
24 APPENDIX 3: LQR VIA DYNAMIC PROGRAM­
MING

There are at least two conventional derivations for the LQR; we present here one based on
dynamic programming, due to R. Bellman. The key observation is best given through a
loose example.

(Continued on next page)

24.1 Example in the Case of Discrete States 131

A B

B

1B

2

3

1C

C2

3C

D

n = 3
s = 2

24.1 Example in the Case of Discrete States

Suppose that we are driving from Point A to Point C, and we ask what is the shortest path
in miles. If A and C represent Los Angeles and Boston, for example, there are many paths
to choose from! Assume that one way or another we have found the best path, and that a
Point B lies along this path, say Las Vegas. Let X be an arbitrary point east of Las Vegas.
If we were to now solve the optimization problem for getting from only Las Vegas to Boston,
this same arbitrary point X would be along the new optimal path as well.
The point is a subtle one: the optimization problem from Las Vegas to Boston is easier than
that from Los Angeles to Boston, and the idea is to use this property backwards through
time to evolve the optimal path, beginning in Boston.

Example: Nodal Travel. We now add some structure to the above experiment. Consider
now traveling from point A (Los Angeles) to Point D (Boston). Suppose there are only three
places to cross the Rocky Mountains, B1, B2, B3, and three places to cross the Mississippi
River, C1, C2, C3. 3 By way of notation, we say that the path from A to B1 is AB1. Suppose
that all of the paths (and distances) from A to the B-nodes are known, as are those from the
B-nodes to the C-nodes, and the C-nodes to the terminal point D. There are nine unique
paths from A to D.
A brute-force approach sums up the total distance for all the possible paths, and picks the
shortest one. In terms of computations, we could summarize that this method requires nine
additions of three numbers, equivalent to eighteen additions of two numbers. The comparison
of numbers is relatively cheap.
The dynamic programming approach has two steps. First, from each B-node, pick the best
path to D. There are three possible paths from B1 to D, for example, and nine paths total
from the B-level to D. Store the best paths as B1D opt, B2D opt, B3D opt. This operation | | |
involves nine additions of two numbers.

Second, compute the distance for each of the possible paths from A to D, constrained to the

optimal paths from the B-nodes onward: AB1 + B1D opt, AB2 + B2D opt, or AB3 + B3D opt.
| | |
The combined path with the shortest distance is the total solution; this second step involves
three sums of two numbers, and total optimization is done in twelve additions of two numbers.
Needless to say, this example gives only a mild advantage to the dynamic programming

3Apologies to readers not familiar with American geography.

� �

132 24 APPENDIX 3: LQR VIA DYNAMIC PROGRAMMING

approach over brute force. The gap widens vastly, however, as one increases the dimensions of
the solution space. In general, if there are s layers of nodes (e.g., rivers or mountain ranges),
and each has width n (e.g., n river crossing points), the brute force approach will take (sns)
additions, while the dynamic programming procedure involves only (n2(s− 1) + n) additions.
In the case of n = 5, s = 5, brute force requires 6250 additions; dynamic programming needs
only 105.

24.2 Dynamic Programming and Full-State Feedback

We consider here the regulation problem, that is, of keeping xdesired = 0. The closed-loop
system thus is intended to reject disturbances and recover from initial conditions, but not
necessarily follow y-trajectories. There are several necessary definitions. First we define an
instantaneous penalty function l(x(t), u(t)), which is to be greater than zero for all nonzero
x and u. The cost associated with this penalty, along an optimal trajectory, is

� √
J = l(x(t), u(t))dt, (290)

0

i.e., the integral over time of the instantaneous penalty. Finally, the optimal return is the
cost of the optimal trajectory remaining after time t:

� √
V (x(t), u(t)) = l(x(φ), u(φ))dφ. (291)

t

.
We have directly from the dynamic programming principle

V (x(t), u(t)) = min { l(x(t), u(t))ζt + V (x(t + ζt), u(t + ζt))} . (292)
u

The minimization of V (x(t), u(t)) is made by considering all the possible control inputs u in
the time interval (t, t + ζt). As suggested by dynamic programming, the return at time t is
constructed from the return at t + ζt, and the differential component due to l(x, u). If V is
smooth and has no explicit dependence on t, as written, then

�V dx
V (x(t + ζt), u(t + ζt)) = V (x(t), u(t)) + ζt + h.o.t. −∀ (293)

�x dt
�V

= V (x(t), u(t)) + (Ax(t) + Bu(t))ζt.
�x

Now control input u in the interval (t, t + ζt) cannot affect V (x(t), u(t)), so inserting the
above and making a cancellation gives

�V
0 = min l(x(t), u(t)) + (Ax(t) + Bu(t)) . (294)

u �x

We next make the assumption that V (x, u) has the following form:

1 TV (x, u) = x P x, (295)
2

�

133

where P is a symmetric matrix, and positive definite.45 It follows that

�V
= x (296)

�x
T P −∀

0 = min l(x, u) + x T P (Ax + Bu)
�
.

u

We finally specify the instantaneous penalty function. The LQR employs the special quadratic
form

1 T 1 Tl(x, u) = x Qx + u Ru, (297)
2 2

where Q and R are both symmetric and positive definite. The matrices Q and R are to be
set by the user, and represent the main “tuning knobs” for the LQR. Substitution of this
form into the above equation, and setting the derivative with respect to u to zero gives

0 = u T R + x T P B (298)
T u = − x T P BR−1

u = − R−1BT P x.

The gain matrix for the feedback control is thus K = R−1BT P . Inserting this solution
back into equation 297, and eliminating u in favor of x, we have

1 T 1
0 = x Qx − x T P BR−1BT P + x T P Ax.
2 2

All the matrices here are symmetric except for P A; since xT P Ax = xT AT P x, we can make
its effect symmetric by letting

1 1 T AT x T P Ax = x T P Ax + x P x,
2 2

leading to the final matrix-only result

0 = Q + P A + AT P − P BR−1BT P. (299)

4Positive definiteness means that x T Px > 0 for all nonzero x, and x T Px = 0 if x = 0.
5This suggested form for the optimal return can be confirmed after the optimal controller is derived.

