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4 VESSEL DYNAMICS: LINEAR CASE


4.1 Surface Vessel Linear Model


We first discuss some of the hydrodynamic parameters which govern a ship maneuvering in 
the horizontal plane. The body x-axis is forward and the y-axis is to port, so positive r has 
the vessel turning left. We will consider motions only in the horizontal plane, which means 
χ = ω = p = q = w = 0. Since the vessel is symmetric about the x − z plane, yG = 0; zG is 
inconsequential. We then have at the outset 

�u 
X = m 

�t 
− rv − xGr 

2 (55) 

�v �r 
Y = m + ru + xG

�t �t 

�r �v 
N = Izz + mxG + ru . 

�t �t 

Letting u = U + u, where U >> u, and eliminating higher-order terms, this set is 

�u 
X = m (56)

�t 
�v �r 

Y = m + rU + xG
�t �t 

�r �v 
N = Izz + mxG + rU . 

�t �t 

(Continued on next page)
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X

A number of coefficients can be discounted, as noted in the last chapter. First, in a homoge­
neous sea, with no current, wave, or wind effects, {Xx, Xy, Xδ, Yx, Yy, Yδ, Nx, Ny, Nδ} are all 
zero. We assume that no hydrodynamic forces depend on the position of the vessel.1 Second, 
consider Xv: since this longitudinal force would have the same sign regardless of the sign of 
v (because of side-to-side hull symmetry), it must have zero slope with v at the origin. Thus 
v = 0. The same argument shows that {Xr, Xv̇, Xṙ, Yu, Yu̇, Nu, N ˙ = 0. Finally, since u}
fluid particle acceleration relates linearly with pressure or force, we do not consider nonlin­
ear acceleration terms, or higher time derivatives. It should be noted that some nonlinear 
terms related to those we have eliminated above are not zero. For instance, Yuu = 0 because 
of hull symmetry, but in general Xvv = 0 only if the vessel is bow-stern symmetric. 
We have so far, considering only the linear hydrodynamic terms, 

(m− Xu̇) ̇u = Xuu+ X ∗ (57) 

(m− Yv̇) ̇v + (mxG − Yṙ) ̇r = Yvv + (Yr − mU)r + Y ∗ (58) 

(mxG − Nv̇) ̇v + (Izz − Nṙ) ̇r = Nvv − (Nr − mxGU)r + N ∗. (59) 

The right side here carries also the imposed forces from a thruster(s) and rudder(s) {X ∗, Y ∗, N ∗}. 
Note that the surge equation is decoupled from the sway and yaw, but that sway and yaw 
themselves are coupled, and therefore are of immediate interest. With the state vector 
γs = {v, r} and external force/moment vector γF = {Y ∗, N ∗}, a state-space representation of 
the sway/yaw system is 

⎬ � ⎬ � 
m− Yv̇ mxG − Yṙ dγs Yv Yr − mU 

= γs+ γ
mxG − Nv̇ Izz − Nṙ dt Nv Nr − mxGU

F , or (60) 

Mγṡ = Pγs+ γF 

γṡ = M−1 Pγs+ M−1 γF 

γṡ = Aγs + B γF. (61) 

The matrix M is a mass or inertia matrix, which is always invertible. The last form of the 
equation is a standard one wherein A represents the internal dynamics of the system, and 
B is a gain matrix for the control and disturbance inputs. 

4.2 Stability of the Sway/Yaw System 

Consider the homogeneous system γṡ = Aγs: 

ṡ1 = A11s1 + A12s2 
ṡ2 = A21s1 + A22s2. 

1Note that the linearized heave/pitch dynamics of a submarine do depend on the pitch angle; this topic 
will be discussed later. 
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We can rewrite the second equation as 

d(·) 
�−1 

s2 = − A22 A21s1 (62)
dt 

and substitute into the first equation to give 

s̈1 + (−A11 − A22) ̇s1 + (A11A22 − A12A21)s1 = 0. (63) 

Note that these operations are allowed because the derivative operator is linear; in the lan­
guage of the Laplace transform, we would simply use s. A necessary and sufficient condition 
for stability of this ODE system is that each coefficient must be greater than zero: 

A11 − A22 > 0 (64) 

A

−
11A22 − A12A21 > 0 

The components of A for the sway/yaw problem are 

A11 =
(Izz −Nṙ)Yv + (Yṙ −mxG)Nv 

(65)
(m − Yv̇)(Izz −Nṙ) − (mxG − Yṙ)(mxG −Nv̇) 

A
−(Izz −Nṙ)(mU − Yr) − (Yṙ −mxG)(mxGU −Nr) 

12 = 
(m − Yv̇)(Izz −Nṙ) − (mxG − Yṙ)(mxG −Nv̇) 

