2.094 — Finite Element Analysis of Solids and Fluids
 Fall '08

 Lecture 1 - Large displacement analysis of solids/structures
 MIT OpenCourseWare

 Prof. K.J. Bathe
 MIT OpenCourseWare

1.1 Project Example

Physical problem

"Simple" mathematical model

 $\bullet\,$ analytical solution

Reading: Ch. 1 in the text

• F.E. solution(s)

More complex mathematical model

- holes included
- large disp./large strains
- F.E. solution(s) \Rightarrow
- How many finite elements?

We need a good error measure (especially for FSI)

"Even more complex" mathematical model

The "complex mathematical model" includes Fluid Structure Interaction (FSI).

You will use ADINA in your projects (and homework) for structures and fluid flow.

3

Reading: Ch. 6

1.2 Large Displacement analysis

Lagrangian formulations:

- Total Lagrangian formulation
- Updated Lagrangian formulation

1.2.1 Mathematical model/problem

Given the original configuration of the body, the support conditions, the applied external loads, the assumed stress-strain law Calculate the deformations, strains, stresses of the body.

Question Is there a unique solution? Yes, for infinitesimal small displacement/strain. Not necessarily for large displacement/strain.

For example:

Snap-through problem

The same load. Two different deformed configurations.

Column problem, statics

Not physical

 tR is in "direction" of bending moment \Rightarrow Not in equilibrium.

1.2.2 Requirements to be fulfilled by solution at time t

- I. Equilibrium of stresses (Cauchy stresses, forces per unit area in ${}^{t}V$ and on ${}^{t}S_{f}$) with the applied body forces ${}^{t}\boldsymbol{f}^{B}$ and surface tractions ${}^{t}\boldsymbol{f}^{S_{f}}$
- II. Compatibility
- III. Stress-strain law

1.2.3 Finite Element Method

- I. Equilibrium condition means now
 - equilibrium at the nodes of the mesh
 - equilibrium of each finite element
- II. Compatibility satisfied exactly
- III. Stress-strain law satisfied exactly

1.2.4 Notation

Cauchy stresses (force per unit area at time t):

$${}^{t}\tau_{ij} \quad i,j = 1,2,3 \quad {}^{t}\tau_{ij} = {}^{t}\tau_{ji} \tag{1.1}$$

2.094 Finite Element Analysis of Solids and Fluids II Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.