
25 Further Robustness of the LQR


The most common robustness measures attributed to the LQR are a one-half gain reduction 
in any input channel, an infinite gain amplification in any input channel, or a phase error 
of plus or minus sixty degrees in any input channel. While these are general properties 

(Continued on next page)
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that have a clear graphical implication on the Bode or Nyquist plot, other useful robustness 
conditions can be developed. These include robustness to uncertainty in the real coefficients 
of the model (e.g., coefficients in the A matrix), and certain nonlinearities, including control 
switching and saturation. We will use the Lyapunov stability and the LMI formulation of 
matrix problems in this section to expand these ideas. 
Saturation nonlinearities in particular are ubiquitous in control system application; we find 
them in ”railed” conditions of amplifiers, rate and position limits in control surface actuators, 
and in well-meaning but ad hoc software limits. As shown below, moderate robustness in 
saturation follows from the basic analysis, but much stronger results can be obtained with 
new tools. 
When the LQR is used to define the loop shape in the loop transfer recovery method (as 
opposed to the Kalman filter in the more common case), these robustness measures hold. 

25.1 Tools 

25.1.1 Lyapunov’s Second Method 

The idea of Lyapunov’s Second Method is the following: if a positive definite function of the 
state γx can be found, with V (γx) = 0 only when γx = γ0, and if dV (γx)/dt < 0 for all time, then 
the system is stable. A useful analogy for the Lyapunov function V (γx) is energy, dissipated in 
a passive mechanical system by damping, or in a passive electrical system through resistance. 

25.1.2 Matrix Inequality Definition 

Inequalities in the case of matrices are in the sense of positive and negative (semi) definite­
ness. Positive definite A means γx T Aγx > 0 for all γx; positive semidefinite A means γx T Aγx 0→
for all γx. With A and B square and of the same dimension, 

A < B means γx T Aγx < γx T Bγx, for all γx. (300) 

Also, we say for the case of a scalar ρ, 

A < ρ means A − ρI < 0. (301) 

25.1.3 Franklin Inequality 

A theorem we can use to assist in the Lyapunov analysis is the following, attributed to 
Franklin (1969). 

1 
AT B + BT A √ ρAT A + BT B, for all real ρ > 0. (302)

ρ 

The scalar ρ is a free parameter we can specify. It is assumed that the matrices A and B 
are of consistent dimensions. 
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25.1.4 Schur Complement 

Consider the symmetric block matrix defined as follows: 
⎬ �

A B 
M = 

BT . (303)
D 

The Schur complements of blocks A and D are defined, respectively, as 

D − BT A−1B�A =

T
�D = A− BD−1B , (304) 

and an important property is that 

M > 0 ⇒∀ �A > 0 and �D > 0 and A > 0 and D > 0. (305) 

The Schur complements thus capture the sign of M , but in a smaller dimensioned matrix 
equation. The fact that both A and D have to be positive definite, independent of the Schur 

γ ]Tcomplements, is obvious by considering γx that involve only A or D, e.g., γx = [11×nA 
γ01×nD , 

where nA and nD are the dimensions of A and D. 

25.1.5 Proof of Schur Complement Sign 

It is easy to verify that 
⎬ � ⎬ � ⎬ � ⎬ 
A B I 0 A 0 I A−1B 

� 

M = = 
BT D BT A−1 I 0 D − BT A−1B 0 I 

(306) 

The outer matrices are nonsingular so there is a one-to-one transformation 
⎬ 
I A−1B 

� 

γz = γx, (307)
0 I 

and thus M > 0 is equivalent to A > 0 and �A > 0. The proof for �D is completely 
analogous. 

