
2 VESSEL INERTIAL DYNAMICS


We consider the rigid body dynamics with a coordinate system affixed on the body. A 
common frame for ships, submarines, and other marine vehicles has the body-referenced x-
axis forward, y-axis to port (left), and z-axis up. This will be the sense of our body-referenced 
coordinate system here. 

2.1 Momentum of a Particle 

Since the body moves with respect to an inertial frame, dynamics expressed in the body-
referenced frame need extra attention. First, linear momentum for a particle obeys the 
equality 

dγF = (mγv) (19)
dt 

A rigid body consists of a large number of these small particles, which can be indexed. The 
summations we use below can be generalized to integrals quite easily. We have 

Fi + γ
dγ Ri = (miγvi) , (20)
dt 

where γ Ri is the net force exerted by all the Fi is the external force acting on the particle and γ

other surrounding particles (internal forces). Since the collection of particles is not driven 
apart by the internal forces, we must have equal and opposite internal forces such that 

(Continued on next page)
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N ⎫
γRi = 0. (21) 

i=1 

Then summing up all the particle momentum equations gives 

N ⎫ N ⎫ dγFi (miγvi) . (22)= 
dti=1 i=1 

Note that the particle velocities are not independent, because the particles are rigidly at­
tached. 
Now consider a body reference frame, with origin 0, in which the particle i resides at body-
referenced radius vector γr; the body translates and rotates, and we now consider how the 
momentum equation depends on this motion. 

z, w, 

y, v, 
x, u, 

θ 

φ 
ψ 

Figure 2: Convention for the body-referenced coordinate system on a vessel: x is forward, 
y is sway to the left, and z is heave upwards. Looking forward from the vessel bridge, roll 
about the x axis is positive counterclockwise, pitch about the y-axis is positive bow-down, 
and yaw about the z-axis is positive turning left. 

2.2 Linear Momentum in a Moving Frame 

The expression for total velocity may be inserted into the summed linear momentum equation 
to give 

N ⎫ N ⎫ dγFi = (mi(γvo + γ� × γri)) (23)
dti=1 i=1 

⎬
N ⎫�γvo d 

γ miγri = m + × ,
�t dt i=1 

i=1 mi, and γvi = γvo + γwhere m = 
�N � × γri. Further defining the center of gravity vector γrG 

such that 
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N ⎫
mγrG = miγri, (24) 

i=1 

we have 

F
N 

i = m (γ
⎫ 

γ �γvo 
+ m

d 
� × γrG). (25)

�t dti=1 

Using the expansion for total derivative again, the complete vector equation in body coor­
dinates is 

γ
⎫ �γvo dγ

F = N = m + γ � × (γ × γrG) . (26)� × γvo + rG + γ � 
�t dt 

× γ
i=1 

Now we list some conventions that will be used from here on: 

γvo = {u, v, w} (body-referenced velocity) 
γrG = {xG, yG, zg } (body-referenced location of center of mass) 
γ� = {p, q, r} (rotation vector, in body coordinates) 
γF = {X, Y, Z} (external force, body coordinates). 

The last term in the previous equation simplifies using the vector triple product identity 

γ � � γrG)γ � �)γrG,� × (γ × γrG) = (γ � − (γ γ· · 
and the resulting three linear momentum equations are 

⎬ �

�u 2X = m + qw − rv + 
dq
zG − 

dr
yG + (qyG + rzG)p − (q 2 + r )xG (27)

�t dt dt 
⎬ �

�v 2Y = m + ru − pw + 
dr
xG − 

dp
zG + (rzG + pxG)q − (r 2 + p )yG

�t dt dt 
⎬ � 

2Z = m 
�w 
+ pv − qu + 

dp
yG − 

dq
xG + (pxG + qyG)r − (p 2 + q )zG . 

�t dt dt 

Note that about half of the terms here are due to the mass center being in a different location 
than the reference frame origin, i.e., γrG = γ0. ≥

2.3 Example: Mass on a String 

Consider a mass on a string, being swung around around in a circle at speed U , with radius r. 
The centrifugal force can be computed in at least three different ways. The vector equation 
at the start is 

γ �γvo dγ
F = m + γ � × (γ × γrG) .� × γvo + rG + γ � 

�t dt 
× γ
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2.3.1 Moving Frame Affixed to Mass 

Affixing a reference frame on the mass, with the local x oriented forward and y inward 
towards the circle center, gives 

γvo = 

γ� = 

γrG = 
�γvo 

= 
�t 
�γ� 

= 
�t 

such that 

{U, 0, 0} T 

{0, 0, U/r} T 

{0, 0, 0} T 

{0, 0, 0} T 

{0, 0, 0} T , 

F = mγ Tγ � × γvo = m{0, U2/r, 0} . 
The force of the string pulls in on the mass to create the circular motion. 

