
for large values of N .

·

Example 12.2.3 Integration of a complex volume
Let us consider a more general geometry, with the domain defined in the spherical coordinate as

D =

{
(r, θ, φ) : r ≤ sin(θ)

(
2

3
+

1

3
cos(40φ)

)
, 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

2

}
.

The volume of the region is given by

VD =

∫ π/2

φ=0

∫ π/2

θ=0

∫ sin(θ)( 2
3

+ 1
3

cos(40φ))

r=0
r2 sin(θ) dr dθ dφ =

88

2835
π .
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Figure 12.8: Area of a parallelepiped.
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Figure 12.9: Convergence of the π estimate using a complex three-dimensional integration.
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Thus, we can estimate the value of π by first estimating the volume using Monte Carlo or Riemann
sum, and then multiplying the result by 2835/88.

Figure 12.9 shows the result of performing the integration. The figure shows that the conver-
gence rate of the Riemann sum is N−1/3, which is consistent with the a priori analysis. On the
other hand, the Monte Carlo method performs just as well as it did for the simple sphere case.

·

12.2.2 General d-Dimensions

Let us generalize our analysis to the case of integrating a general d-dimensional region. In this case,
the Monte Carlo method considers a random d-vector, (X1, . . . , Xd), and associate with the vector
a Bernoulli random variable. The convergence of the Monte Carlo integration is dependent on
the Bernoulli random variables and not directly affected by the random vector. In particular, the
Monte Carlo method is oblivious to the length of the vector, d, i.e. the dimensionality of the space.
Because the standard deviation of the binomial distribution scales as N−1/2, we still expect the
Monte Carlo method to converge at the rate of N−1/2 regardless of d. Thus, Monte Carlo methods
do not suffer from so-called curse of dimensionality, in which a method becomes intractable with
increase of the dimension of the problem.

On the other hand, the performance of the Riemann sum is a function of the dimension of the

space. In a d-dimensional space, each little cube has the volume of N−1, and there are N
d−1
d cube

that intersect the boundary of D. Thus, the error scales as

error ≈ N d−1
d N−1 = N−1/d .

The convergence rate worsens with the dimension, and this is an example of the curse of dimen-
sionality. While the integration of a physical volume is typically limited to three dimensions, there
are many instances in science and engineering where a higher-dimensional integration is required.

Example 12.2.4 integration over a hypersphere
To demonstrate that the convergence of Monte Carlo method is independent of the dimension, let
us consider integration of a hypersphere in d-dimensional space. The volume of d-sphere is given
by

VD =
πd/2

Γ(n/2 + 1)
rd ,

where Γ is the gamma function. We can again use the integration of a d-sphere to estimate the
value of π.

The result of estimating the d-dimensional volume is shown in Figure 12.10 for d = 2, 3, 5, 7.
The error convergence plot shows that the method converges at the rate of N−1/2 for all d. The
result confirms that Monte Carlo integration is a powerful method for integrating functions in
higher-dimensional spaces.

·
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Figure 12.10: Convergence of the π estimate using the Monte Carlo method on d-dimensional
hyperspheres.
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Chapter 13

Monte Carlo: General Integration
Procedures
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Chapter 14

Monte Carlo: Failure Probabilities

14.1 Calculating a Failure Probability

14.1.1 Objective

Let’s say there is a set of “environmental” or “load” variables (x1, x2, . . . ) that affect the perfor-
mance of an engineering system. For simplicity, let us restrict ourselves to the parameter size of
two, so that we only have (x1, x2). We also assume that there are two “performance” metrics,
g1(x1, x2) and g2(x1, x2). Without loss of generality, let’s assume smaller g1 and g2 means better
performance (we can always consider negative of the performance variable if larger values imply
better performance). In fact, we assume that we wish to confirm that the performance metrics are
below certain thresholds, i.e.

g1(x1, x2) ≤ τ1 and g2(x1, x2) ≤ τ2 . (14.1)

Equivalently, we wish to avoid failure, which is defined as

g1(x1, x2) > τ1 or g2(x1, x2) > τ2 .

Note that in this chapter failure is interpreted liberally as the condition (14.1) even if this condition
is not equivalent in any given situation as actual failure.

Suppose that (x1, x2) reside in some rectangle R. We now choose to interpret (x1, x2) as realiza-
tions of a random vector X = (X1, X2) with prescribed probability density function fX(x1, x2) =
fX1,X2(x1, x2). We then wish to quantify the failure probability θF , defined by

θF = P (g1(X1, X2) > τ1 or g2(X1, X2) > τ2) .

