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MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING


2.161 Signal Processing - Continuous and Discrete 
Fall Term 2008 

Problem Set 4 

Assigned: Oct. 2, 2008	 Due: Oct. 9, 2008 

Problem 1: An AM (amplitude-modulated) radio signal fAM (t) is described by 

fAM (t) = (1 + afaudio (t)) sin (Ωct) 

where faudio(t) is the audio signal, sin (Ωct) is known as radio-frequency carrier signal (fc = 
500 – 1600 kHz - the AM band), and a is a positive constant that determines the modulation 
depth. (Note that we require afaudio (t) < 1 otherwise we have over-modulation.) the| |
following figure shows an AM signal with an “audio” waveform that is a simple low frequency 
sinusoid. You can see how the audio signal “modulates” the amplitude of the rf signal. 

(a) Sketch the magnitude of the Fourier transform of fAM (t) when faudio(t) = 0. 

(b) Let a = 0.5, and sketch the magnitude of the Fourier transform of fAM (t) when 

faudio(t) = 0.5 cos(2π 1000t) + 0.25 cos(2π 2000t)·	 · 

(Hint: There is no need to actually compute the FT. Consider expanding fAM (t), or 
simply use properties of the FT.) 

(c)	 Use your result from (b) to generalize, and sketch the magnitude spectrum of fAM (t) 
when faudio(t) has a spectrum (again let a = 0.5): 
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(d)	 If faudio has a bandwidth B = Ωu − Ωl, what is the bandwidth of a band-pass filter that 
would be necessary to select the signal fAM (t) out of all the other AM radio stations? 

Problem 2: We generally ignore in the phase response in filter design. Although you 
might wish for a “zero-phase” filter, you can see from the class handout on causality that a 
filter with a purely real frequency response is acausal, and as such cannot be implemented 
in a physical system. The following are a pair of tricks that may be used to do “off-line” 
zero-phase filtering of recorded data. (Note: these methods are used frequently in digital 
signal processing - it is difficult to do this in continuous time.) 

Assume that you have a filter H(jΩ) with arbitrary phase response � H(jΩ), and that 
your input signal is f(t) is recorded on a tape-recorder that can be played forwards or 
backwards. 

Method (1) 1. Pass f(t) through the filter and record the output g(t) on another tape 
recorder. 

2. Play g(t) backwards through the filter (that is the filter input is g(−t)) and record 
the output x(t). 

3. The filtered output is found by playing the x(t) backwards, that is y(t) = x(−t). 

Method (2) 1. Pass f(t) through the filter and record the output g(t). 

2. Reverse f(t) so as to pass f(−t) through the filter and generate x(t). 

3. Reverse x(t) and sum with g(t) to form the output y(t) = g(t) + x(−t). 

Show that both methods generate an overall filter that has no phase shift, and find the 
¯overall magnitude response |Heq(jΩ)| in each case. Hint: F {f(−t)} = F (jΩ). 

Problem 3: Problem 5 in Problem Set 2 examined an all-pass filter with a transfer 
function 

H(s) = 
s − a 

a > 0 
s + a 

and you showed that this filter had a frequency response in which H(jΩ) = 1 at all fre­| |
quencies. 

Design an op-amp based first-order all-pass filter of this form that will have a phase shift 
of −90◦ at a frequency of 50 Hz. (Consider a modified form of the 3 op-amp circuit described 
in the handout - noting that you only need a first-order system.) Find “appropriate” values 
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for all resistors and capacitors.


Problem 4: Consider the second-order bandpass filter with transfer function


a1s 
Hbp(s) = . 

s2 + a1s + a0 

Many books on signal processing express this transfer function in terms of two parameters 
Ωp and Q, 

Ωp s
QHbp(s) = 

s2 + Ωp s + Ω2 
Q p 

where Ωp is the (approximate) peak frequency (center of the passband), and Q is known as 
the “quality” factor. 

Aside: If you compare this to the classic second-order system description used in 
system dynamics and control, that is 

2ζΩns 
Hbp(s) = 

s2 + 2ζΩns + Ω2 
n 

where Ωn is the undamped natural frequency, and ζ is the damping ratio, you can 
see that 

1 
Q = . 

2ζ 

In this problem we examine the relationship between Q and the -3dB bandwidth of the 
second-order filter. Consider the magnitude plot below: 

Let Ωu and Ωl be the upper and lower -3db (0.707) response frequencies as shown, and let 
Δ = Ωu − Ωl be the -3dB bandwidth. 



(a) Show

����� 1 1 

�	���
� 

1 
�2 

Ωu = Ωp 1 +	 + 1 + 
2Q2 Q 2Q 

����� 1 1 
�	���

� 
1 

�2 

Ωl = Ωp 1 + 
2Q2 

− 
Q 

1 + 
2Q 

(b)	 Use these results to show that the -3dB bandwidth of the second-order filter is 

Ωp
Δ = 

Q 

Hint: Write Δ = 
√

a + b −√a − b. 

(c)	 Determine the transfer function of a second-order bandpass filter with a center frequency 
of 100 Hz., and a -3dB bandwidth of 10 Hz. 

Problem 5: A sampling system takes samples at regular intervals ΔT . Assume we have 
a sinusoid 

y(t) = sin Ωt, 

so that the samples are y(nΔT ) = sin nΩΔT . We know that if the frequency Ω is greater 
than the Nyquist frequency ΩN = π/ΔT , the sample set is aliased. 

Now consider two sinusoids, one y(t) = sin nΩ0ΔT with a frequency Ω0 that is below the 
Nyquist frequency, and another with frequency Ω1 above the Nyquist frequency. 

(a) Assume y1(t) = sin Ω1t where 

Ω1 = 2kΩN − Ω0, k = 1 . . . ∞ is any positive integer. 

Show that the sample sets are related by y1(nΔT ) = −y(nΔT ) = − sin(nΩ0ΔT ), 

(b)	 Repeat part (a) with 

Ω1 = 2kΩN + Ω0, k = 1 . . . ∞ is any positive integer. 

and show that in this case the sample sets are identical, that is y2(nΔT ) = y(nΔT ) = 
sin(nΩ0ΔT ). 

(c)	 Use the results of (a) and (b) to graphically demonstrate the concept of “frequency 
folding” of aliased sinusoids. 

(d)	 A periodic waveform is written as a Fourier Series 

y(t) = 5 sin(2π(25)t) + 2sin(2π(75)t) + 3 sin(2π(125)t). 

If the waveform is sampled at 100 samples/sec, determine the frequencies and ampli­
tudes of the spectral components in the sampled waveform. (Hint: The results of parts 
(a) and (b) should help.) 


