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Problem 1:
Given the difference equation,

Yn = —0.5yn—1 + 0.5u, + Up—1
(a) The transfer function is given by,
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(c) The system is causal, therefore the ROC includes all ||z| > 0.5 — which includes the unit circle.
The system is therefore stable.

(d) Let 2 = wAT. The system frequency response magnitude is given by
0.567% + 1
e 4 0.5

1.25 + cos(Q?)
1.25 + cos(Q?)

[H ()| = [H(2)|,opo| =

= 1L
and the system is an all-pass filter.
When w =0 (or Q2 =0), /H(jw) =0.
When w =7/T (or Q =), LH(jw) = —.



Problem 2:

For the following functions, we want a causal function, thus the ROC is |z| > |largest pole|. Since
the poles are inside the unit circle, the functions are stable.

(a) Since h, = Z7' {H,(z)}, and

1—271 1 271

H,(z) = _ _
) = o7t T 1o Tromd

and from a table of z-transforms

b = (—0.77)"uy — (—=0.77)" tup_y,  n>0

(b) Write the transfer function as

B 22 +z

© 2240924 0.81°
for |z] > 0.9. Then comparing with the given forms

Hb(z)

z(z — rcos(a))

Z{r" =
{r" cos(an)} 22 _9op cos(a)z + r2
. rsin(a)z
Z{r" =
{r"sin(an)} 22 _ o cos(a)z + r2’
rewrite Hy(z) as
Hy(z) 2* —rcos(a)z rsin(a)z
z) = '
b 22 — 27 cos(a)z + 12 2% = 2rcos(a)z + 72

where —r cos(a) + Krsin(a) = 1, so that
hy, = (r" cos(an) + Kr™ sin(an)) u(n)

Comparing coefficients in the denominator

2 1.1
r=09, cos(a)=—1/2, giving a = -m, sin(a)=+v3/2, and K = ——
() = =1/2, giving a =2, sina) = V3/ N

or

0.9v/3

o 0.9™ (cos(2n7r/3) + Lt sin(2n7r/3)) n >0
" lo n<0

Problem 3: Proakis and Manolakis: Problem 3.8 (p. 215)

(a)

y(n) = kzzn_:oox(k) = kzioox(k)u(n — k) =z(n) @ u(n)
Y(2) = X(2)U(2) = 2,
(b)
u(n) @ u(n) = kziio u(k)u(n — k) = kzzn_:oou(k) = (n+ 1)u(n)



Problem 4: Write

z
H(z) =
() 22—32241
(z—3)(z—3)
_ 3z _ 2z
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and

Alternatively, using MATLAB
>> [r,p,k]l=residuez([1 0 0],[1 -5/6 1/6])

r =
2.99999999999999e+000
-1.99999999999999e+000
p =
500.000000000000e-003
333.333333333333e-003
k =
0.00000000000000e-003
>>

where p are the poles, and r are the residues at the poles. k contains the direct terms in a row

vector (coefficients of 20, 2!, 22, ... in the partial fraction expansion for the cases when numerator

order is larger than denominator order).

The command
>> [h,t]=impz([1 0 0],[1 -5/6 1/61)

generates the following plot:
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Problem 5:

(a) From H(z)
Yn = 17 556yn—1 - 1272yn—2 + 0398yn—3 + 00798(fn + fn—l + fn—2 + fn—?))-

(b) >> z=roots([1 1 1 1]1)

z =
-1.00000000000000e+000
-402.455846426619e-018 + 1.00000000000000e+0001
-402.455846426619e-018 - 1.00000000000000e+0001

>> p=roots([1 -1.556 1.272 -0.398])

p =
500.102320736184e-003 + 682.633555786812e-0031
500.102320736184e-003 - 682.633555786812e-0031
555.795358527632e-003

>> zplane(z,p)

>>

giving poles at 0.5558, 0.5001 + j0.6826, and zeros at —1, 0=+ j1., and the pole-zero plot:
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(c) >> a=[1 -1.556 1.272 -0.398];
>> b=0.0798*[1 1 1 1];
>> [H,w]=freqz(b,a);
>> figure
>> plot(w,abs(H));
>>

generates the following two plots (log-magnitude and linear-magnitude):
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The pole-aero plot shows zeros on the unit-circle at angles Q = 7/2 and =, indicating that
the frequency response magnitude should dip to zero at these frequencies. This is seen on
the frequency response plots. There are three poles, not on the unit-circle, but in the low-
frequency region, indicating a low-pass action. Note the ripple in the pass-band and the
stop-band - a characteristic of elliptic filters.

(d) The MATLAB function [H,w]=freqz() returns the frequency vector w normalized to the range
0 < Q < 7. The physical frequency w is found from w = Q/AT, where AT is the sampling
interval. Experimentation with the data cursor on the linear magnitude plot finds that the
-3 dB cut-off frequency is at = 1, giving the physical cut-off frequency w = 1/107% = 10*
rad/s.