We note that g1 and g2 are deterministic functions; however, because the argument to the functions
are random variables, the output g1(X1, X2) and g2(X1, X2) are random variables. Thus, the failure
is described probabilistically. If the bounds on the environmental variables (x1, x2) are known a
priori one could design a system to handle the worst possible cases; however, the system design to
handle very rare events may be over designed. Thus, a probabilistic approach may be appropriate
in many engineering scenarios.

In any probabilistic simulation, we must make sure that the probability density of the random
variable, fX , is meaningful and that the interpretation of the probabilistic statement is relevant.
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For example, in constructing the distribution, a good estimate may be obtained from statistical
data (i.e. by sampling a population). The failure probability θF can be interpreted as either
(i) probability of failure for the next “random” set of environmental or operating conditions, or
(ii) frequency of failure over a population (based on the frequentist perspective).

14.1.2 An Integral

We now show that the computation of failure probability is similar to computation of an area. Let
us define R to be the region from which X = (X1, X2) is sampled (not necessarily uniformly). In
other words, R encompasses all possible values that the environmental variable X can take. Let us
also define D to be the region whose element (x1, x2) ∈ D would lead to failure, i.e.

D ≡ {(x1, x2) : g1(x1, x2) > τ1 or g2(x1, x2) > τ2} .

Then, the failure probability can be expressed as an integral

θF =

∫∫
D
fX(x1, x2)dx1dx2 .

This requires a integration over the region D, which can be complicated depending on the failure
criteria.

However, we can simplify the integral using the technique previously used to compute the area.
Namely, we introduce a failure indicator or characteristic function,

1F (x1, x2) =

{
1, g1(x1, x2) > τ1 or g2(x1, x2) > τ2

0, otherwise
.

Using the failure indicator, we can write the integral over D as an integral over the simpler domain
R, i.e.

θF =

∫∫
R

1(x1, x2)fX(x1, x2) dx1 dx2 .

Note that Monte Carlo methods can be used to evaluate any integral in any number of dimensions.
The two main approaches are “hit or miss” and “sample mean,” with the latter more efficient. Our
case here is a natural example of the sample mean approach, though it also has the flavor of “hit
or miss.” In practice, variance reduction techniques are often applied to improve the convergence.

14.1.3 A Monte Carlo Approach

We can easily develop a Monte Carlo approach if we can reduce our problem to a Bernoulli random
variable with parameter θF such that

B =

{
1, with probability θF

0, with probability 1− θF
.

Then, the computation of the failure probability θF becomes the estimation of parameter θF through
sampling (as in the coin flip example). This is easy: we draw a random vector (X1, X2) from fX
— for example, uniform or normal — and then define

B =

{
1, g1(X) > τ1 or g2(X) > τ2

0, otherwise
. (14.2)
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Determination of B is easy assuming we can evaluate g1(x1, x2) and g2(x1, x2). But, by definition

θF = P (g1(X) > τ1 or g2(X) > τ2)

=

∫∫
R

1F (x1, x2)fX(x1, x2) dx1 dx2 .

Hence we have identified a Bernoulli random variable with the requisite parameter θF .
The Monte Carlo procedure is simple. First, we draw nmax random variables,

(X1, X2)1, (X1, X2)2, . . . , (X1, X2)n, . . . , (X1, X2)nmax ,

and map them to Bernoulli random variables

(X1, X2)n → Bn n = 1, . . . , nmax ,

according to (14.2). Using this mapping, we assign sample means, Θ̂n, and confidence intervals,
[CIF ]n, according to

(Θ̂F )n =
1

n

n∑
i=1

Bi , (14.3)

[CIF ]n =

(Θ̂F )n − zγ

√
(Θ̂F )n(1− (Θ̂F )n)

n
, (Θ̂F )n + zγ

√
(Θ̂F )n(1− (Θ̂F )n)

n

 . (14.4)

Note that in cases of failure, typically we would like θF to be very small. We recall from Sec-
tion 10.3.3 that it is precisely this case for which the relative error RelErr is quite large (and
furthermore for which the normal density confidence interval is only valid for quite large n). Hence,
in practice, we must consider very large sample sizes in order to obtain relatively accurate results
with reasonable confidence. More sophisticated approaches partially address these issues, but even
these advanced approaches often rely on basic Monte Carlo ingredients.

Finally, we note that although the above description is for the cumulative approach we can also
directly apply equations 14.3 and 14.4 for any fixed n. In this case we obtain Pr(θF ∈ [CIf ]n) = γ.
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