
13 ELECTRIC MOTORS 

Modern underwater vehicles and surface vessels are making increased use of electrical ac­
tuators, for all range of tasks including weaponry, control surfaces, and main propulsion. 
This section gives a very brief introduction to the most prevalent electrical actuators: The 
DC motor, the AC induction motor, and the AC synchronous motor. For the latter two 
technologies, we consider the case of three-phase power, which is generally preferred over 
single-phase because of much higher power density; three-phase motors also have simpler 
starting conditions. AC motors are generally simpler in construction and more robust than 
DC motors, but at the cost of increased control complexity. 
This section provides working parametric models of these three motor types. As with gas 
turbines and diesel engines, the dynamic response of the actuator is quite fast compared to 
that of the system being controlled, say a submarine or surface vessel. Thus, we concentrate 
on portraying the quasi-static properties of the actuator – in particular, the torque/speed 
characteristics as a function of the control settings and electrical power applied. 
The discussion below on these various motors is generally invertible (at least for DC and AC 
synchronous devices) to cover both motors (electrical power in, mechanical power out) and 
generators (mechanical power in, electrical power out). We will only cover motors in this 
section, however; a thorough treatment of generators can be found in the references listed. 
The book by Bradley (19??) has been drawn on heavily in the following. 

13.1 Basic Relations 

13.1.1 Concepts 

First we need the notion of a magnetic flux, analagous to an electrical current, denoted �; 
a common unit is the Weber or Volt-second. The flux density 

B = �/A (167) 

is simply the flux per unit area, given in Teslas such that 1T = 1W/m2 . Correponding to 
electrical field (Volts/m) is the magnetic field intensity H, in Amperes/meter: 

B � 
H = = ; (168) 

µoµr Aµoµr 



� 
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µo ⇐ 4β × 10−7Henries/meter is the permeability of free space, and µr is a (dimensionless) 
relative permeability. The product µoµr represents the real permeability of the material, 
and is thus the analog of electrical conductivity. A small area A or low relative permeability 
drives up the field intensity for a given flux �. 

13.1.2 Faraday’s Law 

The voltage generated in a conductor experiencing a time rate of change in magnetic flux is 
given as 

d� 
e = (169)− 

dt 

This voltage is commonly called the back-electromotive force or back-e.m.f., since it typically 
opposes the driving current; it is in fact a limiting factor in DC motors. 

13.1.3 Ampere’s Law 

Current passing through a conductor in a closed loop generates a perpendicular magnetic 
field intensity given by 

I = Hdl. (170) 

An important point is that N circular wraps of the same conductor carrying current I induce 
the field H = βDN I, where D is the diameter of the circle. 

13.1.4 Force 

Forces are generated from the orthogonal components of magnetic flux density B and current 
I: 

F = I × B. (171) 

The units of this force is N/m, and so represents a distributed force on the conductor. 

13.2 DC Motors 

The DC motor in its simplest form can be described by three relations: 

ea = K�� 

V = ea + Raia 

T = K�ia , 

where 
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K is a constant of the motor • 

• � is the airgap magnetic flux per pole (Webers) 

• � is the rotational speed of the motor (rad/s) 

• ea is the back-e.m.f. 

• V is the applied voltage 

• Ra is the armature resistance on the rotor 

• ia is the current delivered to the armature on the rotor 

• T is developed torque 

The magnetic field in a typical motor is stationary (on the stator) and is created by perma­
nent magnets or by coils, i.e., Faraday’s law. Current is applied to the rotor armature through 

γ γslip rings, and thus the force on each conductor in the armature is given by F = iγa × B. 
Back-e.m.f. is created because the conductors in the rotor rotate through the stationary 
field, causing a relative rate of change of flux. The armature voltage loop contains the back-
e.m.f. plus the resistive losses in the windings. As expected, torque scales with the product 
of magnetic flux and current. 
There are three main varieties of DC motors, all of which make use of the relations above. 
Speed control of the DC motor is primarily through the voltage V , either directly or through 
pulse-width modulation, but the stator flux could also be controlled in the shunt/independent 
configurations. 

