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Problem Set 1 Solution: Convolution and Fourier Transforms 

Problem 1: 

Use the convolution definition !
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and using the sifting property of the impulse function, 
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(b) h(t) is the as same used in part (a) 
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Four basic cases can be observed while varying t (sliding the triangle waveform)., 

Case Range Equation Picture 

Triangle 
outside 

t≤-2.5 

1.75≤t 
0 

Less 
than 
half 
triangle 
inside 

-2.5≤t≤ -1.5 

0.75≤t≤1.75 
-4 -3 -2 -1 0 1
0

0.5

1

More 
than 
half 
triangle 
inside 

-1.5≤t≤ -0.5 

-0.25≤t≤0.75 
-3 -2 -1 0 1
0

0.5

1

Whole 
triangle 
inside 

-0.5≤t≤ -
0.25 1 

The result of the convolution, y(t), is plotted in the following figure 
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when T=1, )()()( tftfth != and from the convolution theorem 
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Problem 2 
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Problem 3 
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Problem 4 
These solutions are all based on the elementary properties of the Fourier transform (see the class 
handout). 
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(b) Using the symmetry properties, we note that )( !jX is real, therefore ,)()( txtx =! that is 
they are complex conjugates. 
(c) This one is a little tricky! We use the property that 

0|)()(
=

!

!"

=# $$jXdttx

BUT note that there is a singularity at 0=! . The question is: what is the value of )0( jX ? 
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So the answer is dependent on your assumption about the discontinuity! 
(d) From Parseval’s theorem 
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Problem 5 
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If and impulse is passed through the filter, we obtain the impulse response { }!jHFth ()( 1"
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The filter is acausal. 

Problem 6 
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Note: lower limit in integral is 0 because a real filter is a causal system. 

a) The transfer function can be found by taking the Laplace transform, which can be viewed as 
a Fourier transform where jω is replaced by s=σ+jω . 
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b) The frequency response is given by H(jω) computed previously. 

c) We find the cut-off frequency by solving: 
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