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e(s) 1 
S(s) = = , 

r(s) 1 + P (s)C(s) 

where P (s) represents the plant transfer function, and C(s) the compensator. The closed-
loop characteristic equation, whose roots are the poles of the closed-loop system, is 1 + 
P (s)C(s) = 0, equivalent to P (s)C(s) + P (s)C(s) = 0, where the underline and overline 
denote the denominator and numerator, respectively. The Nyquist criterion allows us to 
assess the stability properties of a system based on P (s)C(s) only. This method for design 
involves plotting the complex loci of P (s)C(s) for the range � = [−∗, ∗]. There is no 
explicit calculation of the closed-loop poles, and in this sense the design approach is quite 
different from the root-locus method (see Ogata). 

18.2.1 Mapping Theorem 

We impose a reasonable assumption from the outset: The number of poles in P (s)C(s) 
exceeds the number of zeros. It is a reasonable constraint because otherwise the loop transfer 
function could pass signals with infinitely high frequency. In the case of a PID controller 
(two zeros) and a second-order zero-less plant, this constraint can be easily met by adding 
a high-frequency rolloff to the compensator, the equivalent of low-pass filtering the error 
signal. 
Let F (s) = 1 + P (s)C(s). The heart of the Nyquist analysis is the mapping theorem, which 
answers the following question: How do paths in the s-plane map into paths in the F -plane? 
We limit ourselves to closed, clockwise(CW) paths in the s-plane, and the remarkable result 
of the mapping theorem is 
Every zero of F (s) enclosed in the s-plane generates exactly one CW encirclement of the 
origin in the F (s)-plane. Conversely, every pole of F (s) enclosed in the s-plane generates 
exactly one CCW encirclement of the origin in the F (s)-plane. Since CW and CCW encir­
clements of the origin may cancel, the relation is often written Z − P = CW . 
The trick now is to make the trajectory in the s-plane enclose all unstable poles, i.e., the 
path encloses the entire right-half plane, moving up the imaginary axis, and then proceeding 
to the right at an arbitrarily large radius, back to the negative imaginary axis. 
Since the zeros of F (s) are in fact the poles of the closed-loop transfer function, e.g., S(s), 
stability requires that there are no zeros of F (s) in the right-half s-plane. This leads to a 
slightly shorter form of the above relation: 

P = CCW. (200) 

In words, stability requires that the number of unstable poles in F (s) is equal to the number 
of CCW encirclements of the origin, as s sweeps around the entire right-half s-plane. 

18.2.2 Nyquist Criterion 

The Nyquist criterion now follows from one translation. Namely, encirclements of the origin 
by F (s) are equivalent to encirclements of the point (−1 + 0j) by F (s) − 1, or P (s)C(s). 
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Then the stability criterion can be cast in terms of the unstable poles of P (s)C(s), instead 
of those of F (s): 

P	= CCW ⇒∀ closed-loop stability (201) 

This is in fact the complete Nyquist criterion for stability. It is a necessary and sufficient 
condition that the number of unstable poles in the loop transfer function P (s)C(s) must be 
matched by an equal number of CCW encirclements of the critical point (− 1 + 0j). 
There are several details to keep in mind when making Nyquist plots: 

•	 If neither the plant nor the controller have unstable modes, then the loci of P (s)C(s) 
must not encircle the critical point at all. 

•	 Because the path taken in the s-plane includes negative frequencies (i.e., the nega­
tive imaginary axis), the loci of P (s)C(s) occur as complex conjugates – the plot is 
symmetric about the real axis. 

•	 The requirement that the number of poles in P (s)C(s) exceeds the number of zeros 
means that at high frequencies, P (s)C(s) always decays such that the loci go to the 
origin. 

•	 For the multivariable (MIMO) case, the procedure of looking at individual Nyquist 
plots for each element of a transfer matrix is unreliable and outdated. Referring to 
the multivariable definition of S(s), we should count the encirclements for the function 
[det(I + P (s)C(s)) − 1] instead of P (s)C(s). The use of gain and phase margin in 
design is similar to the SISO case. 

18.2.3 Robustness on the Nyquist Plot 

The question of robustness in the presence of modelling errors is central to control system 
design. There are two natural measures of robustness for the Nyquist plot, each having a 
very clear graphical representation. The loci need to stay away from the critical point; how 
close the loci come to it can be expressed in terms of magnitude and angle. 