25.1.6 Schur Complement of a Nine-Block Matrix 

For the purposes of derivation below, consider now the symmetric matrix 

A B C 
⎭ 

⎛ BT ⎞ 

C
M = ⎝ D 0 ⎠ . (308) 

T 0 E 

Using the Schur complement of the diagonal block including D and E, we have 

T TM > 0 ⇒∀ A− BD−1B − CE−1C > 0 and D > 0 and E > 0. (309) 

Again, positive definiteness of a large matrix is reflected in a smaller matrix inequality. 
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25.1.7 Quadratic Optimization with a Linear Constraint 

Consider the quadratic function V = γx T P γx, P symmetric and positive definite, and the 
minimization of V subject to a constraint γc T γx = a, where γc T is a row vector, and a is a 
scalar. The solution is: 

2a
min V = . (310)

γc T P −1γc 
To show that this is true, augment the objective with a LaGrange multiplier to become 

Ṽ = V + η(γc T γx − a). (311) 

V /�γSetting � ̃ x = 0 gives 2γx T P + ηγc T = 0. Post-multiply this equation by P −1γc, and solve 
to give η = −2a/γc T P −1γc. Then, using 2γx T P + ηγc T = 0 again, post-multiply by γx/2, and 
insert η, concluding the proof. 

25.2 Comments on Linear Matrix Inequalities (LMI’s) 

The reason that solving M > 0 is simpler than the equivalent Schur complement inequality 
y) is affine in the unknowns γis that, as long as M (γ y, the solution set is convex. Affine means 

that 

y) = Mo + K[y γ yM (γ γ y ... γ]N, (312) 

i.e., that M is a constant matrix plus terms linear in each element of γy. Note the matrices 
K and N here, as well as the columnwise expansion of γ y in 

y

y, are needed to put elements of γ
arbitrary locations of M . 

1 and γ
y
Convex means that if γ y2 are feasible solutions to the inequality, then so is γy3 = 
1 + (1 − ∂)γ∂γ y2, for any ∂ between zero and one. A convex solution set has no hidden 

corners or shadows, because every point on a straight line between two solutions is also 
a solution. Computer programs solving convex optimization problems can always get the 
global optimum efficiently, or determine that no solution exists. 
From the Schur complements above, clearly we can transform a (suitable) matrix equation 
that is quadratic or higher in the unknowns into an affine M (γy), and therefore make an 
efficient solution. The term linear matrix inequality refers of course to the fact that M is 
affine and hence linear in the unknown variables, but also to the methods of analysis and 
numerical solution, wherein the idea is to recognize 

M (γy) = Mo + M1y1 + M2y2 + ...Mnyn, (313) 

where n is the dimension of the unknown vector γy. 
Example. Consider the LMI 

⎬ � 

M (γy) = 
y1 − 1 2y2 − 1 

> 0. (314)
y2 + 1 y2 − y1 
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We use the theorem that M > 0 is achieved if each of the submatrices cornered at the (1,1) 
element has positive determinant. Then M > 0 is equivalent to 

y1 > 1 

(y1 − 1)(y2 − y1) − (2y2 − 1)(y2 + 1) > 0. (315) 

The solution set is shown as S in the figure below; M is affine in γy and the solution set is 
convex. 
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25.3 Parametric Uncertainty in A and B Matrices 

25.3.1 General Case 

Let S be the solution to the matrix Riccati equation 

AT S + SA + Q − P BR−1BT P = 0.	 (316) 

We consider here perturbations to the design plant matrices A and B of the form γẋ = 
(A + �A)γx + (B + �B)γu. The control in the LQR is γu = −R−1BT Pγx. Select a Lyapunov 
function of the form V (γx) = γx T Sγx. Then 

V̇ = γ̇
T 

x Sγx + γx T Sγẋ

T 
�


= γx AT S + SA + �AT S + S�A − 2SBR−1BT S− 

SBR−1�BT S − S�BR−1BS 
� 
γx.	 (317) 

We give the following special structures to the perturbations: 
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�A = DA�AEA 

�B = DB �B EB . (318) 

The idea is to capture all of the uncertainty in �A and �B and capture the structure of the 
perturbations using the other four matrices. We have, using the Franklin inequality, 

V̇ = γx T 
� 
AT S + SA − 2SBR−1BT S + ET

AD
T 

A �
T

AS + SDA�AEA (319) 

