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Problem Set 3 Solution: Analog Filter design 

Problem 1: Use the nomenclature in the class handout. For both filters: 

1 1 
= 0.5 −→ ǫ = 1, = 0.1 −→ λ = 3 

1 + ǫ2	 1 + λ2 

(a)	 For Filter A, Butterworth design: 

log(λ/ǫ) log(3) 
N ≥ = = 2.71 

log(Ωr/Ωc) log(1.5) 

Therefore select N = 3. 

(b) For Filter A, Chebyshev design: 

cosh−1(λ/ǫ) cosh−1(3) 
N ≥	 = = 1.831 

cosh−1(Ωr/Ωc) cosh−1(1.5) 

Therefore select N = 2. 

(c)	 For Filter B, Butterworth design: 

log(λ/ǫ) log(3) 
N ≥ = = 6.81 

log(Ωr/Ωc) log(1.175) 

Therefore select N = 7. 

(d) For Filter B, Chebyshev design: 

cosh−1(λ/ǫ) cosh−1(3) 
N ≥	 = = 3.02 

cosh−1(Ωr/Ωc) cosh−1(1.175) 

Therefore select N = 4. 

(e)	 % Design the filter 
[A,B]=butter(3,2*pi*10000,’s’); 
filt=tf(A,B); 
% Create a frequency vector 
w=[0:2*pi*100:2*pi*30000]; 
% Compute the freq resp. at the frequencies in the vector 
[MAG, PHASE] = bode(filt, w); 
% Plot the response 
plot(w/(2*pi), squeeze(MAG).^2); 
grid; 
xlabel(’Frequency (Hz.)’); 
ylabel(’Power Response’); 
title(’PS2 - Problem 1(e)’); 
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(f)	 For the standard MATLAB functions we need to design a filter with Ωc = 1 rad/s. 
In the following script we have done an implicit conversion by specifying Ωr = 1.175 
rad/s. The following script designs the bandpass filter, plots the power response on a 
linear scale, and makes the Bode plots as requested: 

% Problem Set 2, Prob 1(f)

% lp2bp() reqires a prototype lp filter with unity wc.

% Note we specify the rejection band as being 10db down

[b,a]=cheby2(4,10,1.175,’s’);

% Convert to a band-pass filter with center frequency

% as the geometric mean of the band edges

[pb,pa]=lp2bp(b,a,2*pi*sqrt(5000*15000),2*pi*10000);

bpsys=tf(pb,pa);

% Plot the power response

w=[0:2*pi*100:2*pi*30000];

[mag,phase]=bode(bpsys,w);

plot(w/(2*pi),squeeze(mag).^2);

title(’PS2 Prob 1(f): Bandpass Filter Design’);

xlabel(’Frequency (Hz)’);

ylabel(’Power Response’);

%

figure

bode(bpsys)


Note that since we were given the specs for the prototype lpf, we have no control 
over the stop-band edges. We can however compute them using Table 2 in the class 
handout: 

s2 + Ω2 

g(s) = o 

ΔΩs 
so that the mapping of frequency Ωr in the prototype to Ωr in the band-pass filter is 
given by the absolute value of the roots of 

Ω2 
− ΔΩΩrΩ − Ω2 = 0o 

or Ω2 
− (2π10000) × 1.175Ω − (2π5000) × (2π15000) = 0 

which gives frl = 4.590 kHz and fru = 16.340 kHz as indicated on the plot. 
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The Bode plots are shown below: 

Bode Diagram 
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Problem 2: We require a high-pass filter. 

