
MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

∑

∑

() () ()

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

2.161 Signal Processing - Continuous and Discrete
Fall Term 2008

Solution of Problem Set 7

Assigned: October 30, 2008 Due: November 6, 2008

Problem 1:

There are a number of ways to prove this – here are two:

(a) Start with an acausal filter of the same length

(N−1)/2

Ha(z) = hnz −n

n=−(N−1)/2

with N odd, and with real, odd symmetric coefficients hn = −h−n so that the impulse
response is a real, odd function. Since

DTFT

{hn} ⇐⇒ H(ejΩ),

from the properties of the DTFT, namely that a real, odd function has a imaginary, odd
DTFT, then Ha(e

jΩ) is imaginary and odd. Ha(z) may be made causal by adding a delay of
(N − 1)/2, that is

H(z) = z −(N−1)/2Ha(z)

so that
H(ejΩ) = e −jΩ(N−1)/2Ha(e

jΩ)

Since Ha(e
jΩ) is imaginary

6 H(ejΩ) = 6 je−jΩ(N−1)/2 = −
(N − 1)

Ω ± π/2
2

which is linear with frequency Ω = ωΔT (apart from possible jump discontinuities where
Ha(e

jΩ) changes sign. Note that in practical filters, any jump in the phase response will
occur outside the pass-band, and is generally ignored.) The equivalent delay is found from
the slope, and represents a delay of (N − 1)/2 samples.

(b) Assume the causal filter and let

N−1

H(z) = hnz −n

n=0

= h0z
0 + h1z

−1 + . . . + hN−1z
−(N−1)

with N odd, and with odd symmetric coefficients about the mid-point, hn = −hN−1−n. Group
the symmetric components together

H(z) = h0 z 0 − z −(N−1) + h1 z −1 − z −(N−2) + h2 z −2 − z −(N−2) + . . . + h(N−1)/2z
−(N−1)/2

1

∑

()

∑

()

∑

()

∑

(N−1)/2−1

= hn z −n − z −(N−1−n) + h(N−1)/2z
−(N−1)/2

n=0
 

(N−1)/2−1

= z −(N−1)/2 hn z(N−1)/2−n − z −((N−1/2)−n)
 

n=0

since, as noted in the problem statement, for an odd-symmetric function about the mid-point
h(N−1)/2 = 0. The frequency response is H(ejΩ) = H(z)|z=ejΩ

 

(N−1)/2−1

H(ejΩ) = e −jΩ(N−1)/2 hn ejΩ((N−1)/2−n) − e −jΩ((N−1/2)−n)


n=0
 

(N−1)/2−1

= je−jΩ(N−1)/2
 2hn sin (Ω((N − 1)/2 + n)) 

n=0

= je−jΩ(N−1)/2Ha(e
jΩ),

The function Ha(e
jΩ) is purely real, therefore

6 H(ejΩ) = 6 je−jΩ(N−1)/2 = −
(N − 1)

Ω ± π/2
2

which is linear with frequency Ω = ωΔT (apart from possible jump discontinuities of π at
sign changes in Ha(e

jΩ), which as noted above occur outside the pass-band) and represents
a delay of (N − 1)/2 samples.

Problem 2:

(a) The system has 7 zeros and 7 poles at the origin. It is therefore a non-recursive FIR system.

(b) The zeros are at:

(() ()) (() ())

4 3 4 π π 3 π π
1, − , − , cos ± j sin , cos ± j sin

3 4 3 3 3 4 3 3

With the help of MATLAB:

z1 = 1;

z2 = -4/3;

z3 = -3/4;

z4 = (4/3)*(cos(pi/3) + i* sin(pi/3));

z5 = (4/3)*(cos(pi/3) - i* sin(pi/3));

z6 = (3/4)*(cos(pi/3) + i* sin(pi/3));

z7 = (3/4)*(cos(pi/3) - i* sin(pi/3));

z = [z1 z2 z3 z4 z5 z6 z7];

p = [0 0 0 0 0 0 0];

K=1;

H = tf(zpk(z, p, K, -1))