2.3.2 Rotating Frame Attached to Pivot Point 

Affixing the moving reference frame to the pivot point of the string, with the same orientation 
as above but allowing it to rotate with the string, we have 

γvo = 

γ� = 

γrG = 
�γvo 

= 
�t 
�γ� 

= 
�t 

giving the same result: 

{0, 0, 0} T 

{0, 0, U/r} T 

{0, r, 0} T 

{0, 0, 0} T 

{0, 0, 0} T , 

F = mγ � Tγ � × (γ × γrG) = m{0, U2/r, 0} . 

2.3.3 Stationary Frame 

A frame fixed in inertial space, and momentarily coincident with the frame on the mass 
(2.3.1), can also be used for the calculation. In this case, as the string travels through a 
small arc ζω, vector subtraction gives 

Tζγv = {0, U sin ζω, 0} T � {0, Uζω, 0} .

˙
Since ω = U/r, it follows easily that in the fixed frame dγv/dt = {0, U 2/r, 0}T , as before. 



� � 
� 

� 

� � 

� 

� 
� 

� � 
� 

� 
� 

� � 

� 

2.4 Angular Momentum 9 

2.4 Angular Momentum 

For angular momentum, the summed particle equation is 

N ⎫ 

i=1 

N ⎫ d 
( γ γMi + γri × Fi) = γri × (miγvi), (28)

dti=1 

γwhere Mi is an external moment on the particle i. Similar to the case for linear momentum, 
summed internal moments cancel. We have 

⎬
N ⎫ 

i=1 

N ⎫ N ⎫�γvo �γ
( γ γMi + γri × Fi) = miγri × + γ� × γvo

�t 
miγri × ri

�t 
× γ+
 + 

i=1 i=1 

N ⎫ 
miγri × (γ × (γ × γri)). 

i=1 

The summation in the first term of the right-hand side is recognized simply as mγrG, and the 
first term becomes 

⎬

�γvo
mγrG × + γ� × γvo . (29)

�t


The second term expands as (using the triple product) 

N ⎫ N ⎫ �γ �γ �γ
miγri × ri

�t 
× γ (γri · γri) γri γri (30)

�t 
− 

�t 
· = mi 

i=1i=1 
⎡ 
⎧⎢ 

⎤ 
⎧⎥ 

�N 2 
i=1 mi ((yi 

2 + zi ) ̇p − (yiq̇ + ziṙ)xi) 
�N 2 
i=1 mi ((xi + zi 

2) ̇q − (xiṗ+ ziṙ)yi) 
r − (xiṗ+ yi ˙

= . 
⎧⎣ ⎧⎨�N 2 

i=1 mi ((xi + yi 
2) ̇ q)zi) 

Employing the definitions of moments of inertia, 

⎭

Ixx Ixy Ixz 

I I I⎛
⎝ 

⎞
⎠I (inertia matrix) = yx yy yz 

Izx Izy Izz 

N ⎫
2 

i 
2)Ixx mi(y + z
= i 

i=1 

N ⎫
2 
i + zi 

2 )I mi(xyy = 
i=1 

N ⎫
2 
i + yi 

2)Izz mi(x= 
i=1 

N ⎫
I = I
xy yx =
−
 mixiyi (cross-inertia) 

i=1 
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N ⎫
Ixz = Izx = − mixizi 

i=1 

N ⎫
Iyz = Izy = − miyizi, 

i=1 

the second term of the angular momentum right-hand side collapses neatly into I�γ�/�t. The 
third term can be worked out along the same lines, but offers no similar condensation: 

N ⎫ N ⎫ 
miγri × ((γ � − (γ γ� γri)γ � �)γri)· · �(γmiγri × γ � γri)	 (31)· = 

i=1 i=1 
⎡ 
⎧⎢ 

⎧⎣ 

⎤ 
⎧⎥ 

⎧⎨ 

⎤ 
⎧⎥ 

�N 
i=1 mi(yir − ziq)(xip + yiq + zir) 

�N 
i=1 mi(zip − xir)(xip + yiq + zir) 

�N 
i=1 mi(xiq − yip)(xip + yiq + zir) 

=


⎡ 
⎧⎢ 
I
Iyz(q

2 − r2) + Ixzpq − Ixypr 
xz(r

2 − p2) + Ixyrq − I
) + Iyz pr − Ixzqr 

+
= yzpq 
⎧⎣ ⎧⎨2 2Ixy(p − q
⎡ 
⎧⎢ 

⎧⎣ 

⎤ 
⎧⎥(Izz − Iyy)rq 

(Ixx − Izz)rp 
(Iyy − Ixx)qp 

.

