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Problem 1: 

There are a number of ways to prove this – here are two: 

(a) Start with an acausal filter of the same length 

(N−1)/2 

Ha(z) = hnz −n 

n=−(N−1)/2 

with N odd, and with real, odd symmetric coefficients hn = −h−n so that the impulse 
response is a real, odd function. Since 

DTFT 

{hn} ⇐⇒ H(ejΩ), 

from the properties of the DTFT, namely that a real, odd function has a imaginary, odd 
DTFT, then Ha(e

jΩ) is imaginary and odd. Ha(z) may be made causal by adding a delay of 
(N − 1)/2, that is 

H(z) = z −(N−1)/2Ha(z) 

so that 
H(ejΩ) = e −jΩ(N−1)/2Ha(e

jΩ) 

Since Ha(e
jΩ) is imaginary 

6 H(ejΩ) = 6 je−jΩ(N−1)/2 = −
(N − 1) 

Ω ± π/2 
2 

which is linear with frequency Ω = ωΔT (apart from possible jump discontinuities where 
Ha(e

jΩ) changes sign. Note that in practical filters, any jump in the phase response will 
occur outside the pass-band, and is generally ignored.) The equivalent delay is found from 
the slope, and represents a delay of (N − 1)/2 samples. 

(b) Assume the causal filter and let 

N−1 

H(z) = hnz −n 

n=0 

= h0z 
0 + h1z 

−1 + . . . + hN−1z 
−(N−1) 

with N odd, and with odd symmetric coefficients about the mid-point, hn = −hN−1−n. Group 
the symmetric components together 

H(z) = h0 z 0 − z −(N−1) + h1 z −1 − z −(N−2) + h2 z −2 − z −(N−2) + . . . + h(N−1)/2z 
−(N−1)/2 
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(N−1)/2−1 

= hn z −n − z −(N−1−n) + h(N−1)/2z 
−(N−1)/2 

n=0 
  

(N−1)/2−1 

= z −(N−1)/2 hn z(N−1)/2−n − z −((N−1/2)−n) 
  

n=0 

since, as noted in the problem statement, for an odd-symmetric function about the mid-point 
h(N−1)/2 = 0. The frequency response is H(ejΩ) = H(z)|z=ejΩ 

  

(N−1)/2−1 

H(ejΩ) = e −jΩ(N−1)/2 hn ejΩ((N−1)/2−n) − e −jΩ((N−1/2)−n) 
 

n=0 
  

(N−1)/2−1 

= je−jΩ(N−1)/2 
 2hn sin (Ω((N − 1)/2 + n))  

n=0 

= je−jΩ(N−1)/2Ha(e
jΩ), 

The function Ha(e
jΩ) is purely real, therefore 

6 H(ejΩ) = 6 je−jΩ(N−1)/2 = −
(N − 1) 

Ω ± π/2 
2 

which is linear with frequency Ω = ωΔT (apart from possible jump discontinuities of π at 
sign changes in Ha(e

jΩ), which as noted above occur outside the pass-band) and represents 
a delay of (N − 1)/2 samples. 

Problem 2: 

(a) The system has 7 zeros and 7 poles at the origin. It is therefore a non-recursive FIR system. 

(b) The zeros are at: 

( ( ) ( )) ( ( ) ( )) 

4 3 4 π π 3 π π 
1, − , − , cos ± j sin , cos ± j sin 

3 4 3 3 3 4 3 3 

With the help of MATLAB: 

z1 = 1;

z2 = -4/3;

z3 = -3/4;

z4 = (4/3)*(cos(pi/3) + i* sin(pi/3));

z5 = (4/3)*(cos(pi/3) - i* sin(pi/3));

z6 = (3/4)*(cos(pi/3) + i* sin(pi/3));

z7 = (3/4)*(cos(pi/3) - i* sin(pi/3));

z = [z1 z2 z3 z4 z5 z6 z7];

p = [0 0 0 0 0 0 0];

K=1;

H = tf(zpk(z, p, K, -1))


The transfer function is 

z7 − z6 + 2.79z4 − 2.79z3 + z1 − z0 

H(z) = 
7z

= z 0 − z −1 + 2.79z −3 − 2.79z −4 + z −6 − z −7 
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so that this is an odd symmetric filter with N = 8 and 

{hn} = {1, −1, 0, 2.79, −2.79, 0, 1, −1} 

Then H(zejΩ) has a linear phase shift with frequency 

6 H(ejΩ) = 6 je−jΩ(N−1)/2) = − 
7
Ω + π/2 

2 

and the delay Δ is the slope, that is 

Δ = − 
d 

6 H(ejΩ) = 7/2 steps. 
dΩ 

(c) The MATLAB command 

freqz([1 -1 0 2.792 -2.792 0 1 -1], [1])


generates the following plot 
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which shows a crude “band-pass” characteristic. The phase plot shows a change in phase of 
−7π/2 over a range of π in frequency, corresponding to a delay of 7/2 steps. 