−SBR−1ET �T DT S − SDB �B EB R
−1BS 

� 
γB B B x 

⎬ 
1 √ γx T AT S + SA − 2SBR−1BT S + ρAE

T �T �AEA + SDAD
T SA A ρA
A

1 
+ρB SBR

−1ET �T �B EB R
−1BT S + SDB D

T S γxB B ρB
B 

⎬ 
1 √ γx T AT S + SA − 2SBR−1BT S + ρAE

T EA + SDAD
T SA ρA
A

1 
B EB R

−1BT S + SDB D
T 

ρ
+ρB SBR

−1ET
B S γx, (320) 

B 

where the last inequality holds if 

�T �A √ I, 

�
A
T �B √ I. (321)B 

(322) 

For a given perturbation model with matrices DA, EA, DB , and EB , we thus obtain a matrix 
inequality which, if met, guarantees stability of the system for all γx: 

1 
AT S + SA − 2SBR−1BT S + ρAE

T EA + SDAD
T SA ρA
A

1 
B EB R

−1BT S + SDB D
T 

ρ
+ρB SBR

−1ET
B S < 0. (323) 

B 

Since scalars ρA and ρB can take on any positive value, they remain to be picked, and in 
fact judicious choices are needed to maximize the robustness guarantees – i.e., to minimize 
the conservativeness. 

25.3.2 Uncertainty in B 

Putting aside �A for the moment, and substituting in the Ricatti equation into the above 
leads to 
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1 
B EB R

−1BT S + SDB D
T 

ρ
−Q − SBR−1BT S + ρB SBR

−1ET
B S < 0. (324) 

B 

Following the presentation of gain and phase margins of the LQR in a previous section, we 
here consider gain margins through the diagonal matrix N , such that 

�B = BN = B R−1 N × I × R N = DB �B EB . (325)| | | | 
denotes the matrix made up of the absolute values of the elements of N . This �B is|N |

a very specific structure, whose rationale becomes evident below. The stability inequality 
becomes 

1 −Q − SBR−1BT S + ρB SB N R−1BT S + SBR−1 |N BT S < 0, (326)| |
ρB 

|

or, equivalently, 

1 
I − ρB |N N > 0, (327)| − 

ρB 
| | 

because Q can be arbitrarily small in the LQR; certainly a large value of Q increases the 
robustness (see the case of �A below, for example). Since N is diagonal, it is sufficient to 
keep all 

� 
1 
� 

1 − |Ni,i| ρB + 
ρB 

> 0. (328) 

Solving for ρB gives 

i,i 

2 N
ρB =

1 ± 1 − 4N2 
, (329) 

i,i||

showing that real, positive ρB are attained for Ni,i| < 1/2. Hence, this analysis confirms |
the one-half gain reduction property derived earlier. On the other hand, it confers only a 
one-half gain amplification robustness, which is overly conservative. Usage of the Franklin 
inequality to symmetrize the components involving �B is the cause of this, since it can be 
verified that using Equation 319 directly gives 

−Q − SBR−1(I + N + N)BT S < 0, or 

1 + 2Ni,i > 0, (330) 

E

showing both the one-half reduction and infinite upward gain margins. 
In summary, in the special case of diagonal N in the model of �B, we crafted DB and 
B so as to align terms of the form SBR−1BT S, simplifying the analysis. This leads to a 
conservative result using the Franklin inequality, but the full, standard result on a second 
look. Better results could be obtained for specific cases, but probably with greater effort. 
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25.3.3 Uncertainty in A 

Uncertainty in the system matrix A has a different role in robustness than does uncertainty 
in B, which is primarily an issue of gain and does not affect the open-loop stability. Pertur­
bations to the design matrix A cause the open- and closed-loop poles to move, potentially 
destabilizing either or both of the open- and closed-loop systems. Consider the main in­
equality for stability again, setting aside �B now: 

1 
A EA + SDAD

T 

ρ
−Q − SBR−1BT S + ρAE

T
AS < 0. (331) 

A 

Aligning the uncertain terms with SBR−1BT S (as with �B above) proves to be impractical 
here because it imposes a specific structure on �A, and requires that elements of �A would 
have to change together. A more useful result involves a diagonal �A, and for the purposes 
of illustration, we consider a second order system as follows: 

⎬ � ⎬ �

d1 d2 ζ1 0 �A = DA�AEA = I (332)
0 0 0 ζ2 

⎬ � 
d1ζ1 d2ζ2 = . (333)
0 0 

In addition, we set B = [b 0]T , so that R is a scalar r, and we set Q diagonal. The resultant 
inequality is 

�⎬ 
1 + d2b2/r 0 

� ⎬ 
(d2 2)/ρA 0 

�� 

−Q + ρAI − S (334)
0 0 

− 
0 0 

S < 0. 

