
5 SIMILITUDE 

5.1 Use of Nondimensional Groups 

Q

For a consistent description of physical processes, we require that all terms in an equation 
must have the same units. On the basis of physical laws, some quantities are dependent on 
other, independent quantities. We form nondimensional groups out of the dimensional ones 
in this section, and apply the technique to maneuvering. 
The Buckingham β-theorem provides a basis for all nondimensionalization. Let a quantity 
n be given as a function of a set of n − 1 other quantities: 

(Continued on next page)
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Qn = fQ(Q1, Q2, · · · , Qn−1). (83) 

There are n variables here, but suppose also that there are only k independent ones; k is 
equivalent to the number of physical unit types encountered. The theorem asserts that there 
are n − k dimensionless groups βi that can be formed, and the functional equivalence is 
reduced to 

βn−k = fψ (β1, β2, · · · , βn−k−1). (84) 

Example. Suppose we have a block of mass m resting on a frictionless horizontal surface. 
At time zero, a steady force of magnitude F is applied. We want to know X(T ), the distance 
that the block has moved as of time T . The dimensional function is X(T ) = fQ(m, F, T ), so 
n = 4. The (MKS) units are 

[X(·)] = m 

[m] = kg 

[F ] = kgm/s2 

[T ] = s, 

and therefore k = 3. There is just one nondimensional group in this relationship; β1 assumes

only a constant (but unknown) value. Simple term-cancellation gives β1 = X(T )m/F T 2 ,

not far at all from the known result that X(T ) = F T 2/2m!

Example. Consider the flow rate Q of water from an open bucket of height h, through a

drain nozzle of diameter d. We have


Q = fQ(h, d, π, µ, g), 

where the water density is π, and its absolute viscosity µ; g is the acceleration due to gravity. 
No other parameters affect the flow rate. We have n = 6, and the (MKS) units of these 
quantities are: 

[Q] = m 3/s 

[h] = m 

[d] = m 

[π] = kg/m3 

[µ] = kg/ms 

[g] = m/s2 

There are only three units that appear: [length, time, mass], and thus k = 3. Hence,

only three non-dimensional groups exist, and one is a unique function of the other two. To
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arrive at a set of valid groups, we must create three nondimensional quantities, making sure 
that each of the original (dimensional) quantities is represented. Intuition and additional 
manipulations come in handy, as we now show. 
Three plausible first groups are: β1 = πQ/dµ, β2 = dπ

≈ 
gh/µ, and β3 = h/d. Note that all 

six quantities appear at least once. Since h and d have the same units, they could easily 
change places in the first two groups. However, β1 is recognized as a Reynolds number 
pertaining to the orifice flow. β2 is more awkward, but products and fractions of groups are 
themselves valid groups, and we may construct β4 = β1/β2 = Q/d2

≈ 
gh to nondimensionalize 

Q with a pressure velocity, and then β5 = β1/β4 = πd
≈ 
gh/µ to establish an orifice Reynolds 

number independent of Q. We finally have the useful result 

β4 = fψ (β5, β2) −∀ 

Q πd
≈ 
gh h 

= fψ , . 
d2
≈ 
gh µ d 

The uncertainty about where to use h and d, and the questionable importance of h/d as a 
group are remnants of the theorem. Intuition is that h/d is immaterial, and the other two 
terms have a nice physical meaning, e.g., β5 is a Reynolds number. 
The power of the β-theorem is primarily in reducing the number of parameters which must 
be considered independently to characterize a process. In the flow example, the theorem 
reduced the number of independent parameters from five to two, with no constraints about 
the actual physics taking place. 

5.2 Common Groups in Marine Engineering 

One frequently encounters the following groups in fluid mechanics and marine engineering: 

1. Froude number: 

U 
F r = , (85)≈ 

gL 

where U is the speed of the vessel, g is the acceleration due to gravity, and L is 
the waterline length of the vessel. The Froude number appears in problems involving 
pressure boundary conditions, such as in waves on the ocean surface. Roughly speaking, 
it relates the vessel speed U to water wave speeds of wavelength L; the phase speed of 
a surface wave is V = ηg/2β, where η is the wavelength. 