A21 =
(Nv̇ −mxG)Yv + (m − Yv̇)Nv 

(m − Yv̇)(Izz −Nṙ) − (mxG − Yṙ)(mxG −Nv̇) 

A22 = 
−(Nv̇ −mxG)(mU − Yr) − (m − Yv̇)(mxGU −Nr) 

. 
(m − Yv̇)(Izz −Nṙ) − (mxG − Yṙ)(mxG −Nv̇) 

x

The denominators are identical, and can be simplified. First, let xG � 0; valid for many 
vessels with the origin is at the geometric center. If the origin is at the center of mass, 
G = 0. Next, if the vessel is reasonably balanced with regard to forward and aft areas with 
respect to the origin, the terms {Nv̇, Y ṙ, Nv, Yr} take very small values in comparison with 
the others. To wit, the added mass term −Yv̇ is of the order of the vessel’s material mass 
m, and similarly Nṙ Izz. Both Yv̇ and Nṙ take large negative values. Linear drag and � −
rotational drag are significant also; these are the terms Yv and Nr, both large and negative. 
The denominator for A’s components reduces to (m − Yv̇)(Izz −Nṙ), and 

A11 = Yv < 0 
m−Yv̇

A22 = Nr < 0.
Izz−Nṙ

Hence the first condition for stability is met: −A11 − A22 > 0. For the second condition, 
since the denominators of the Aij are identical, we have only to look at the numerators. For 
stability, we require 
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(Izz − Nṙ)Yv(m − Yv̇)Nr (66) 

[Nv̇Yv + (m − Yv̇)Nv] [−(Izz − Nṙ)(mU − Yr) + YṙNr] > 0.− 

The first term is the product of two large negative and two large positive numbers. The 
second part of the second term contains mU , which has a large positive value, generally 
making stability critical on the (usually negative) Nv. When only the largest terms are 
considered for a vessel, a simpler form is common: 

C = YvNr + Nv(mU − Yr) > 0. (67) 

C is called the vessels stability parameter. The terms of C compete, and yaw/sway stability 
depends closely on the magnitude and sign of Nv. Adding more surface area aft drives Nv 

more positive, increasing stability as expected. Stability can also be improved by moving 
the center of gravity forward. Nonzero xG shows up as follows: 

C = Yv(Nr − mxGU ) + Nv(mU − Yr) > 0. (68) 

Since Nr and Yv are both negative, positive xG increases the (positive) influence of C’s first 
term. 

δ 

y 

x 

r 

Figure 3: Convention for positive rudder angle in the vessel reference system. 

4.3 Basic Rudder Action in the Sway/Yaw Model 

Rudders are devices which develop large lift forces due to an angle of attack with respect 
to the oncoming fluid. The basic form is as follows: L = 

2 
1 πAU 2Cl(∂), where ∂ is the angle 

of attack. The lift coefficient Cl is normally linear with ∂ near ∂ = 0, but the rudder stalls 
when the angle of attack reaches a critical value, and thereafter develops much less lift. We 
will assume that ∂ is small enough that the linear relationship applies: 

�Cl
Cl(∂) = ∂. (69)

�∂ 
∂=0 

Since the rudder develops force (and a small moment) far away from the body origin, say a 
distance l aft, the moment equation is quite simple. We have 



� 
� 
� 
� 
�

� 
� 
� 
� 
�

4.3 Basic Rudder Action in the Sway/Yaw Model 21


1 �Cl 
U 2Y∂ = πA (70)

2 �∂ 
∂=0 

1 �Cl 

∂=0 

lU 2N∂ = πA (71)− . 
2 �∂ 

Note the difference between the rudder angle expressed in the body frame, ζ, and the total 
angle of attack ∂. Angle of attack is influenced by ζ, as well as v/U and lr. Thus, in tank 
testing with v = 0, ζ = ∂ and Nν = N∂, etc., but in real conditions, other hydrodynamic 
derivatives are augmented to capture the necessary effects, for example Nv and Nr . Generally 
speaking, the hydrodynamic characteristics of the vessel depend strongly on the rudder, even 
when ζ = 0. In this case the rudder still opposes yaw and sway perturbations and acts to 
stabilize the vessel. 
A positive rudder deflection (defined to have the same sense as the yaw angle) causes a 
negative yaw perturbation, and a very small positive sway perturbation. 