The transfer function is

z7 − z6 + 2.79z4 − 2.79z3 + z1 − z0

H(z) =
7z

= z 0 − z −1 + 2.79z −3 − 2.79z −4 + z −6 − z −7

2

()

so that this is an odd symmetric filter with N = 8 and

{hn} = {1, −1, 0, 2.79, −2.79, 0, 1, −1}

Then H(zejΩ) has a linear phase shift with frequency

6 H(ejΩ) = 6 je−jΩ(N−1)/2) = −
7
Ω + π/2

2

and the delay Δ is the slope, that is

Δ = −
d

6 H(ejΩ) = 7/2 steps.
dΩ

(c) The MATLAB command

freqz([1 -1 0 2.792 -2.792 0 1 -1], [1])

generates the following plot

20

M
ag

ni
tu

de
 (

dB
)

P
ha

se
 (

de
gr

ee
s)

−200

−400

−600

Normalized Frequency (×π rad/sample)

0

−20

−40

Normalized Frequency (×π rad/sample)
0 0.2 0.4 0.6 0.8 1

200

0

0 0.2 0.4 0.6 0.8 1

which shows a crude “band-pass” characteristic. The phase plot shows a change in phase of
−7π/2 over a range of π in frequency, corresponding to a delay of 7/2 steps.

Problem 3: The following MATLAB script was used for this problem:

% Problem Set 6 -- Problem 3

% Enter the signal and contaminate it:

t = 0:.1:100;

signal = sin(4*pi*t);

noise = 2*(rand(size(signal))-.5);

3

noisy_signal = signal + noise;

% Plot the waveforms

figure(1)

plot(t,signal,’b’)

hold on

plot(t,noisy_signal,’r’)

title(’Signal and Additive Noise’)

hold off

%

% Design the filter

%

w_c = 0.42;

w_stop = 0.48;

passband_ripple = 0.1;

stopband_ripple = 0.01

[N,Wn,BETA,FILTYPE] = kaiserord([w_c w_stop],[1 0], [passband_ripple stopband_ripple],2)

B = fir1(N,Wn,FILTYPE,kaiser(N+1,BETA));

A = 1;

%

% Filter the noisy data and plot the output

%

filtered_signal = filter(B,A,noisy_signal);

figure(2)

plot(t,filtered_signal,’g’)

title(’Filtered Signal’)

%

% Plot the frequency response and pole-zero plots

%

figure(3)

freqz(B,A);

figure(4)

zplane(B,A)

df = 1/100.1;

f = -5:df:-5+1000*df;

figure(5)

plot(f,fftshift(abs(fft(noisy_signal))))

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F|’)

title(’Magnitude Spectrum of Noisy Signal’)

figure(6)

plot(f,fftshift(abs(fft(filtered_signal))))

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F|’)

title(’Magnitude Spectrum of Low-Pass Filtered Signal’)

This script gave the filter parameters from kaiserord() as: N = 75, β = 3.395, ωn = 0.45.
The following plots were produced:

4

Signal and Additive Noise
2

1.5

1

0.5

0

−0.5

−1

−1.5

−2
0 20 40 60 80 100

Filtered Signal
2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

−2.5
0 20 40 60 80 100

The following two spectra have been prepared using fftshift() to center them on 0 Hz,

M
ag

ni
tu

de
 |F

|

Magnitude Spectrum of Noisy Signal
500

450

400

350

300

250

200

150

100

50

0
−5 −4 −3 −2 −1 0 1 2 3 4 5

Frequency (Hz)

5

500

450

400

350

300

250

200

150

100

50

0

Magnitude Spectrum of Low−Pass Filtered Signal

M
ag

ni
tu

de
 |F

|

−5 −4 −3 −2 −1 0 1 2 3 4 5
Frequency (Hz)

50

0

−50

−100

−150
0	 0.2 0.4 0.6 0.8 1

Normalized Frequency (×π rad/sample)

0

M
ag

ni
tu

de
 (

dB
)

−1000

−2000

−3000

−4000
0	 0.2 0.4 0.6 0.8 1

Normalized Frequency (×π rad/sample)

1.5

1

75

0.5

P
ha

se
 (

de
gr

ee
s)

Im
ag

in
ar

y
P

ar
t

0

−0.5

−1

−1.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
Real Part

Note that the pole-zero plot is composed with zeros on the unit-circle at angles Ω corresponding
to frequencies above the cut-off frequency – thus forcing the magnitude response to zero at those

6

frequencies - this is therefore a low-pass filter. It is interesting to note that below the cut-off
frequency, the zeros appear to be in pairs where their magnitudes are reciprocals - one inside and
one outside the unit circle (in addition to be in complex conjugate pairs as well). Think about
what this means (it also is evident in the pole-zero plot given in Problem 2, and we will see the
same thing in the results of Problems 4 and 5).

