2.094 — Finite Element Analysis of Solids and Fluids	Fall '08
Lecture 9 - u/p formulation	
Prof. K.J. Bathe	MIT OpenCourseWare
We want to solve	Reading: Sec. 4.4.3
I. Equilibrium	
$\begin{cases} \tau_{ij,j} + f_i^B = 0 & \text{in Volume} \\ \tau_{ij}n_j = f_i^{S_f} & \text{on } S_f \end{cases}$	(9.1)
II. Compatibility	
III. Stress-strain law	
Use the principle of virtual displacements	
$\int_{V} \bar{\boldsymbol{\epsilon}}^{T} \boldsymbol{C} \boldsymbol{\epsilon} \ dV = \mathcal{R}$	(9.2)
We recognize that if $\nu \to 0.5$	
$\epsilon_V \to 0 (\epsilon_V = \epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz})$	(9.3)
$\kappa = \frac{E}{3(1-2\nu)} \to \infty$	(9.4)
$p = -\kappa \epsilon_V$ must be accurately computed	(9.5)
Solution	
$\tau_{ij} = \kappa \epsilon_V \delta_{ij} + 2G \epsilon'_{ij}$	(9.6)
where	
$\delta_{ij} = \text{Kronecker delta} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$	(9.7)
Deviatoric strains:	
$\epsilon_{ij}^{\prime}=\epsilon_{ij}-rac{\epsilon_V}{3}\delta_{ij}$	(9.8)
$\tau_{ij} = -p\delta_{ij} + 2G\epsilon'_{ij} \left(p = -\frac{\tau_{kk}}{3}\right)$	(9.9)
(9.2) becomes	
$\int_{V} \overline{\boldsymbol{\epsilon}'}^{T} \boldsymbol{C}' \boldsymbol{\epsilon}' dV + \int_{V} \overline{\epsilon}_{V} \kappa \epsilon_{V} dV = \mathcal{R}$	(9.10)

$$\int_{V} \overline{\boldsymbol{\epsilon}'}^{T} \boldsymbol{C}' \boldsymbol{\epsilon}' \, dV - \int_{V} \overline{\boldsymbol{\epsilon}}_{V}^{T} p \, dV = \mathcal{R}$$

$$(9.11)$$

We need another equation because we now have another unknown p.

$$p + \kappa \epsilon_V = 0 \tag{9.12}$$

$$\int_{V} \overline{p} \left(p + \kappa \epsilon_{V} \right) \, dV = 0 \tag{9.13}$$

$$-\int_{V}\overline{p}\left(\epsilon_{V}+\frac{p}{\kappa}\right) \, dV = 0 \tag{9.14}$$

For an element,

$$\boldsymbol{u} = \boldsymbol{H}\hat{\boldsymbol{u}} \tag{9.15}$$

$$\boldsymbol{\epsilon}' = \boldsymbol{B}_D \hat{\boldsymbol{u}} \tag{9.16}$$

$$\epsilon_V = \boldsymbol{B}_V \hat{\boldsymbol{u}} \tag{9.17}$$

$$p = \boldsymbol{H}_p \hat{\boldsymbol{p}} \tag{9.18}$$

$$\epsilon_{V} = \epsilon_{xx} + \epsilon_{yy}$$

$$\epsilon_{V} = \begin{bmatrix} \epsilon_{xx} - \frac{1}{3} (\epsilon_{xx} + \epsilon_{yy}) \\ \epsilon_{yy} - \frac{1}{3} (\epsilon_{xx} + \epsilon_{yy}) \\ \gamma_{xy} \\ -\frac{1}{3} (\epsilon_{xx} + \epsilon_{yy}) \end{bmatrix}$$

$$(9.19)$$

$$(9.20)$$

Note: $\epsilon_{zz} = 0$ but $\epsilon'_{zz} \neq 0!$

$$p = \boldsymbol{H}_{p} \hat{\boldsymbol{p}} = [1] \{ p_{0} \}$$
(9.21)

$$p(x,y) = p_0 \tag{9.22}$$

We obtain from (9.11) and (9.14)

$$\begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{up} \\ \mathbf{K}_{pu} & \mathbf{K}_{pp} \end{bmatrix} \begin{bmatrix} \hat{u} \\ \hat{p} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix}$$
(9.23)