2. Cavitation number: 

ζ = 
P√ − Pv 

, (86)1 πU 2 
2 

where P√ represents the ambient total pressure, Pv the vapor pressure of the fluid, 
and U the propeller inlet velocity. A low cavitation number means that the Bernoulli 
pressure loss across the lifting surface will cause the fluid to vaporize, causing bubbles, 
degradation of performance, and possible deterioration of the material. 
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3. Reynolds number: 

U l 
Re = , (87)

µ/π 

where U is velocity, µ is absolute viscosity, and π is density. Since Re appears in many 
applications, l represents one of many length scales. Reynolds number is a ratio of fluid 
inertial pressures to viscous pressures: When Re is high, viscous effects are negligible. 
Re can be used to characterize pipe flow, bluff body wakes, and flow across a plate, 
among others. 

4. Weber number: 

πU 2l 
W = , (88)

θ 

where θ is the surface tension of a fluid. Given that [θ] = N/m (MKS), πU 2 normalizes 
pressure, and l normalizes length. The Weber number indicates the importance of 
surface tension. 

To appreciate the origins of these terms from a fluid particle’s point of view, consider a box 
having side lengths [dx, dy, dz]. Various forces on the box scale as 

�v �v 
(inertia) Fi = π dxdydz + πv dxdydz � πU 2l2 

�t �x 
(gravity) Fg = πgdxdydz � πgl3 

(pressure) Fp = P dxdy � P l2 

�v 
(shear) Fs = µ dxdy � µU l 

�z

(surface tension) Fθ = θdx � θl.


Thus the groups listed above can be written as 

U 2Fi
F r = 

F

Fg 
� 

gl 

p P 
ζ = 

Fi 
� 

πU 2 

Fi πU l 
Re = 

F

Fs 
� 

µ 

i πU 2l 
W = 

Fθ 
� 

θ 

When testing models, it is imperative to maintain as many of the nondimensional groups as

possible of the full-scale system. This holds for the geometry of the body and the kinematics




5.3 Similitude in Maneuvering 27 

of the flow, the surface roughness, and all of the relevant groups governing fluid dynamics. 
Consider the example of nozzle flow from a bucket. Suppose that we conduct a model 
test in which Re is abnormally large, i.e., the viscous effects are negligible. Under inviscid 
conditions, the flow rate is Q = βd2

≈
2gh/4. This rate cannot be achieved for lower-Re 

conditions because of fluid drag in the orifice, however. 
In a vessel, we write the functional relationship for drag as a starting point: 

D 
Cr = 1 = fQ(π, µ, g, θ, U, l)

πAU 2 
2 

= fψ (Re, F r, W ). 

First, since l is large, W is very large, and hence surface tension plays no role. Next, we look 
at Re = U l/λ and F r = U/

≈
gl, both of which are important for surface vessels. Suppose 

that lship = ηlmodel , so that usually η >> 1; additionally, we set gmodel = gship, i.e., the model 
and the true vessel operate in the same gravity field. 
Froude number similitude requires Umodel = Uship/

≈
η. Then Reynolds number scaling im­

plies directly λmodel = λship/η3/2 . Unfortunately, few fluids with this property are workable 
in a large testing tank. As a result, accurate scaling of Re for large vessels to model scale is 
quite difficult. 
For surface vessels, and submarines near the surface, it is a routine procedure to employ 
turbulence stimulators to achieve flow that would normally occur with ship-scale Re. Above 
a critical value Re � 500, 000, Cf is not sensitive to Re. With this achieved, one then tries 
to match F r closely. 

5.3 Similitude in Maneuvering 

The linear equations of motion for the horizontal yaw/sway problem are: 

(m − Yv̇) ̇v − Yv v + (mU − Yr )r + (mxG − Yṙ) ̇r = Y 

(Izz − Nṙ) ̇r + (mxGU − Nr )r + (mxG − Nv̇) ̇v − Nv v = N. 

