Why to Study Finite Element Analysis!

That is, "Why to take 2.092/3"

Klaus-Jürgen Bathe

Why You Need to Study Finite Element Analysis!

Klaus-Jürgen Bathe

Analysis is the key to effective design

We perform analysis for:

- deformations and internal forces/stresses
- temperatures and heat transfer in solids
- fluid flows (with or without heat transfer)
- conjugate heat transfer (between solids and fluids)
- etc...

An effective design is one that:

- performs the required task efficiently
- is inexpensive in materials used
- is safe under extreme operatin, conditions
- can be manufactured inexpensively
- is pleasing/attractive to the eye
- etc...

Analysis means probing into, modeling, simulating nature

Therefore, analysis gives us insight into the world we live in, and this

Enriches Our life

Many great philosophers were analysts and engineers ...

Analysis is performed based upon the laws of mechanics

The process of analysis

Analysis of helmet subjected to impact

CAD models of MET bicycle helments removed due to copyright restrictions.

New Helmet Designs

Analysis of helmet impact

Laboratory Test

Head Helmet Anvil

ADINA Simulation Model

Analysis of helmet subjected to impact

Comparison of computation with laboratory test results

In engineering practice, analysis is largely performed with the use of finite element computer programs (such as NASTRAN, ANSYS, ADINA, SIMULIA, etc...) These analysis programs are interfaced with computer-aided design (CAD) programs Catia, SolidWorks, Pro/Engineer, NX, etc.

The process of modeling for analysis

The process of modeling for analysis (continued)

Hierarchical modeling

Means taking increasingly more complex models to simulate nature with increasing accuracy

Increasingly more complex models Assumptions: spring, rod, truss beam, shaft 2-D solid plate shell fully three-dimensional dynamic effects nonlinear effects

nature

CAD and Analysis

In CAD System

CAD solid model is established

In Analysis System

Preparation of the

mathematical model

- Meshing and Solution
- Presentation of results

CAD model of missile

ADINA

Finite Element Representation

Engine block - photo

Courtesy of AB Volvo Penta. Used with permission

Engine block - mesh

Courtesy of AB Volvo Penta. Used with permission

A **reliable** and efficient finite element discretization scheme should

- for a well-posed mathematical model
- always give, for a reasonable finite element mesh, a reasonable solution, and
- if the mesh is fine enough, an accurate solution should be obtained

Element Selection

We want elements that are reliable for any

- geometry
- boundary conditions
- and meshing used

The displacement method is not reliable for

- plates and shells
- almost incompressible analysis

Schematic solution results

Example problem: to show what can go wrong

Smallest six frequencies (in Hz) of 16 element mesh Consistent mass matrix is used

Mode number	16 el. model	16el. model	16x64 element model
	Use of 3x3	Use of 2x2	use of 3x3 Gauss
	Gauss integration	Gauss integration	integration
1	112.4	110.5	110.6
2	634.5	617.8	606.4
3	906.9	905.5	905.2
4	1548	958.4 *	1441
5	2654	1528	2345
6	2691	2602	2664

*Spurious mode (phantom or ghost mode)

Ref: Finite Element Procedures (by K. J. Bathe), Prentice Hall, 1996

Some analysis experiences

Tremendous advances have taken place –

- mixed optimal elements have greatly increased the efficiency and reliability of analyses
- sparse direct solvers and algebraic multigrid iterative solvers have lifted the analysis possibilities to completely new levels

In Industry: Two categories of analyses

- Analysis of problems for which test results are scarce or non-existent
 - large civil engineering structures
- Analysis of problems for which test results can relatively easily be obtained

mechanical / electrical engineering structures

Examples of category 1 problems

- Analysis of offshore structures
- Seismic analysis of major bridges

 only "relatively small" components can be tested

Reliable analysis procedures are crucial

Sleipner platform

Recall the catastrophic failure in 1991 of the Sleipner platform in the North Sea

 Ref. I. Holand, "Lessons to be learned from the Sleipner accident"
 Proceedings, NAFEMS World Congress '97, Stuttgart, Germany, April 1997.

Heidrun platform

- The world's largest of its kind (in 1997)
- Probably due to the Sleipner accident, increased analysis attention was given to critical components
 - designers and analysts worked closely together

Accuracy - part of reality

Coarse Mesh

Converged Mesh

Reference Mesh

Correct surface stress prediction at critical locations is of vital importance for fatigue life determination

Seismic analysis of major California bridges

Damage from the 1989 and 1994 earthquakes

 Objective is to retrofit / strengthen the bridges (including the famous San Francisco-Oakland Bay Bridge)

Photo by Luis Alberto Higgins.

Photo by USGS.

Examples of category 2 problems

- Metal forming, crash and crush analyses in the automobile industries
- These types of problems can now be solved much more reliably and efficiently than just a few years ago

Rolling Multi-pass rolling

Material model:

slab – aluminum, elastic-plastic material roll – rigid

ADINA:

static, implicit analysis slab – 2160 u/p (4-node) elements, plastic-multilinear material model roll – 360 rigid contact segments contact algorithms – constraint-function

Final mesh

Bumper cross-section

Stamping on a single action press, "springs" provide constant holding force

Material data:

steel, 1.8 mm friction coefficient, = 0.125

ADINA

static, implicit analysis 2750 MITC elements, 4-nodes plastic-multilinear material model rigid-target contact

Effective plastic strain distribution

Final thickness distribution

Fluid-flows fully-coupled with structural interactions –

an increasingly important analysis area

- Full Navier-Stokes equations for incompressible or fully compressible flows
- Arbitrary Lagrangian-Eulerian formulation for the fluid

Assembly parts

Structural model

Fluid mesh

Specular Radiation Model

Lamp Internal Air Volume Mesh

- 200,000 Tet Elements
- Smooth Transitioning
- Localized Mesh Refinement

Lens Temperature

Predicted

Measured

Signal Housing Temperature

Predicted

Measured

Exhaust Manifold Mesh

Detail showing mesh mismatch

Plot of effective stress in the solid

Plot of pressure in the fluid

Fuel pump

NODAL_PRESSURE TIME 0.3800

Blood flow through an artery

Blood flow through an artery

Blood flow through a stenotic artery

Blood flow through a stenotic artery

Analysis of an artificial lung

Artificial Lung

Courtesy of MC3. Used with permission.

Analysis of an artificial lung Particle trace

Radio-frequency tissue ablation

Electrode

Lesion

Courtesy of Medtronic, Inc. Used with permission.

Radio-frequency tissue ablation

Radio-frequency tissue ablation

Temperature variation during ablation cycle

So, why study finite element analysis? because --

You learn modern analysis techniques used widely in engineering practice and the sciences

You learn how to establish computational models of problems of solids and fluids, solve them on a laptop, and assess the accuracy of the results You capitalize on your knowledge of mechanics, reinforce your knowledge, and solve problems that can only be tackled numerically on the computer

Great knowledge in your "toolbox" whatever your goals!

2.092 / 2.093 Finite Element Analysis of Solids and Fluids I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.