
15 TRANSFER FUNCTIONS & STABILITY 

The reader is referred to Laplace Transforms in the section MATH FACTS for preliminary 
material on the Laplace transform. Partial fractions are presented here, in the context of 
control systems, as the fundamental link between pole locations and stability. 

15.1 Partial Fractions 

Solving linear time-invariant systems by the Laplace Transform method will generally create 
a signal containing the (factored) form 

Y (s) = 
K(s + z1)(s + z2) · · · (s + zm) 

. (190)
(s + p1)(s + p2) · · · (s + pn) 

Although for the moment we are discussing the signal Y (s), later we will see that dynamic 
systems are described in the same format: in that case we call the impulse response G(s) 
a transfer function. A system transfer function is identical to its impulse response, since 
L(ζ(t)) = 1. 

(Continued on next page)
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The constants −zi are called the zeros of the transfer function or signal, and −pi are the 
poles. Viewed in the complex plane, it is clear that the magnitude of Y (s) will go to zero at 
the zeros, and to infinity at the poles. 
Partial fraction expansions alter the form of Y (s) so that the simple transform pairs can be 
used to find the time-domain output signals. We must have m < n; if this is not the case, 
then we have to divide the numerator by the denominator as necessary to find a simple form. 

15.2 Partial Fractions: Unique Poles 

Under the condition m < n, it is a fact that Y (s) is equivalent to 

a1 a2 an
Y (s) = + + , (191) 

s + p1 s + p2 
· · · 

s + pn 

in the special case that all of the poles are unique and real. The coefficient ai is termed the 
residual associated with the i’th pole, and once all these are found it is a simple matter to 
go back to the transform table and look up the time-domain responses. 
How to find ai? A simple rule applies: multiply the right-hand sides of the two equations 
above by (s + pi), evaluate them at s = −pi, and solve for ai, the only one left. 

15.3 Example: Partial Fractions with Unique Real Poles 

G(s) = 
s(s + 6) 

e−2s . 
(s + 4)(s − 1) 

Since we have a pure delay and m = n, we can initially work with G(s)/se−2s . We have 

s + 6 a1 a2 
= + , giving 

(s + 4)(s − 1) s + 4 s − 1 

� 2� 
(s+6)(s+4) =a1 = 
(s+4)(s−1) s=−4 

−
5 

� 7� 
(s+6)(s−1)a2 = = 
(s+4)(s−1) s=1 5 

Thus 

2 7 tL−1(G(s)/se−2s) = e−4t + e−
5 5 

−∀ 

8 7 
e−4(t−2) + t−2 g(t) = ζ(t − 2) + e . 
5 5 

The impulse response is needed to account for the step change at t = 2. Note that in 
this example, we were able to apply the derivative operator s after expanding the partial 
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fractions. For cases where a second derivative must be taken, i.e., m n + 1, special care →
should be used when accounting for the signal slope discontinuity at t = 0. The more 
traditional method, exemplified by Ogata, may prove easier to work through. 
The case of repeated real roots may be handled elegantly, but this condition rarely occurs 
in applications. 

15.4 Partial Fractions: Complex-Conjugate Poles 

A complex-conjugate pair of poles should be kept together, with the following procedure: 
employ the form 

b1s + b2 a3
Y (s) = 

(s + p1)(s + p2)
+ 
s + p3 

+ · · · , (192) 

where p1 = p� (complex conjugate). As before, multiply through by (s + p1)(s + p2), and 2 

then evaluate at s = − p1. 

15.5 Example: Partial Fractions with Complex Poles 

s + 1 b1s + b2 a3
G(s) = = + : 

s(s + j)(s − j) (s + j)(s − j) s 

� 
s + 1 
s s=−j 

= [b1s + b2]s=−j −∀ 

1 + j = − b1 j + b2 −∀ 

b1 = − 1 

b2 = 1; also 
⎬ 

s + 1 
� 

= a3 = 1. 
(s + j)(s − j) 

s=0 

Working out the inverse transforms from the table of pairs, we have simply (noting that 
ψ = 0) 

g(t) = − cos t + sin t + 1(t). 

15.6 Stability in Linear Systems 

In linear systems, exponential stability occurs when all the real exponents of e are strictly 
negative. The signals decay within an exponential envelope. If one exponent is 0, the 
response never decays or grows in amplitude; this is called marginal stability. If at least one 
real exponent is positive, then one element of the response grows without bound, and the 
system is unstable. 
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15.7 Stability �� Poles in LHP 

e

In the context of partial fraction expansions, the relationship between stability and pole 
locations is especially clear. The unit step function 1(t) has a pole at zero, the exponential 
−at has a pole at −a, and so on. All of the other pairs exhibit the same property: A system 
is stable if and only if all of the poles occur in the left half of the complex plane. Marginally 
stable parts correlate with a zero real part, and unstable parts to a positive real part. 

15.8 General Stability 

There are two definitions, which apply to systems with input γu(t) and output γy(t). 

y1. Exponential. If γu(t) = γ0 and γy(0) = γo, then |yi(t) < ∂e−ρt , for finite ∂ and ρ > 0.|
The output asymptotically approaches zero, within a decaying exponential envelope. 

2. Bounded-Input Bounded-Output (BIBO). If γy(0) = γ0, and |fi(t) < ρ, ρ > 0 and |
finite, then yi(t) < ∂, ∂ > 0 and finite. | | 

In linear time-invariant systems, the two definitions are identical. Exponential stability is 
easy to check for linear systems, but for nonlinear systems, BIBO stability is usually easier 
to achieve. 