1 + d2The condition for stability will be met if Q − ρAI > 0 and b2/r − (d2 2)/ρA > 0, or 
equivalently, setting ρA = min Qi,i, if 

b2 
min Qi,i > d2 2. (335)1 + d2 

r 

Now let, for example, 

⎬ � 
−0.5 −0.5 

A = 
1 0 

, 

B = [1 0]T 

Q = diag(1, 1) 

R = 1. 

1 + d2 

tions in A are allowed, for example 
This informs us that the robustness condition is d2 2 < 2, and very substantial perturba­
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A+�A =

⎬

0.5 0.5
1 0

�

.

Computed results that confirm the bound are shown in Figure 9. An interesting note is that
the gain reduction margin in the presence of this �A suffers dramatically, with failure of
the robustness if b < 0.93. Intuitively, the uncertainty in A has used up almost all of the
available safety margin.
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Figure 9: (left) open-loop pole locations along the boundary of the stability region in Equa-
tion 335; (right) closed-loop pole locations with LQR.

25.3.4 A and B Perturbations as an LMI

Using the triple LMI of Equation 309, we have, for the combined A and B structured
uncertainty models,

−Q− SBR−1BTS + ρAE
T
AEA +

1

ρA
SDAD

T
AS

+ρBSBR
−1ET

BEBR
−1BTS +

1

ρB
SDBD

T
BS < 0 (336)

is equivalent to

�

⎛
⎝

−Q− SBR−1BTS + ρAE
T
AEA + ρBSBR

−1ET
BEBR

−1BTS SDA SDB

DT
AS −ρAI 0

DT
BS 0 −ρBI

⎭

⎞
⎠ < 0. (337)

The solution set [ρA ρB], if it exists, is convex. If a solution does not exist, one could
lower the robustness by altering DA, EA, DB, or EB. Alternatively, increasing Q, the state
penalty, where possible may increase robustness.
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25.4 Input Nonlinearities 

Control systems in practice often make use of switched or saturated action in the control 
channels. Switched and saturated control channels are defined respectively as 

switch(u, U ) = U sign(u), (338) 

and 

u, u < U 
sat(u, U ) = U sat(u/U, 1) = 

U sign(u), 
| 

, (339)
|
u > U. | | 

where the scalar U is positive. If the second argument of sat(·) is omitted, it is taken to be 
one. 

-U-U 

U U 

U 
-U 

switch(u,U) 

u u 

sat(u,U) 

Our stability analysis so far is one wherein we seek to guarantee a negative rate in V (γx) for 
all time. Referencing Equation 330, it is clear that any N can be tolerated within the range 
(−.5, ∗), even if it is time varying. It follows directly then that switching and saturated 
control channels cannot destabilize the LQR system until the gain reduction is more than 
one-half, that is, u > 2U . In practice, however, systems routinely operate beyond this point, | |
and this is the aspect of saturated control in particular that we wish to pursue now. This 
section details the approach of Huang & Lam (2002), which uses LMI’s and the structured 
uncertainty models above. 
We say that f (γu) is the diagonal function taking control commands from the LQR (γu) to 
the input to the plant; elements of f correspond to the saturated operator above. Through 
scaling the B matrix, we can set Ui = 1, and hence f ’s extreme outputs are ±1. 
First, we assert that under the proper choice of positive definite matrix W , and for certain 
vectors γz, the following inequality holds: 

2γz T f (R−1γz) → γz T W R−1γz. (340) 

If the control penalty matrix R is diagonal, and we constrain W also to be diagonal, this 
condition is met if, for each control channel, 

zi 2 Wi,i 

R
2zisat . (341) 

i,i 
→ zi Ri,i 
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If the channel is not saturated, then we require Wi,i √ 2. If the channel is saturated, then it 
is required instead that 

