
21 LOOP TRANSFER RECOVERY 

21.1 Introduction 

The Linear Quadratic Regulator(LQR) and Kalman Filter (KF) provide practical solutions 
to the full-state feedback and state estimation problems, respectively. If the sensor noise and 
disturbance properties of the plant are indeed well-known, then an LQG design approach, 
that is, combining the LQR and KF into an output feedback compensator, may yield good 
results. The LQR tuning matrices Q and R would be picked heuristically to give a reasonable 
closed-loop response. 
There are two reasons to avoid this kind of direct LQG design procedure, however. First, 
although the LQR and KF each possess good robustness properties, there do exist plants 
for which there is no robustness guarantee for an LQG compensator. Even if one could 
steer clear of such pathological cases, a second problem is that this design technique has no 
clear equivalent in frequency space. It cannot be directly mapped to the intuitive ideas of 
loopshaping and the Nyquist plot, which are at the root of feedback control. 
We now reconsider just the feedback loop of the Kalman filter. The KF has open-loop 
transfer function L(s) = Cδ(s)H, where δ(s) = (sI − A)−1 . This follows from the estimator 
evolution equation 
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and the figure. Note that we have not included the factor Bu as part of the figure, since it 
does not affect the error dynamics of the filter. 
As noted previously, the KF loop has good robustness properties, specifically to perturbations 
at the output ŷ, and further is amenable to output tracking. In short, the KF loop is an 
ideal candidate for a loopshaping design. Supposing that we have an estimator gain H which 
creates an attractive loop function L(s), we would like to find the compensator C(s) that 
establishes 

P (s)C(s) Cδ(s)H, or (259)⇐ 

Cδ(s)BC(s) Cδ(s)H. ⇐ 

It will turn out that the LQR can be set up so that the an LQG-type compensator achieves 
exactly this result. The procedure is termed Loop Transfer Recovery (LTR), and has two 
main parts. First, one carries out a KF design for H, so that the Kalman filter loop itself has 
good performance and robustness properties. In this regard, the KF loop has sensitivity func­
tion S(s) = (I + Cδ(s)H)−1 and complementary sensitivity T (s) = (I + Cδ(s)H)−1Cδ(s)H. 
The condition θ(W1(s)S(s)) + θ(W2(s)T (s)) < 1 is sufficient for robust performance with 
multiplicative plant uncertainty at the output. Secondly, we pick suitable parameters of the 
LQR design, so that the LQG compensator satisfies the approximation of Equation 259. 
LTR is useful as a SISO control technique, but has a much larger role in multivariable control. 

21.2 A Special Property of the LQR Solution 

Letting Q = CT C and R = πI, where I is the identity matrix, we will show (roughly) that 

lim(
≈
πK) = W C, 

π�0

where K is the LQR gain matrix, and W is an orthonormal matrix, for which W T W = I. 
First recall the gain and Riccati equations for the LQR: 

K = R−1BT P 

0 = Q + P A + AT P − P BR−1BT P. 
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Now Q = CT C = CT W T WC = (WC)T WC. The Riccati equation becomes 

0 = π(WC)T WC + πPA + πAT P − PBBT P = 0. 

In the limit as π ∀ 0, it must be the case that P ∀ 0 also, and so in this limit 

π(WC)T WC PBBT P⇐ 

= (BT P )T BT P


= (R−1BT P )T RR(R−1BT P )


=
 π2KT K −∀ 

WC 
≈ 
πK. �⇐ 

Note that another orthonormal matrix W ∗ could be used in separating KT from K in the 
last line. This matrix may be absorbed into W through a matrix inverse, however, and so 
does not need to be written. The result of the last line establishes that the plant must be 
square: the number of inputs (i.e., rows of K) is equal to the number of outputs (i.e., rows 
of C). 
Finally, we note that the above property is true only for LQR designs with minimum-phase 
plants, i.e., those with only stable zeros (Kwakernaak and Sivan). 

21.3 The Loop Transfer Recovery Result 

The theorem is stated as: If limπ�0(
≈ 
πK) = WC (the above result), with W an orthonormal 

matrix, then the limiting LQG controller C(s) satisfies 

lim P (s)C(s) = Cδ(s)H. 
π�0 

The LTR method is limited by two conditions: 

•	 The plant has an equal number of inputs and outputs. 

•	 The design plant has no unstable zeros. The LTR method can be in fact be applied in 
the presence of unstable plant zeros, but the recovery is not to the Kalman filter loop 
transfer function. Instead, the recovered function will exhibit reasonable limitations 
inherent to unstable zeros. See Athans for more details and references on this topic. 