Problem 4: The MATLAB script from Problem 3 was modified slightly for this problem to design
a band-pass filter:

% Problem Set 6 -- Problem 4

% Enter the signal and contaminate it:

t = 0:.1:100;

signal = sin(4*pi*t);

noise = 2*(rand(size(signal))-.5);

noisy_signal = signal + noise;

% Plot the waveforms

figure(1)

plot(t,signal,’b’)

hold on

plot(t,noisy_signal,’r’)

title(’Signal and Additive Noise’)

hold off

%

% Design the filter

%

% Frequency specs - normalized to the Nyquist frequency

w_sl=0.35;

w_cl=0.39;

w_cu = 0.41;

w_su = 0.45;

% Pass and stop band ripple

p_rip = 0.1;

s_rip = 0.01;

[N,Wn,BETA,TYPE] = kaiserord([w_sl w_cl w_cu w_su],[0 1 0], [s_rip p_rip s_rip],2)

B = fir1(N,Wn,TYPE, kaiser(N+1,BETA));

A = 1;

%

% Filter the noisy data and plot the output

%

filtered_signal = filter(B,A,noisy_signal);

figure(2)

plot(t,filtered_signal,’g’)

title(’Filtered Signal’)

%

% Plot the frequency response and pole-zero plots

%

figure(3)

freqz(B,A);

figure(4)

zplane(B,A)

df = 1/100.1;

7

f = -5:df:-5+1000*df;

figure(5)

plot(f,fftshift(abs(fft(noisy_signal))))

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F|’)

title(’Magnitude Spectrum of Noisy Signal’)

figure(6)

plot(f,fftshift(abs(fft(filtered_signal))))

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F|’)

title(’Magnitude Spectrum of Band-Pass Filtered Signal’)

This script gave the filter parameters from kaiserord() as: N = 112, β = 3.395, ωn = [0.37 0.43].
The following plots were produced:

Signal and Additive Noise
2

1.5

1

0.5

0

−0.5

−1

−1.5

−2
0 20 40 60 80 100

Filtered Signal
1.5

1

0.5

0

−0.5

−1

−1.5
0 20 40 60 80 100

8

The following two spectra have been prepared using fftshift() to center them on 0 Hz,

Magnitude Spectrum of Noisy Signal

0

50

100

150

200

250

300

350

400

450

500

M
ag

ni
tu

de
 |F

|

−5 −4 −3 −2 −1 0 1 2 3 4 5
Frequency (Hz)

Magnitude Spectrum of Band−Pass Filtered Signal

M
ag

ni
tu

de
 |F

|

450

400

350

300

250

200

150

100

50

0
−5 −4 −3 −2 −1 0 1 2 3 4 5

Frequency (Hz)

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

P
ha

se
 (

de
gr

ee
s)

0	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (×π rad/sample)

600

400

200

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−200

−400

−600

Normalized Frequency (×π rad/sample)

9

Im
ag

in
ar

y
P

ar
t

1.5

1

0.5

0

−0.5

−1

−1.5

112

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
Real Part

Note that the pole-zero plot is composed with zeros on the unit-circle at angles Ω corresponding to
frequencies above and below the cut-off frequency – thus forcing the magnitude response to zero at
those frequencies - this is therefore a band-pass filter. As in Problem 3, it is interesting to note that
within the pass-band the four zeros appear to be in pairs where their magnitudes are reciprocals ­
one inside and one outside the unit circle (in addition to be in complex conjugate pairs as well).