2

Ri,i 

zi 
Wi,i. (342)→ 

We will use the inequality of Equation 340 in our Lyapunov analysis, with special attention 
Tto these conditions. Because for the LQR we have zi = ei B

T Sγx, where ei is the unit vector 
in the i’th direction, Equation 342 effectively places a bound on the state under saturated 
control, namely 

T |ei BT Sγx √ 2Ri,i/Wi,i. (343)| 
Viewed this way, clearly we would like to make each Wi,i as small as possible. As we show 
below, however, the matrix W appears in the only negative term of V̇ (γx); the optimization 
then is to maximize the state space satisfying Equation 342, while keeping W big enough to 
guarantee stability. 
With V (γx) = γx T Sγx, and considering uncertainty �B only, we have 

V̇ (γx) = γx T (SA + AT S)γx − 2γx T SBf(R−1BT Sγx) − 2γx T S�Bf(R−1BT Sγx). (344) 

Note that �B never appears inside f because f operates on the control u, calculated with 
B alone. Applying the Franklin inequality to the last term yields 

V̇ (γx) √ γx T (SA + AT S)γx − 2γx T SBf(R−1BT Sγx)

1


+ρBγx T SDB D
T Sγx + fT (R−1BT Sγx)ET EB f(R

−1BT Sγx)). (345)B ρB
B 

Next, consider the remaining asymmetric term. Applying Equation 340, under the proper 
constraints on W , we obtain 

V̇ (γx) √ γx T (SA + AT S)γx − γx T SBW R−1BT Sγx

1


B Sγx + fT (R−1BT Sγx)ET 

ρ
+ρBγx T SDB D

T
B EB f(R

−1BT Sγx)). (346) 
B 

Finally, the last term is bounded, giving 

1 
B S + SBR−1ET 

ρ
SA + AT S − SBW R−1BT S + ρB SDB D

T
B EB R

−1BT S < 0 (347) 
B 

as the sufficient condition for stability. This last step is extremely conservative, since in fact 
fi √ 1; Huang and Lam address this point. | | 
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The supporting conditions on elements of W are linear: Wi,i must be as in Equation 342, 
and less than two. As noted above, these translate to linear constraints on γx. Call the set 
of states that satisfy these conditions Ω. The problem now is that although the Lyapuonov 
function derivative is clearly less than zero for states within Ω, the state trajectory could 
leave Ω. This is entirely likely since V is a quadratic function, leading to elliptical contours 
as in the figure below. 

V contours 

Ψ 

x 

x1 

2 

Vmax 

As a result, the range of states leading to guaranteed stability is limited to those that are 
known not to leave Ω. In other words, we have to settle for the largest ellipse completely 
contained in Ω. We now invoke Equation 310, referencing Equation 343 as the set of linear 
constraints, to yield 

V
4R2 

max = mini 
W 2 

i,i (348)
T 

i,iei B
T SBei 

We would like to maximize Vmax, which is equivalent to maximizing the minimum value 
of all the possible right hand sides of the above equation. This itself can be posed as an 
optimization in a new scalar k: 

1 
minimize k such that kI − R−1W � > 0, (349)

2 
Twhere � is diagonal, with �i,i = ei B

T SBei. It follows that any γx is stable when V (γx) = 
γx T Sγx < 1/k2 . 
In summary, we have three constraints and one optimization: Equation 347 for Lyapunov 
stability, 0 √ Wi,i √ 2 for cases where channels are not saturated, and Equation 349 for 
maximizing the level of V - an elliptical region in the state space - for which stability is 
guaranteed. 
As in the case of no input saturation, this can be posed and solved as set of LMI’s (which 
itself can be posed as a single LMI): 

⎬ 
SA + AT S − SBW R−1BT S + ρB SDB D

T 
B S 

EB R
−1BT S 

SBR−1ET 
B 

ρB I 

� 

< 0, (350) 

1 
2 
R−1W � < k, (351) 

W < 2, (352) 

0 < W. (353) 
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To solve, pick a value for k and find a feasible solution. Decrease k as far as possible; the 
feasible solution achieves the maximum V from which the range of state space can be found 
from V = 1/k2 . 