These equations can be nondimensionalized in a standard way, by using the quantities 
[U, L, π]: these three values provide the necessary units of length, time, and mass, and fur­
thermore are readily accessible to the user. First, we create nondimensional states, denoted 
with a prime symbol: 

v̇∗ = 
L 
U 2 
v̇ (89) 

v∗ = 
1 
v 

U 
L2 

ṙ∗ = ṙ
U 2 
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L 
r∗ = r. 

U 

We follow a similar procedure for the constant terms as follows, including a factor of 1/2 
with π, for consistency with our previous expressions: 

m 
m∗ = (90)1 πL3 

2 

Izz 
I ∗ = 1zz πL5 

2 

x∗ = 
xG 

G L 
U 

U ∗ = = 1 

Y 
U 

v̇
=Yv̇

∗ 
1 πL3 
2 

Yv
Y ∗ = v 1 πU L2 

2 

Yṙ
=Yṙ

∗ 
1 πL4 
2 

Yr
Y ∗ = 1r πU L3 

2 

Y 
Y ∗ = 1 πU 2 L2 

2 

Nv̇
=Nv 

∗ 
˙ 1 πL4 

2 

Nv
N ∗ = v 1 πU L3 

2 

Nṙ
=Nr 

∗ 
˙ 1 πL5 

2 

Nr
N ∗ = 1r πU L4 

2 

N 
N ∗ = 1 . 

πU 2 L3 
2 

1 πU 2L2, and every moment with 
2

Note that every force has been normalized with 
2

1 πU 2L3; 
time has been also nondimensionalized with L/U . Thus we arrive at a completely equivalent 
set of nondimensional system equations, 

(m∗ − Yv̇
∗) ̇v∗ − Yv 

∗v∗ + (m∗U ∗ − Yr 
∗)r∗ + (m∗x∗ r∗ = Y ∗ (91)G − Yṙ

∗) ̇

zz − Nr
∗ 
˙) ̇r
∗ + (m∗x∗ U ∗ − Nr

∗ )r∗ + (m∗x∗(I ∗ G − Nv
∗ 
˙) ̇v
∗ − Nv

∗ v∗ = N ∗.G
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Since fluid forces and moments generally scale with U 2, the nondimensionalized description 
holds for a range of velocities. 

5.4 Roll Equation Similitude 

Certain nondimensional coefficients may arise which depend explicitly on U , and therefore 
require special attention. Let us carry out a similar normalization of the simplified roll 
equation 

(Ixx − Kṗ) ̇p − Kpp − Kω ω = K. (92) 

K
For a surface vessel, the roll moment Kω is based on metacentric stability, and has the form 
ω = −πg∞(GM ), where ∞ is the displaced fluid volume of the vessel, and GM is the 
metacentric height. The nondimensional terms are 

Ixx
I ∗ = 1 (93)xx πL5 

2 

Kṗ
=Kp 

∗ 
˙ 1 πL5 

2 

Kp
K ∗ = p 1 πU L4 

2 

Kω
K ∗ = 1ω πU 2 L3 

L
2 
2 

ṗ∗ = ṗ
U 2 
L 

p∗ = p,
U 

leading to the equivalent system 

xx − Kp
∗ 
˙) ̇p
∗ − Kp

∗ p∗ − 
� 
2gL ∞∗(GM ∗)ω = K ∗. (94)(I ∗ 
U 2 

Note that the roll angle δ was not nondimensionalized. The Froude number has a very strong 
influence on roll stability, since it appears explicitly in the nondimensional righting moment 
term, and also has a strong influence on Kp

∗ . 
In the case of a submarine, the righting moment has the form Kω = −Bh, where B is the 
buoyant force, and h is the righting arm. The nondimensional coefficient becomes 

Bh 
K ∗ = 1 .ω πU 2 L3

− 
2 

K ∗ again depends strongly on U , since B and h are fixed; this K ∗ needs to be maintained ω ω 

in model tests. 