•	When the angle of P (s)C(s) is − 180→, the magnitude P (s)C(s) should not be near | |
one. 

•	When the magnitude P (s)C(s) = 1, its angle should not be − 180→.| | 

These notions lead to definition of the gain margin kg and phase margin ρ for a design. As 
the figure shows, the definition of kg is different for stable and unstable P (s)C(s). Rules of 
thumb are as follows. For a stable plant, kg → 2 and ρ → 30→; for an unstable plant, kg √ 0.5 
and ρ 30→.→ 
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18.3 Design for Nominal Performance 

Performance requirements of a feedback controller, using the nominal plant model, can be 
cast in terms of the Nyquist plot. We restrict the discussion to the scalar case in the following 
sections. 
Since the sensitivity function maps reference input r(s) to tracking error e(s), we know 
that S(s) should be small at low frequencies. For example, if one-percent tracking is to | |
be maintained for all frequencies below � = η, then S(s) < 0.01, ⊗� < η. This can be | |
formalized by writing 

W1(s)S(s) < 1, (202)| | 

where W1(s) is a stable weighting function of frequency. To force S(s) to be small at low 
�, W1(s) should be large in the same range. The requirement W1(s)S(s) < 1 is equivalent | |
to W1(s) < 1 + P (s)C(s) , and this latter condition can be interpreted as: The loci of | | | |
P (s)C(s) must stay outside the disk of radius W1(s), which is to be centered on the critical 
point (−1+0j). The disk is to be quite large, possibly infinitely large, at the lower frequencies. 

18.4 Design for Robustness 

It is a ubiquitous observation that models of plants degrade with increasing frequency. For 
example, the DC gain and slow, lightly-damped modes or zeros are easy to observe, but 
higher-frequency components in the response may be hard to capture or even excite repeat-
ably. Higher-frequency behavior may have more nonlinear properties as well. 
The effects of modeling uncertainty can be considered to enter the nominal feedback system 
as a disturbance at the plant output, dy . One of the most useful descriptions of model 
uncertainty is the multiplicative uncertainty: 

P̃ (s) = (1 + �(s)W2(s))P (s). (203) 
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Here, P (s) represents the nominal plant model used in the design of the control loop, 
and P̃ (s) is the actual, perturbed plant. The perturbation is of the multiplicative type, 
�(s)W2(s)P (s), where �(s) is an unknown but stable function of frequency for which 
�(s) 1. The weighting function W2(s) scales �(s) with frequency; W2(s) should be | | √
growing with increasing frequency, since the uncertainty grows. However, W2(s) should not 
grow any faster than necessary, since it will turn out to be at the cost of nominal performance. 

˜In the scalar case, the weight can be estimated as follows: since P/P − 1 = �W2, it will 
suffice to let P/P − 1 < W2 .| ˜ | | | 
Example: Let P̃ = k/(s − 1), where k is in the range 2–5. We need to create a nominal 
model P = k0/(s − 1), with the smallest possible value of W2, which will not vary with 
frequency in this case. Two equations can be written using the above estimate, for the two 
extreme values of k, yielding k0 = 7/2, and W2 = 3/7. 

For constructing the Nyquist plot, we observe that 
P̃ (s)C(s) = (1 + �(s)W2(s))P (s)C(s). The path of the perturbed plant could be anywhere 
on a disk of radius W2(s)P (s)C(s) , centered on the nominal loci P (s)C(s). The robustness | |
condition is that this disk should not intersect the critical point. This can be written as 

| 1 + PC > W2PC| | 
W2PC

| ⇒∀ 

1 > 
|
1 + PC

|
| ⇒∀ 

1 > 
|
W2T , (204)| | 

where T is the complementary sensitivity function. The last inequality is thus a condition 
for robust stability in the presence of multiplicative uncertainty parametrized with W2. 