4.3.1 Adding Yaw Damping through Feedback 

The stability coefficient C resulting from the addition of a control law ζ = kr r, where kr > 0 
is a feedback gain, is 

C = Yv (Nr − mxGU + kr Nν ) + Nv (mU − Yr − kr Yν ). (72) 

Yν is small positive, but Nν is large and negative. Hence C becomes more positive, since Yv 

is negative. 
Control system limitations and the stalling of rudders make obvious the fact that even a very 
large control gain kr cannot completely solve stability problems of a poorly-designed vessel 
with an inadequate rudder. On the other hand, a vessel which is overly stable (C >> 0 with 
no rudder action) is unmaneuverable. A properly-balanced vessel just achieves stability with 
zero rudder action, so that a reasonable amount of control will provide good maneuvering 
capabilities. 

4.3.2 Heading Control in the Sway/Yaw Model 

Considering just the yaw equation of motion, i.e., v = 0, with a rudder, we have 

¨ (Izz − Nṙ)δ + (mxGU − Nr )δ̇ = Nν ζ. (73) 

Employing the control law ζ = kδδ, the system equation becomes a homogeneous, second-
order ODE: 

¨ (Izz − Nṙ)δ + (mxGU − Nr )δ̇− Nν kδδ = 0. (74) 

Since all coefficients are positive (recall Nν < 0), the equation gives a stable χ response, 
settling under second-order dynamics to χ(∗) = 0. The control law ζ = kδ(δ − δdesired) + krr 
is the basis for heading autopilots, which are used to track δdesired. This use of an error signal 
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to drive an actuator is in fact the essence of feedback control. In this case, we require sensors 
to obtain r and δ, a controller to calculate ζ, and an actuator to implement the corrective 
action. 

4.4 Response of the Vessel to Step Rudder Input 

4.4.1 Phase 1: Accelerations Dominate 

When the rudder first moves, acceleration terms dominate, since the velocities are zero. The 
equation looks like this: 

⎬ �� � � � 
m − Yv̇ mxG − Yṙ v̇ Yν 

mxG − Nv̇ Izz − Nṙ ṙ
= 

Nν 
ζ. (75) 

Since Yṙ and mxG are comparatively small in the first row, we have 

Yνζ 
v̇(0) = , (76) 

m − Yv̇
and the vessel moves to the left, the positive v-direction. The initial yaw is in the negative 
r-direction, since Nν < 0: 

Nνζ 
I

ṙ(0) = . (77) 
zz − Nṙ

The first phase is followed by a period (Phase 2), in which many terms are competing and 
contributing to the transient response. 

4.4.2 Phase 3: Steady State 

When the transients have decayed, the vessel is in a steady turning condition, and the 
accelerations are zero. The system equations reduce to 

v ζ (mxGU − Nr)Yν + (Yr − mU )Nν 

r 
= 
C NvYν − YvNν 

. (78) 

Note that the denominator is the stability parameter. The steady turning rate is thus 
approximated by 

YvNν 
r = − 

C 
ζ. (79) 

With C > 0, the steady-state yaw rate is negative. If the vessel is unstable (C < 0), it 
turns in the opposite direction than expected. This turning rate equation can also be used 
to estimate turning radius R: 

U U C 
R = = . (80) 

r −YvNνζ 
The radius goes up directly with C, indicating that too stable a ship has poor turning 
performance. We see also that increasing the rudder area increases Nν, decreasing R as 
desired. Increasing the deflection ζ to reduce R works only to the point of stalling. 
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4.5 Summary of the Linear Maneuvering Model 

We conclude our discussion of the yaw/sway model by noting that 

1. The linearized sway/yaw dynamics of a surface vessel are strongly coupled, and they 
are independent of the longitudinal dynamics. 

2. The design parameter C should be slightly greater than zero for easy turning, and “ 
hands-off” stability. The case C < 0 should only be considered under active feedback 
control. 

3. The analysis is valid only up to small angles of attack and turning rates. Very tight ma­
neuvering requires the nonlinear inertial components and hydrodynamic terms. Among 
other effects, the nonlinear equations couple surge to the other motions, and the actual 
vessel loses forward speed during maneuvering. 

4.6 Stability in the Vertical Plane 

Stability in the horizontal plane changes very little as a function of speed, because drag and 
lift effects generally scale with U 2 . This fact is not true in the vertical plane, for which the 
dimensional weight/buoyancy forces and moments are invariant with speed. For example, 
consider the case of heave and pitch, with xG = 0 and no actuation: 

�w 
m 

�t 
− Uq = Zẇẇ + Zww + Zq̇q̇ + Zqq + (B − W ) (81) 

dq
Iyy = Mẇẇ + Mww + Mq̇q̇ + Mqq − Blb sin χ. (82)

dt 

The last term in each equation is a hydrostatic effect induced by opposing net buoyancy 
B and weight W . lb denotes the vertical separation of the center of gravity and the center 
of buoyancy, creating the so-called righting moment which nearly all underwater vehicles 
possess. Because buoyancy effects do not change with speed, the dynamic properties and 
hence stability of the vehicle may change with speed. 