⎧⎨ 

γLetting M = {K, M, N} be the total moment acting on the body, i.e., the left side of 
Equation 28, the complete moment equations are 

K =	 Ixxṗ+ Ixyq̇ + Ixz ṙ + (32) 
2(Izz − Iyy)rq + Iyz(q 

2 − r ) + Ixzpq − Ixypr + 

m [yG( ẇ + pv − qu) − zG( ̇v + ru − pw)] 

M =	 Iyx ṗ + Iyy q̇ + Iyz ṙ +


(Ixx − Izz)pr + Ixz(r 
2 2
) + Ixyqr − Iyzqp +− p 

m [zG( ̇u + qw − rv) − xG( ẇ + pv − qu)] 

N =	 Izx ṗ+ Izy q̇ + Izz ṙ + 
2(Iyy − Ixx)pq + Ixy(p 2 − q ) + Iyzpr − Ixzqr + 

m [xG( ̇v + ru − pw) − yG( ̇u + qw − rv)] . 

2.5 Example: Spinning Book 

Consider a homogeneous rectangular block with Ixx < Iyy < Izz and all off-diagonal moments 
of inertia are zero. The linearized angular momentum equations, with no external forces or 
moments, are 
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dp
Ixx + (Izz − Iyy)rq = 0 

dt 
dq

Iyy + (Ixx − Izz)pr = 0 
dt 
dr 

Izz + (Iyy − Ixx)qp = 0. 
dt 

We consider in turn the stability of rotations about each of the main axes, with constant 
angular rate Δ. The interesting result is that rotations about the x and z axes are stable, 
while rotation about the y axis is not. This is easily demonstrated experimentally with a 
book or a tennis racket. 

2.5.1 x-axis 

In the case of the x-axis, p = Δ + ζp, q = ζq, and r = ζr, where the ζ prefix indicates a small 
value compared to Δ. The first equation above is uncoupled from the others, and indicates 
no change in ζp, since the small term ζqζr can be ignored. Differentiate the second equation 
to obtain 

�2ζq �ζr 
Iyy 

�t2 
+ (Ixx − Izz)Δ = 0 

�t 

Substitution of this result into the third equation yields 

�2 ζq 
IyyIzz + (Ixx − Izz)(Ixx − Iyy)Δ

2ζq = 0. 
�t2 

A simpler expression is ζq̈+∂ζq = 0, which has response ζq(t) = ζq(0)e
�
−∂t, when ζq̇(0) = 0. 

For spin about the x-axis, both coefficients of the differential equation are positive, and 
hence ∂ > 0. The imaginary exponent indicates that the solution is of the form ζq(t) = 
ζq(0)cos

≈
∂t, that is, it oscillates but does not grow. Since the perturbation ζr is coupled, 

it too oscillates. 

2.5.2 y-axis 

Now suppose q = Δ+ζq: differentiate the first equation and substitute into the third equation 
to obtain 

�2ζp 
IzzIxx + (Iyy − Ixx)(Iyy − Izz)Δ

2ζp = 0. 
�t2 

Here the second coefficient has negative sign, and therefore ∂ < 0. The exponent is real now, 
and the solution grows without bound, following ζp(t) = ζp(0)e

�
−∂t . 
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2.5.3 z-axis 

Finally, let r = Δ+ζr: differentiate the first equation and substitute into the second equation 
to obtain 

�2 ζp 
IyyIxx + (Ixx − Izz)(Iyy − Izz)Δ

2ζp = 0. 
�t2 

The coefficients are positive, so bounded oscillations occur. 

2.6 Parallel Axis Theorem 

Often, the mass center of an body is at a different location than a more convenient measure­
ment point, the geometric center of a vessel for example. The parallel axis theorem allows 
one to translate the mass moments of inertia referenced to the mass center into another 
frame with parallel orientation, and vice versa. Sometimes a translation of coordinates to 
the mass center will make the cross-inertial terms Ixy, Iyz, Ixz small enough that they can be 
ignored; in this case γrG = γ0 also, so that the equations of motion are significantly reduced, 
as in the spinning book example. 
The formulas are: 

¯Ixx = Ixx + m(ζy 2 + ζz 2) (33) 
¯Iyy = Iyy + m(ζx 2 + ζz 2 ) 
¯Izz = Izz + m(ζx 2 + ζy 2) 
¯Iyz = Iyz − mζyζz 
¯Ixz = Ixz − mζxζz 
¯Ixy = Ixy − mζxζy, 

¯where I represents an MMOI in the axes of the mass center, and ζx, for example, is the 
translation of the x-axis to the new frame. Note that translation of MMOI using the parallel 
axis theorem must be either to or from a frame resting exactly at the center of gravity. 

2.7 Basis for Simulation 
γ γExcept for external forces and moments F and M , we now have the necessary terms for 

writing a full nonlinear simulation of a rigid body, in body coordinates. There are twelve 
states, comprising the following components: 

• γvo, the vector of body-referenced velocities. 

• �, body rotation rate vector. γ

• γx, location of the body origin, in inertial space. 
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γ• E, Euler angle vector. 

The derivatives of body-referenced velocity and rotation rate come from Equations 27 and 32, 
with some coupling which generally requires a 6 × 6 matrix inverse. The Cartesian position 
propagates according to 

γ̇x = RT ( γE)γvo, (34) 

while the Euler angles follow: 

γ̇E = �( γE)γ�. (35) 