Ωc = 2π50 rad/s 

Ωr = 2π20 rad/s 

Rc = 3 rad/s 

Rs = 40 rad/s 

Let’s choose a Butterworth prototype, and convert to a high-pass filter as described in Section 
3.1 of the class handout Introduction to Continuous Time Filter Design using the following 
MATLAB script: 

wc = 2*pi* 50;

wr = 2*pi*20;

Rc = 3;

Rs = 40;

Wr = wc/wr;

%

[N, Wn] = buttord(1, Wr,Rc,Rs,’s’);

[num,den]= butter(N, Wn,’s’);

[num_hp, den_hp] = lp2hp(num,den, wc);

hpfilt=tf(num_hp, den_hp)

%

w=[0:2*pi:2*pi*100];

[mag, phase] = bode(hpfilt,w);

plot(w/(2*pi),squeeze(mag));

title(’PS2 Prob 2: Highpass Filter Design’);

xlabel(’Frequency (Hz)’);

ylabel(’Frequency Response Magnitude’);

grid;


which produces the frequency response magnitude plot: 
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which meets the specifications. 

Problem 3: 

Let the lpf be a unity gain all-pole filter with transfer function 

a0
Hlp(s) = 

sn + an−1sn−1 + . . . + a1s + a0 

then the hiph-pass filter formed as 

Hhp(s) = 1 − Hlp(s) 
a0 

= 1 − 
sn + an−1sn−1 + . . . + a1s + a0 

s(sn−1 + an−1s
n−2 + . . . + a1) 

= 
sn + an−1sn−1 + . . . + a1s + a0 

We note that this is a high-pass filter because 

•	 It has the same number of poles as zeros, indicating unity gain at high frequencies,and 

•	 It has one or more zeroes at the origin, indicating that the gain goes to zero as the 
frequency approaches zero. 

(a)	 In this case there is a single zero at the origin, while with the transformation method 
described in the handout, there will be n zeros at the origin. 

(b)	 The attenuation rate as Ω → 0 will be much higher in the hpf designed by frequency 
transformation (20n dB/decade as opposed to 20 db/decade.). 
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(c)	 From the graphical s-plane interpretation of the frequency response, each zero at the 
origin contributes π/2 radians of phase shift at very low frequencies. Thus the hpf 
designed by frequency transformation will have +nπ/2 rad of phase lead at low fre­
quencies, the filter designed as proposed in this problem will have a phase lead of π/2 
rad. 

(d)	 As indicated above, any system with the same number of poles as zeros will have unity 
gain at very high frequencies. 

Problem 4: There are, of course, many solutions to this problem! Here’s one possibility: 
Design a band-pass filter, “centered” at 60 Hz and with at least 60 dB attenuation at 30 and 
60 Hz. Choose the specs 

Ω0 = 2π60 rad/s 

Ωcu = 2π65 rad/s 

Ωru = 2π90 rad/s 

Ωrl = 2π30 rad/s 

Rc = 1 dB 

Rs = 60 dB 

Let’s choose a Butterworth prototype, and convert to a band-pass filter as described in 
Section 3.1 of the class handout Introduction to Continuous Time Filter Design using the 
following MATLAB script: 

% Design a band-stop filter

% First define some ctitical frequencies

% Passband edges

wo = 2*pi*60;

wcu = 2*pi*65;

wcl = wo^2/wcu;

BW = (wcu-wcl);

% Stop band edges

wsu = 2*pi*90;

wsl = 2*pi*30;

% Pass-band and stop-band attenuations:

Rc = 1;

Rs = 60;

% Determine the stop-band edge in the lp prototype

%

W1 = (wo^2-wsu^2)/(BW*wsu);

W2 = (wo^2-wsl^2)/(BW*wsl);

Wr = min(abs(W1),abs(W2));

%

% design the prototype low-pass filter

%

[N,Wn] = buttord(1,Wr, Rc, Rs, ’s’);
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[num,den] = butter(N, Wn, ’s’);

% Convert to a band-stop filter

[num_bpass,den_bpass] = lp2bp(num,den,wo,BW);

filt = tf(num_bpass,den_bpass);

%

% Plot the frequency response magnitude

%

f=[0:1:100];

[mag,phase]=bode(filt,2*pi*f);

plot(f,(squeeze(mag)));

grid

xlabel(’Frequency (Hz)’);

ylabel(’Response Magnitude’);


which produces the frequency response magnitude plot: 
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which meets the specifications since 1 dB attenuation is a gain of 10−1/20 = 0.8913 and 60 
db attenuation is a gain of 10−60/20 = 0.001. 
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