13.2.1 Permanent Field Magnets 

Here, the magnetic field is created by permanent magnets arranged in the stator, imposing 
a steady �. The product K � is generally written as kt, the torque constant of a DC motor, 
and has units of N m/A. When SI units are used, kt also describes back-e.m.f.. The three 
basic relations are thus rewritten 

ea = kt� 

V = ea + Raia 

T = ktia, 

which leads via substitution to 

1 � 
RaT � 

k
� = V − , or 

t kt 
kt 
R

T = [V − kt�] . 
a 



� 

� = . 
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This result indicates that the torque developed scales linearly with the applied voltage, but 
that it also scales negatively with the motor speed. Hence, at the speed � = V/Kt, no torque 
is created. Additionally, the maximum torque is created at zero speed. 
Control of these motors is through the voltage V , or, more commonly, directly through 
current ia, which gives torque directly. 

13.2.2 Shunt or Independent Field Windings 

The field created by the stator can be strengthened by replacing the permanent magnets with 
electromagnets. The field windings are commonly placed in series with the rotor circuit, in 
parallel with it (shunt connection), or, they may be powered from a completely separate 
circuit. The latter two cases are effectively equivalent, in the sense that current and hence 
the field strength can be modulated easily, through a variable resistance in the shunt case. 
We have 

1 � 
RaT � 

� = V − ,
K� K� 

with the important property that the second term in brackets is small due to the increased 
field strength, compared with the permanent magnet case above. Thus, the motor speed 
is effectively independent of torque, which makes these motor types ideal for self-regulation 
applications. At very high torques and currents, however, the total available flux will be 
reduced because of field armature reactance; the speed starts to degrade as shown in the 
figure. 

13.2.3 Series Windings 

When the field windings are arranged in series with the rotor circuit, the flux is 

� = Ksia, 

where Ks is a constant of the field winding. This additional connection requires 

V = ea + (Ra + Rs)ia; 

the field winding brings a new resistance Rs into the voltage loop. It follows through the 
substitutions that 

T = KKsi
2 
a ∀ 

T 
Ia = 

KKs 

V Ra + Rs ≈
KKsT 

− 
KKs 
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The effects of resistance are usually quite small, so that the first term dominates, leading 
to a nonlinear torque/speed characteristic. The starting torque from this kind of motor is 
exceptionally high, and the series field winding finds wide application in railway locomotives. 
At the same time, it should be observed that under light loading, the series motor may well 
self-destruct since there is no intrinsic upper limit to speed! 
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Figure 6: Torque-speed characteristics of three types of DC motors: a) permanent field 
magnets, b) shunt or independent field winding, c) series field winding. 

Some variations on the series and shunt connections are common, and referred to as com­
pound DC motors. These achieve other torque/speed curves, including increasing torque 
with increasing speed, which can offset the speed droop due to field armature reaction ef­
fects in the shunt motor. 

13.3 Three-Phase Synchronous Motor 

The rotor is either fitted with permanent magnets or supplied with DC current to create a 
static field on the rotor. The stator field windings are driven with three (balanced) phases 
of an AC supply, such that a moving field is created which rotates around the stator. The 
torque exerted on the rotor tries to align the two fields, and so the rotor follows the rotating 
stator field at the same speed. Note that if the rotor speed lags that of the stator field, there 
is no net torque; hence the name synchronous motor. 
A simple model of the synchronous motor is straightforward. As with the DC motors, the 
voltage loop equation for a single phase on the stator gives 

V = ea + jiaX, 

where V , ea, and ia are now phasors (magnitude of V and ea measured with respect to 
ground), j = 

≈
−1, and X is the reactance (armature and stator leakage) of the machine. 

Then, let δ denote the angle between ia and V . Equating the electrical (all three phases) 
and mechanical power gives 



62 13 ELECTRIC MOTORS


3V ia cos δ = T �. 

Next, let ζ denote the angle between the phasors ea and V . It follows from the voltage loop 
equation that 

ia cos δX = ea sin ζ ∀ 
p 3V ea sin ζ 

T =	 , or 
2� X 
p Vabea,ab sin ζ 

T = 
2� X 

where 

•	 p is the number of poles on the rotor; two poles means one north pole and one south 
pole, etc. 

