
24 APPENDIX 3: LQR VIA DYNAMIC PROGRAM­
MING 

There are at least two conventional derivations for the LQR; we present here one based on 
dynamic programming, due to R. Bellman. The key observation is best given through a 
loose example. 

(Continued on next page)
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24.1 Example in the Case of Discrete States 

Suppose that we are driving from Point A to Point C, and we ask what is the shortest path 
in miles. If A and C represent Los Angeles and Boston, for example, there are many paths 
to choose from! Assume that one way or another we have found the best path, and that a 
Point B lies along this path, say Las Vegas. Let X be an arbitrary point east of Las Vegas. 
If we were to now solve the optimization problem for getting from only Las Vegas to Boston, 
this same arbitrary point X would be along the new optimal path as well. 
The point is a subtle one: the optimization problem from Las Vegas to Boston is easier than 
that from Los Angeles to Boston, and the idea is to use this property backwards through 
time to evolve the optimal path, beginning in Boston. 

Example: Nodal Travel. We now add some structure to the above experiment. Consider 
now traveling from point A (Los Angeles) to Point D (Boston). Suppose there are only three 
places to cross the Rocky Mountains, B1, B2, B3, and three places to cross the Mississippi 
River, C1, C2, C3. 3 By way of notation, we say that the path from A to B1 is AB1. Suppose 
that all of the paths (and distances) from A to the B-nodes are known, as are those from the 
B-nodes to the C-nodes, and the C-nodes to the terminal point D. There are nine unique 
paths from A to D. 
A brute-force approach sums up the total distance for all the possible paths, and picks the 
shortest one. In terms of computations, we could summarize that this method requires nine 
additions of three numbers, equivalent to eighteen additions of two numbers. The comparison 
of numbers is relatively cheap. 
The dynamic programming approach has two steps. First, from each B-node, pick the best 
path to D. There are three possible paths from B1 to D, for example, and nine paths total 
from the B-level to D. Store the best paths as B1D opt, B2D opt, B3D opt. This operation | | |
involves nine additions of two numbers.

Second, compute the distance for each of the possible paths from A to D, constrained to the

optimal paths from the B-nodes onward: AB1 + B1D opt, AB2 + B2D opt, or AB3 + B3D opt.
| | |
The combined path with the shortest distance is the total solution; this second step involves 
three sums of two numbers, and total optimization is done in twelve additions of two numbers. 
Needless to say, this example gives only a mild advantage to the dynamic programming 

3Apologies to readers not familiar with American geography. 
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approach over brute force. The gap widens vastly, however, as one increases the dimensions of 
the solution space. In general, if there are s layers of nodes (e.g., rivers or mountain ranges), 
and each has width n (e.g., n river crossing points), the brute force approach will take (sns) 
additions, while the dynamic programming procedure involves only (n2(s− 1) + n) additions. 
In the case of n = 5, s = 5, brute force requires 6250 additions; dynamic programming needs 
only 105. 

24.2 Dynamic Programming and Full-State Feedback 

We consider here the regulation problem, that is, of keeping xdesired = 0. The closed-loop 
system thus is intended to reject disturbances and recover from initial conditions, but not 
necessarily follow y-trajectories. There are several necessary definitions. First we define an 
instantaneous penalty function l(x(t), u(t)), which is to be greater than zero for all nonzero 
x and u. The cost associated with this penalty, along an optimal trajectory, is 

� √
J = l(x(t), u(t))dt, (290) 

0 

i.e., the integral over time of the instantaneous penalty. Finally, the optimal return is the 
cost of the optimal trajectory remaining after time t: 

� √
V (x(t), u(t)) = l(x(φ), u(φ))dφ. (291) 

t 

. 
We have directly from the dynamic programming principle 

V (x(t), u(t)) = min { l(x(t), u(t))ζt + V (x(t + ζt), u(t + ζt))} . (292) 
u 

The minimization of V (x(t), u(t)) is made by considering all the possible control inputs u in 
the time interval (t, t + ζt). As suggested by dynamic programming, the return at time t is 
constructed from the return at t + ζt, and the differential component due to l(x, u). If V is 
smooth and has no explicit dependence on t, as written, then 

�V dx 
V (x(t + ζt), u(t + ζt)) = V (x(t), u(t)) + ζt + h.o.t. −∀ (293)

�x dt 
�V 

= V (x(t), u(t)) + (Ax(t) + Bu(t))ζt. 
�x 

Now control input u in the interval (t, t + ζt) cannot affect V (x(t), u(t)), so inserting the 
above and making a cancellation gives 

�V 
0 = min l(x(t), u(t)) + (Ax(t) + Bu(t)) . (294) 

u �x 

We next make the assumption that V (x, u) has the following form: 

1 TV (x, u) = x P x, (295)
2 



� 

133 

where P is a symmetric matrix, and positive definite.45 It follows that 

�V 
= x (296)

�x 
T P −∀ 

0 = min l(x, u) + x T P (Ax + Bu) 
� 
. 

u 

We finally specify the instantaneous penalty function. The LQR employs the special quadratic 
form 

1 T 1 Tl(x, u) = x Qx + u Ru, (297)
2 2 

where Q and R are both symmetric and positive definite. The matrices Q and R are to be 
set by the user, and represent the main “tuning knobs” for the LQR. Substitution of this 
form into the above equation, and setting the derivative with respect to u to zero gives 

0 = u T R + x T P B (298) 
T u = − x T P BR−1 

u = − R−1BT P x. 

The gain matrix for the feedback control is thus K = R−1BT P . Inserting this solution 
back into equation 297, and eliminating u in favor of x, we have 

1 T 1 
0 = x Qx − x T P BR−1BT P + x T P Ax. 
2 2 

All the matrices here are symmetric except for P A; since xT P Ax = xT AT P x, we can make 
its effect symmetric by letting 

1 1 T AT x T P Ax = x T P Ax + x P x, 
2 2 

leading to the final matrix-only result 

0 = Q + P A + AT P − P BR−1BT P. (299) 

4Positive definiteness means that x T Px > 0 for all nonzero x, and x T Px = 0 if x = 0. 
5This suggested form for the optimal return can be confirmed after the optimal controller is derived. 


