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Problem Set 6 Solution 

Assigned: October 23, 2008	 Due: October 30, 2008 

Problem 1: 

Given the difference equation, 

yn = −0.5yn−1 + 0.5un + un−1 

(a)	 The transfer function is given by, 

Y (z) 0.5 + 1z−1 0.5z + 1 
H(z) = = = 

U(z) 1 + 0.5z−1 z + 0.5 

(b) Pole zero map 

Pole−Zero Map 
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(c) The system is causal, therefore the ROC includes all �z > 0.5 – which includes the unit circle. |
The system is therefore stable. 

(d) Let Ω = ωΔT . The system frequency response magnitude is given by 

� �	

� 0.5ejΩ + 1 � 
� H(ejΩ)� = |H(z)|z=ejΩ | = 

ejΩ + 0.5

1.25 + cos(Ω) 
= 

1.25 + cos(Ω) 

= 1. 

and the system is an all-pass filter.

When ω = 0 (or Ω = 0), � H(jω) = 0.

When ω = π/T (or Ω = π), H(jω) = −π.
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Problem 2: 

For the following functions, we want a causal function, thus the ROC is z > largest pole . Since | |	 | |
the poles are inside the unit circle, the functions are stable. 

(a)	 Since hn = Z−1 {Ha(z)}, and 

1 − z−1 1 z−1 

Ha(z) =
1 + 0.77z−1 

=
1 + 0.77z−1 

−
1 + 0.77z−1 

and from a table of z-transforms


hn = (−0.77)n un − (−0.77)n−1 un−1, n ≥ 0


(b)	 Write the transfer function as 
2z + z 

Hb(z) =	 , 
z2 + 0.9z + 0.81


for z > 0.9. Then comparing with the given forms
| |


z(z − r cos(a))

2	 2

Z {r	n cos(an)} = 
z − 2r cos(a)z + r

n sin(an)} = 
r sin(a)z

,
2	 2

Z {r
z − 2r cos(a)z + r


rewrite Hb(z) as


Hb(z) = 
2 

z2 − r cos(a)z 
2 

+ K 
2 

r sin(a)z 
2
.


z − 2r cos(a)z + r z − 2r cos(a)z + r


where −r cos(a) + Kr sin(a) = 1, so that


hn = (r n cos(an) + Krn sin(an)) u(n)


Comparing coefficients in the denominator


r = 0.9, cos(a) = −1/2, giving a =
3

2 
π, sin(a) = 

√
3/2, and K =

0.

1

9

.√1
3 

or 
�	 � 

hn =
0.9n cos(2nπ/3) + 

0.

1
9
.√1

3 
sin(2nπ/3) n ≥ 0 

0 n < 0 

Problem 3: Proakis and Manolakis: Problem 3.8 (p. 215) 

(a) 

y(n) = 
n 

x(k) = 
∞

x(k)u(n − k) = x(n) ⊗ u(n) 
k=−∞ k=−∞ 

Y (z) = X(z)U(z) = X(z) 
1−z−1 

(b) 

u(n) ⊗ u(n) = 
∞

u(k)u(n − k) = 
n 

u(k) = (n + 1)u(n) 
k=−∞	 k=−∞ 

X(z) = U(z)U(z) = 
(1−z

1 
−1)2 
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Problem 4: Write 

z2 

H(z) =

2 z +
z
 −
 56 1

6 
2z

= 
(z −
 12)(z −
 13 )


3z 2z

=
 1

2

−

z −
 13z −


3 2

=
 1

2z−1 
−

1 −
 13z−11 −

and 

� 

1 
�n � 

1 
�n 

hn = 3 
2 

un − 2 
3 

un 

Alternatively, using MATLAB 

>> [r,p,k]=residuez([1 0 0],[1 -5/6 1/6])

r =


2.99999999999999e+000

-1.99999999999999e+000


p =

500.000000000000e-003

333.333333333333e-003


k =

0.00000000000000e-003


>>


where p are the poles, and r are the residues at the poles. k contains the direct terms in a row 
vector (coefficients of z
 10, z , z
2 ,
 ... in the partial fraction expansion for the cases when numerator

order is larger than denominator order). 

The command 

>> [h,t]=impz([1 0 0],[1 -5/6 1/6])


generates the following plot: 
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Problem 5: 

(a) From H(z) 

yn = 1, 556yn−1 − 1.272yn−2 + 0.398yn−3 + 0.0798(fn + fn−1 + fn−2 + fn−3). 

(b) >> z=roots([1 1 1 1]) 
z =


-1.00000000000000e+000

-402.455846426619e-018 + 1.00000000000000e+000i

-402.455846426619e-018 - 1.00000000000000e+000i


>> p=roots([1 -1.556 1.272 -0.398])

p =


500.102320736184e-003 + 682.633555786812e-003i

500.102320736184e-003 - 682.633555786812e-003i

555.795358527632e-003


>> zplane(z,p)

>>


giving poles at 0.5558, 0.5001 ± j0.6826, and zeros at −1, 0± j1., and the pole-zero plot: 

Im
ag

in
ar

y 
P

ar
t 

1 

0.8 

0.6 

0.4 

0.2 

0 

−0.2 

−0.4 

−0.6 

−0.8 

−1 

z−plane 
unit circle 

−1 −0.5 0 0.5 1 
Real Part 

(c)	 >> a=[1 -1.556 1.272 -0.398]; 
>> b=0.0798*[1 1 1 1]; 
>> [H,w]=freqz(b,a); 
>> figure 
>> plot(w,abs(H)); 
>> 

generates the following two plots (log-magnitude and linear-magnitude): 
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The pole-aero plot shows zeros on the unit-circle at angles Ω = π/2 and π, indicating that 
the frequency response magnitude should dip to zero at these frequencies. This is seen on 
the frequency response plots. There are three poles, not on the unit-circle, but in the low-
frequency region, indicating a low-pass action. Note the ripple in the pass-band and the 
stop-band - a characteristic of elliptic filters. 

(d)	 The MATLAB function [H,w]=freqz() returns the frequency vector w normalized to the range 
0 ≤ Ω ≤ π. The physical frequency ω is found from ω = Ω/ΔT , where ΔT is the sampling 
interval. Experimentation with the data cursor on the linear magnitude plot finds that the 
-3 dB cut-off frequency is at Ω = 1, giving the physical cut-off frequency ω = 1/10−4 = 104 

rad/s. 
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