•	 � is both the rotational speed of the rotor, and the rotational speed of the stator field 

•	 Vab 

• 

≈
3V 

ea,ab 
≈
3ea 

is the line-to-line voltage, equal to 

is the line-to-line back-e.m.f., equal to 

•	 delta is the angle by which the rotor field lags the stator field (rad) 

•	 X is the synchronous reactance 

The torque scales with sin ζ, and thus the rotor lags the stator field when the motor is 
powering; in a generator, the stator field lags the rotor. If the load torque exceeds the 
available torque, the synchronous motor can slip one or more poles, causing a large transient 
disturbance. 
Speed control of the three-phase synchronous machine is generally through the frequency of 
the three-phase power supply, �, with the assumption that adequate voltage and current are 
available. 

13.4 Three-Phase Induction Motor 

Like the synchronous machine, the induction machine has windings on the stator to create 
a rotating magnetic field at frequency �. Letting the rotor speed be �r , we see immediately 
that if � = �r , a potential field will be induced on any conductor on the rotor. In the case ≥
of a squirrel-cage rotor design, the rotor is made of conductor bars which are shorted out 
through rings at the ends, and hence the potential field will cause a real current flow. Torque 
is then generated through the familiar F = I ×B relation. The fact of unequal field and rotor 
speeds in the induction motor is related to several unique effects, leading to torque-speed 
characteristic which differs significantly from both the DC the AC synchronous machines. 



� 
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First we define the slip ratio 

� − �r 
s = ; (172) 

a slip ratio of zero means � = �r (and hence zero torque because the magnetic field seen by 
the rotor is constant) while a slip ratio of one implies the rotor is stopped. Most induction 
motors are designed to operate at a small positive slip ratio, say 0.1-0.2, for reasons described 
below. 
Next, since the magnetic flux lines pass through the rotor, the number of ampere-turns on 
stator and rotor is equivalent, that is, they form an ideal inductor: 

NrIr = NsIs. (173) 

e
I
We consider per-unit quantities from here on, for which we set N = Nr = Ns and hence 
r = Is. If the stator flux at a particular location is �s = �o sin �t, the associated voltage is 
s = N d�/dt = N �o� cos �t. On the rotor, the same flux applies, but it rotates more slowly: s

�r = �o sin �rt = �o sin s�t. Hence the rotor voltage is er = N d�r/dt = N �os� cos s�t. 
Then the RMS voltage of the stator and rotor sides of the inductive coupling are related by 

Es 1 
= . (174)

Er s 

The voltage seen at the stator scales inversely with the slip ratio, for a constant voltage at 
the rotor. In per-unit terms, the current in the rotor and stator are equivalent, and this then 
indicates that the rotor impedance, seen from the stator, also scales inversely with the slip 
ratio: 

1 
Zrs = [Rr + jsXr] 

s 
1 

= Rr + jXr. 
s 

The factor of s in the rotor inductance occurs because the field seen by the rotor is actually 
rotating at s�. 
Next, we construct the (one phase) Thevenin equivalent circuit of the stator: it has a voltage 
source Vt, and equivalent resistance R and inductance X. This is to be paired with the rotor 
resistance and inductance, reflected to the stator, giving the following current 

Vt
I = � . 

(Rr/s + R)2 + (Xr + X)2 

Finally, we need to express the torque/speed characteristic of the machine. The mechanical 
power is Pm = (1 − s)�T , while the power delivered across the airgap is Pgap = I2Rr/s. The 
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actual power dissipated in the copper is related to the real rotor resistance: Ploss = I2Rr , 
and hence the mechanical power is Pm = 3(Pgap − Ploss) = 3Pgap(1 − s). It follows that the 
efficiency of the motor is simply � = 1 − s. Combining the mechanical power with the torque 
equation gives 

Pm 3Pgap 
T = = 

3V 
(1 − s)� � 

t 
2Rr 

= . 
s� [(Rr /s + R)2 + (Xr + X)2] 

Maximum torque is developed at a slight slippage, with decreased values at lower speeds. 
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Figure 7: Torque-speed characteristics of a typical three-phase induction motor. 