Problem 3: The following MATLAB script was used for this problem: 

% Problem Set 6 -- Problem 3

% Enter the signal and contaminate it:

t = 0:.1:100;

signal = sin(4*pi*t);

noise = 2*(rand(size(signal))-.5);
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noisy_signal = signal + noise;

% Plot the waveforms

figure(1)

plot(t,signal,’b’)

hold on

plot(t,noisy_signal,’r’)

title(’Signal and Additive Noise’)

hold off

%

% Design the filter

%

w_c = 0.42;

w_stop = 0.48;

passband_ripple = 0.1;

stopband_ripple = 0.01

[N,Wn,BETA,FILTYPE] = kaiserord([w_c w_stop],[1 0], [passband_ripple stopband_ripple],2)

B = fir1(N,Wn,FILTYPE,kaiser(N+1,BETA));

A = 1;

%

% Filter the noisy data and plot the output

%

filtered_signal = filter(B,A,noisy_signal);

figure(2)

plot(t,filtered_signal,’g’)

title(’Filtered Signal’)

%

% Plot the frequency response and pole-zero plots

%

figure(3)

freqz(B,A);

figure(4)

zplane(B,A)

df = 1/100.1;

f = -5:df:-5+1000*df;

figure(5)

plot(f,fftshift(abs(fft(noisy_signal))))

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F|’)

title(’Magnitude Spectrum of Noisy Signal’)

figure(6)

plot(f,fftshift(abs(fft(filtered_signal))))

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F|’)

title(’Magnitude Spectrum of Low-Pass Filtered Signal’)


This script gave the filter parameters from kaiserord() as: N = 75, β = 3.395, ωn = 0.45. 
The following plots were produced: 
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The following two spectra have been prepared using fftshift() to center them on 0 Hz,
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Note that the pole-zero plot is composed with zeros on the unit-circle at angles Ω corresponding 
to frequencies above the cut-off frequency – thus forcing the magnitude response to zero at those 
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frequencies - this is therefore a low-pass filter. It is interesting to note that below the cut-off 
frequency, the zeros appear to be in pairs where their magnitudes are reciprocals - one inside and 
one outside the unit circle (in addition to be in complex conjugate pairs as well). Think about 
what this means (it also is evident in the pole-zero plot given in Problem 2, and we will see the 
same thing in the results of Problems 4 and 5). 

Problem 4: The MATLAB script from Problem 3 was modified slightly for this problem to design 
a band-pass filter: 

% Problem Set 6 -- Problem 4

% Enter the signal and contaminate it:

t = 0:.1:100;

signal = sin(4*pi*t);

noise = 2*(rand(size(signal))-.5);

noisy_signal = signal + noise;

% Plot the waveforms

figure(1)

plot(t,signal,’b’)

hold on

plot(t,noisy_signal,’r’)

title(’Signal and Additive Noise’)

hold off

%

% Design the filter

%

% Frequency specs - normalized to the Nyquist frequency

w_sl=0.35;

w_cl=0.39;

w_cu = 0.41;

w_su = 0.45;

% Pass and stop band ripple

p_rip = 0.1;

s_rip = 0.01;

[N,Wn,BETA,TYPE] = kaiserord([w_sl w_cl w_cu w_su],[0 1 0], [s_rip p_rip s_rip],2)

B = fir1(N,Wn,TYPE, kaiser(N+1,BETA));

A = 1;

%

% Filter the noisy data and plot the output

%

filtered_signal = filter(B,A,noisy_signal);

figure(2)

plot(t,filtered_signal,’g’)

title(’Filtered Signal’)

%

% Plot the frequency response and pole-zero plots

%

figure(3)

freqz(B,A);

figure(4)

zplane(B,A)

df = 1/100.1;
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f = -5:df:-5+1000*df;

figure(5)

plot(f,fftshift(abs(fft(noisy_signal))))

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F|’)

title(’Magnitude Spectrum of Noisy Signal’)

figure(6)

plot(f,fftshift(abs(fft(filtered_signal))))

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F|’)

title(’Magnitude Spectrum of Band-Pass Filtered Signal’)


This script gave the filter parameters from kaiserord() as: N = 112, β = 3.395, ωn = [0.37 0.43]. 
The following plots were produced: 
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The following two spectra have been prepared using fftshift() to center them on 0 Hz, 

Magnitude Spectrum of Noisy Signal 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