$$\boldsymbol{K}_{uu} = \int_{V} \boldsymbol{B}_{D}^{T} \boldsymbol{C}' \boldsymbol{B}_{D} \, dV \tag{9.24a}$$

$$\boldsymbol{K}_{up} = -\int_{V} \boldsymbol{B}_{V}^{T} \boldsymbol{H}_{p} \, dV \tag{9.24b}$$

$$\boldsymbol{K}_{pu} = -\int_{V} \boldsymbol{H}_{p}^{T} \boldsymbol{B}_{V} \, dV \tag{9.24c}$$

$$\boldsymbol{K}_{pp} = -\int_{V} \boldsymbol{H}_{p}^{T} \frac{1}{\kappa} \boldsymbol{H}_{p} \, dV \tag{9.24d}$$

In practice, we use elements that use pressure interpolations per element, not continuous between elements. For example:

Then, unless $\nu = 0.5$ (where $\mathbf{K}_{pp} = \mathbf{0}$), we can use static condensation on the pressure dof's. Use $\hat{\mathbf{p}}$ equations to eliminate $\hat{\mathbf{p}}$ from the $\hat{\mathbf{u}}$ equations.

$$\left(\boldsymbol{K}_{uu} - \boldsymbol{K}_{up}\boldsymbol{K}_{pp}^{-1}\boldsymbol{K}_{pu}\right)\hat{\boldsymbol{u}} = \boldsymbol{R}$$
(9.25)

(In practice, ν can be 0.499999...)

The "best element" is the 9/3 element. (9 nodes for displacement and 3 pressure dof's).

$$p(x,y) = p_0 + p_1 x + p_2 y \tag{9.26}$$

The inf-sup condition

Reading: Sec. 4.5

$$\underbrace{\inf_{q_h \in Q_h} \sup_{v_h \in V_h} \left[\frac{\int_{\text{Vol}} q_h \, \overbrace{\nabla \cdot v_h}^{=\epsilon_V} d\text{Vol}}{\underbrace{\|q_h\| \, \|v_h\|}_{\text{for normalization}}} \right] \ge \beta > 0 \tag{9.27}$$

 Q_h : pressure space.

If "this" holds, the element is optimal for the displacement assumption used (ellipticity must also be satisfied).

Note:

$$infimum = largest lower bound$$

 $supremum = least upper bound$

For example,

$$\inf \{1, 2, 4\} = 1$$
$$\sup \{1, 2, 4\} = 4$$
$$\inf \{x \in \mathbf{R}; \quad 0 < x < 2\} = 0$$
$$\sup \{x \in \mathbf{R}; \quad 0 < x < 2\} = 2$$

(9.23) **rewritten** ($\kappa = \infty$, full incompressibility). Diagonalize using eigenvalues/eigenvectors.

For a mesh of element size h we want $\beta_h > 0$ as we refine the mesh, $h \to 0$

For (1,1] in matrix) assume the circled entry is the minimum (inf) of (1,1]. Also, all entries in the matrix not shown are zero.

Case 1 $\beta_h = 0$

$$\Rightarrow \begin{cases} 0 \cdot u_h|_i = 0 \quad \text{(from the bottom equation)} \\ \underbrace{\alpha}_{\neq 0} \cdot u_h|_i + 0 \cdot p_h|_j = R_h|_i \quad \text{(from the top equation)} \end{cases}$$

- \Rightarrow no equation for $p_h|_j$
- \Rightarrow spurious pressure! (any pressure satisfies equation)

Case 2 $\beta_h = \text{small} = \epsilon$

$$\begin{split} \epsilon \cdot u_h|_i &= 0 \quad \Rightarrow \boxed{u_h|_i = 0} \\ \therefore \epsilon \cdot \quad p_h|_j + u_h|_i \cdot \alpha &= R_h|_i \\ \Rightarrow p_h|_j &= \frac{R_h|_i}{\epsilon} \quad \Rightarrow \begin{pmatrix} \text{displ.} &= 0 \\ \text{pressure} \quad \to \quad \text{large} \end{pmatrix} \text{ as } \epsilon \text{ is small} \end{split}$$

The behavior of given mesh when bulk modulus increases: locking, large pressures. See Example 4.39 textbook.

2.094 Finite Element Analysis of Solids and Fluids II Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.