The proof of the LTR result depends on some easy lemmas, given at the end of this section. 
First, we develop C(s), with the definitions δ(s) = (sI− A)−1 and X(s) = (δ−1(s)+HC)−1 = 
(sI − A + HC)−1 . 
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C(s) = K(sI − A + BK + HC)−1H 

= K(X−1(s) + BK)−1H, then use Lemma 2 ∀ 

= K(X(s) − X(s)B(I + KX(s)B)−1KX(s))H 

= KX(s)H − KX(s)B(I + KX(s)B)−1KX(s)H 

= (I − KX(s)B(I + KX(s)B)−1)KX(s)H, then use Lemma 3 ∀ 

= (I + KX(s)B)−1KX(s)H 

= (
≈
πI + 

≈
(s)B)−1

≈
(s)

π ∀ 
≈

: 

πKX πKX H. 

Next we invoke the result from the LQR design, with 0, to eliminate πK

lim C(s) = (WCX(s)B)−1WCX(s)H 
π�0 

= (CX(s)B)−1CX(s)H. 

In the last expression, we used the assumption that W is square and invertible, both prop­
erties of orthonormal matrices. Now we look at the product CX(s): 

CX(s) = C(SI − A + HC)−1 

= C(δ−1(s) + HC)−1, then use Lemma 2 ∀ 

= C(δ(s) − δ(s)H(I + Cδ(s)H)−1Cδ(s)) 

= (I − Cδ(s)H(I + Cδ(s)H)−1)Cδ(s), then use Lemma 3 ∀ 

= (I + Cδ(s)H)−1Cδ(s). 

This result, reintroduced into the limiting compensator, gives 

lim C(s) = ((I + Cδ(s)H)−1Cδ(s)B)−1(I + Cδ(s)H)−1Cδ(s)H 
π�0


= (Cδ(s)B)−1Cδ(s)H


= P−1(s)Cδ(s)H.


Finally it follows that limπ�0 P (s)C(s) = Cδ(s)H, as desired. 

21.4 Usage of the Loop Transfer Recovery 

The idea of LTR is to “recover” a Kalman filter loop transfer function L(s) = Cδ(s)H, by 
using the limiting cheap-control LQR design, with Q = CT C and R = πI. The LQR design 
step is thus trivial. 
Some specific techniques are useful. 
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•	 Scale the plant outputs (and references), so that one unit of error in one channel is as 
undesirable as one unit of error in another channel. For example, in depth and pitch 
control of a large submarine, one meter of depth error cannot be compared directly 
with one radian of pitch error. 

•	 Scale the plant inputs in the same way. One Newton of propeller thrust cannot be 
compared with one radian of rudder angle. 

•	 Design for crossover frequency. The bandwidth of the controller is roughly equal to 
the frequency at which the (recovered) loop transfer function crosses over 0dB. Often, 
the bandwidth of is a more intuitive design parameter than is, for example, the high-
frequency multiplicative weighting W2. Quantitative uncertainty models are usually at 
the cost of a lengthy identification effort. 

•	 Integrators should be part of the KF loop transfer function, if no steady-state error 
is to be allowed. Since the Kalman filter loop has only as many poles as the plant, 
the plant input channels must be augmented with the necessary additional poles (at 
the origin). Then, once the KF design is completed, and the compensator C(s) is 
constructed, the integrators are moved from the plant over to the input side of the 
compensator. The tracking errors will accrue as desired. 

21.5 Three Lemmas 

Lemma 1: Matrix Inversion 

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 . 

Proof: 

(A + BCD)(A + BCD)−1 = I


A(A + BCD)−1 = I − BCD(A + BCD)−1


(A + BCD)−1	 = A−1 − A−1BCD(A + BCD)−1 

= A−1 − A−1BCD(I + A−1BCD)−1A−1 

= A−1 − A−1B(D−1C−1 + A−1B)−1A−1 

= A−1 − A−1B(C−1 + DA−1B)−1DA−1 . � 

Lemma 2: Short Form of Lemma 1 

(X−1 + BD)−1 = X − XB(I + DXB)−1DX 

Proof: substitute A = X−1 and C = I into Lemma 1. 

Lemma 3 
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I − A(I + A)−1 = (I + A)−1 

Proof: 

I − A(I + A)−1	 = (I + A)(I + A)−1 − A(I + A)−1 

= (I + A − A)(I + A)−1 

= (I + A)−1 . � 