18.5 Robust Performance 

The condition for good performance with plant uncertainty is a combination of the above two 
conditions. Graphically, the disk at the critical point, with radius W1 , should not intersect | |
the disk of radius W2PC , centered on the nominal locus PC. This is met if | | 

W1S + W2T < 1. (205)| | | | 

The robust performance requirement is related to the magnitude PC at different frequen­| |
cies, as follows: 

1. At low frequency, W1S W1/PC , since PC is large. This leads directly to the 
performance condition PC| | W1| in this range. | 

2. At high frequency, W2T W2PC , since PC is small. We must therefore have 
PC < 1/ W2 , for robustness. | | | | 
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18.6 Implications of Bode’s Integral 

The loop transfer function P C cannot roll off too rapidly in the crossover region. The 
simple reason is that a steep slope induces a large phase loss, which in turn degrades the 
phase margin. To see this requires a short foray into Bode’s integral. For a transfer function 
H(s), the crucial relation is 

1 � √ d 
angle(H(j�0)) = 

β −√ dλ 
(ln|H(j�)) · ln(coth( λ /2))dλ, (206)| |

where λ = ln(�/�0). The integral is hence taken over the log of a frequency normalized with 
�0. It is not hard to see how the integral controls the angle: the function ln(coth( λ /2)) is | |
nonzero only near λ = 0, implying that the angle depends only on the local slope d(ln H )/dλ.| |
Thus, if the slope is large, the angle is large. 

Example: Suppose H(s) = �0 
n/sn, i.e., it is a simple function with n poles at the origin, 

and no zeros; �0 is a fixed constant. It follows that H = �0 
n/�n, and ln H = −nln(�/�0),| | | |

so that d(ln H )/dλ = −n. Then we have just | |

n � √ nβ 
angle(H) = − 

β −√ 
ln(coth(|λ|/2))dλ = − 

2 
. (207) 

This integral is trivial to look up or compute. Each pole at the origin clearly induces 90→ 

of phase loss. In the general case, each pole not at the origin induces 90→ of phase loss for 
frequencies above the pole. Each zero at the origin adds 90→ phase lead, while zeros not at 
the origin at 90→ of phase lead for frequencies above the zero. In the immediate neighborhood 
of these poles and zeros, the phase may vary significantly with frequency. 
The Nyquist loci are clearly susceptible to these variations is phase, and the phase margin 
can be easily lost if the slope of P C at crossover (where the magnitude is unity) is too steep. 
The slope can safely be first-order (−20dB/decade, equivalent to a single pole), and may be 
second-order 
(−40dB/decade) if an adequate phase angle can be maintained near crossover. 

18.7 The Recipe for Loopshaping 

In the above analysis, we have extensively described what the open loop transfer function 
P C should look like, to meet robustness and performance specifications. We have said very 
little about how to get the compensator C, the critical component. For clarity, let the 
designed loop transfer function be renamed, L = P C. We will use concepts from optimal 
linear control for the MIMO case, but in the scalar case, it suffices to just pick 

C = L/P. (208) 

This extraordinarily simple step involves a plant inversion.

The overall idea is to first shape L as a stable transfer function meeting the requirements of

stability and robustness, and then divide through by the plant.
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•	When the plant is stable and has stable zeros (minimum-phase), the division can be 
made directly. 

•	 One caveat for the well-behaved plant is that lightly-damped poles or zeros should not 
be cancelled verbatim by the compensator, because the closed-loop response will be 
sensitive to any slight change in the resonant frequency. The usual procedure is to 
widen the notch or pole in the compensator, through a higher damping ratio. 

•	 Non-minimum phase or unstable behavior in the plant can usually be handled by 
performing the loopshaping for the closest stable model, and then explicitly considering 
the effects of adding the unstable parts. In the case of unstable zeros, we find that they 
impose an unavoidable frequency limit for the crossover. In general, the troublesome 
zeros must be faster than the closed-loop frequency response. 

In the case of unstable poles, the converse is true: The feedback system must be faster 
than the corresponding frequency of the unstable mode. 

When a control system involves multiple inputs and outputs, the ideas from scalar loop-
shaping can be adapted using the singular value. We list below some basic properties of 
the singular value decomposition, which is analogous to an eigenvector, or modal, analysis. 
Useful properties and relations for the singular value are found in the section MATH FACTS. 
The condition for MIMO robust performance can be written in many ways, including a direct 
extension of our scalar condition 

θ(W1S) + θ(W2T ) < 1.	 (209) 

The open-loop transfer matrix L should be shaped accordingly. In the following sections, we 
use the properties of optimal state estimation and control to perform the plant inversion for 
MIMO systems. 