M
ag

ni
tu

de
 |F

| 

−5 −4 −3 −2 −1 0 1 2 3 4 5 
Frequency (Hz) 

Magnitude Spectrum of Band−Pass Filtered Signal 

M
ag

ni
tu

de
 |F

| 

450 

400 

350 

300 

250 

200 

150 

100 

50 

0 
−5 −4 −3 −2 −1 0 1 2 3 4 5 

Frequency (Hz) 

−80 

−60 

−40 

−20 

0 

M
ag

ni
tu

de
 (

dB
)

P
ha

se
 (

de
gr

ee
s)

 

0	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Normalized Frequency (×π rad/sample) 

600 

400 

200 

0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

−200 

−400 

−600 

Normalized Frequency (×π rad/sample) 

9




Im
ag

in
ar

y 
P

ar
t 

1.5 

1 

0.5 

0 

−0.5 

−1 

−1.5 

112 

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 
Real Part 

Note that the pole-zero plot is composed with zeros on the unit-circle at angles Ω corresponding to 
frequencies above and below the cut-off frequency – thus forcing the magnitude response to zero at 
those frequencies - this is therefore a band-pass filter. As in Problem 3, it is interesting to note that 
within the pass-band the four zeros appear to be in pairs where their magnitudes are reciprocals ­
one inside and one outside the unit circle (in addition to be in complex conjugate pairs as well). 

Problem 5: The following MATLAB script was used to design and test a band-stop filter: 

% Problem Set 6 -- Problem 5

% Enter the signal and contaminate it:

Dt = 1/300;

t = 0:Dt:1999*Dt;

f_sample = 1/Dt;

f_nyquist = f_sample/2;

%

signal = 1.5*sin(2*pi*30*t) + 2*cos(2*pi*90*t);

noise = sin(2*pi*60*t);

noisy_signal = signal + noise;

% Plot the magnitude spectrum of the

% contaminated signal

f = -150:1/(2000*Dt):-150+1999/(2000*Dt);

figure(1)

plot(f,fftshift(abs(fft(noisy_signal))))

title(’Magnitude Spectrum of Signal with 60 Hz Contamination’)

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F_m|’)

f_norm = 60/f_nyquist;

%

% Design the filter

%

w_sl = f_norm*0.9;

w_cl = f_norm*0.7;

w_cu = f_norm*1.3;

w_su = f_norm*1.1;
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p_ripple = 0.1;

s_ripple = 0.01;

[N,Wn,BETA,TYPE] = kaiserord([w_cl w_sl w_su w_cu],[1 0 1], [p_rip s_rip p_rip],2)

B = fir1(N,Wn,TYPE, kaiser(N+1,BETA));

A = 1;

% Filter the noisy data and plot the output magnitude spectrum

%

figure(2)

filtered_signal = filter(B,A,noisy_signal);

plot(f, fftshift(abs(fft(filtered_signal))))

title(’Magnitude Spectrum of the Filtered Signal’)

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F_m|’)

%

% Plot the frequency response and pole-zero plots

%

figure(3)

freqz(B,A);

figure(4)

zplane(B,A)

% Extra plots - not asked for!

% Plot segments of the input and filtered signals

% First interpolate the signals ant time by a factor of eight to make the

% plots more readable.

s_8 = resample(signal,8,1);

ns_8 = resample(noisy_signal,8,1);

fs_8 = resample(filtered_signal,8,1);

t_8 = resample(t,8,1);

% Plot the original signal and the contaminated signal

figure(5)

plot(t_8(300:500), s_8(300:500),’b--’,t_8(300:500), ns_8(300:500),’r’)

xlabel(’Time (sec)’)

ylabel(’Signal’)

title(’Segment of Signal and Contaminated Signal’)

figure(6)

plot(t_8(300:500), s_8(300:500),’b--’,t_8(300:500), fs_8(300:500),’r’)

xlabel(’Time (sec)’)

ylabel(’Signal’)

title(’Segment of Uncontaminated Signal and Filter Output’)

figure(7)

plot(t_8(1:500), s_8(1:500),’b--’,t_8(1:500), fs_8(1:500),’r’)

xlabel(’Time (sec)’)

ylabel(’Signal’)

title(’Initial Segment of Uncontaminated Signal and Filter Output’)


This script gave the filter parameters from kaiserord() as: N = 56, β = 3.395, ωcl = 360 rad/s, 
ωcu = 480 rad/s. The following plots were produced 
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Magnitude Spectrum of Signal with 60 Hz Contamination 
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The following plots were not asked for in the problem. To look at the waveforms it was necessary 
to interpolate the data records to show details of the waveforms, using resample(). See the script 
for details. 
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Initial Segment of Uncontaminated Signal and Filter Output 
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Note the delay in the filter output. 
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