Problem 5: The following MATLAB script was used to design and test a band-stop filter:

% Problem Set 6 -- Problem 5

% Enter the signal and contaminate it:

Dt = 1/300;

t = 0:Dt:1999*Dt;

f_sample = 1/Dt;

f_nyquist = f_sample/2;

%

signal = 1.5*sin(2*pi*30*t) + 2*cos(2*pi*90*t);

noise = sin(2*pi*60*t);

noisy_signal = signal + noise;

% Plot the magnitude spectrum of the

% contaminated signal

f = -150:1/(2000*Dt):-150+1999/(2000*Dt);

figure(1)

plot(f,fftshift(abs(fft(noisy_signal))))

title(’Magnitude Spectrum of Signal with 60 Hz Contamination’)

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F_m|’)

f_norm = 60/f_nyquist;

%

% Design the filter

%

w_sl = f_norm*0.9;

w_cl = f_norm*0.7;

w_cu = f_norm*1.3;

w_su = f_norm*1.1;

10

p_ripple = 0.1;

s_ripple = 0.01;

[N,Wn,BETA,TYPE] = kaiserord([w_cl w_sl w_su w_cu],[1 0 1], [p_rip s_rip p_rip],2)

B = fir1(N,Wn,TYPE, kaiser(N+1,BETA));

A = 1;

% Filter the noisy data and plot the output magnitude spectrum

%

figure(2)

filtered_signal = filter(B,A,noisy_signal);

plot(f, fftshift(abs(fft(filtered_signal))))

title(’Magnitude Spectrum of the Filtered Signal’)

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude |F_m|’)

%

% Plot the frequency response and pole-zero plots

%

figure(3)

freqz(B,A);

figure(4)

zplane(B,A)

% Extra plots - not asked for!

% Plot segments of the input and filtered signals

% First interpolate the signals ant time by a factor of eight to make the

% plots more readable.

s_8 = resample(signal,8,1);

ns_8 = resample(noisy_signal,8,1);

fs_8 = resample(filtered_signal,8,1);

t_8 = resample(t,8,1);

% Plot the original signal and the contaminated signal

figure(5)

plot(t_8(300:500), s_8(300:500),’b--’,t_8(300:500), ns_8(300:500),’r’)

xlabel(’Time (sec)’)

ylabel(’Signal’)

title(’Segment of Signal and Contaminated Signal’)

figure(6)

plot(t_8(300:500), s_8(300:500),’b--’,t_8(300:500), fs_8(300:500),’r’)

xlabel(’Time (sec)’)

ylabel(’Signal’)

title(’Segment of Uncontaminated Signal and Filter Output’)

figure(7)

plot(t_8(1:500), s_8(1:500),’b--’,t_8(1:500), fs_8(1:500),’r’)

xlabel(’Time (sec)’)

ylabel(’Signal’)

title(’Initial Segment of Uncontaminated Signal and Filter Output’)

This script gave the filter parameters from kaiserord() as: N = 56, β = 3.395, ωcl = 360 rad/s,
ωcu = 480 rad/s. The following plots were produced

11

Magnitude Spectrum of Signal with 60 Hz Contamination

P
ha

se
 (

de
gr

ee
s)

M

ag
ni

tu
de

 |F
|

M
ag

ni
tu

de
 |F

|
m

m
M

ag
ni

tu
de

 (
dB

)

2500

2000

1500

1000

500

0

−150 −100 −50 0 50 100

Frequency (Hz)

Magnitude Spectrum of the Filtered Signal
2000

1800

1600

1400

1200

1000

800

600

400

200

0

−150 −100 −50 0 50 100

Frequency (Hz)

20

0

−20

−40

−60

−80

0

0 0.2 0.4 0.6 0.8 1
Normalized Frequency (×π rad/sample)

−1000

−2000

−3000

−4000

−5000
0 0.2 0.4 0.6 0.8 1

Normalized Frequency (×π rad/sample)

12

150

150

Im
ag

in
ar

y
P

ar
t

1

0.5

0

−0.5

−1

56

−1.5 −1 −0.5 0 0.5 1 1.5
Real Part

The following plots were not asked for in the problem. To look at the waveforms it was necessary
to interpolate the data records to show details of the waveforms, using resample(). See the script
for details.

Segment of Signal and Contaminated Signal

−5

−4

−3

−2

−1

0

1

2

3

4

S
ig

na
l

Desired signal
Signal contaminated with 60 Hz component

0.12 0.13 0.14 0.15 0.16 0.17
Time (sec)

0.18 0.19 0.2 0.21

4
Segment of Uncontaminated Signal and Filter Output

−3

−2

−1

0

1

2

3

S
ig

na
l

Uncontaminated input signal
Filter output

−4
0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21

Time (sec)

13

Initial Segment of Uncontaminated Signal and Filter Output
4

−3

−2

−1

0

1

2

3

S
ig

na
l

Uncontaminated input signal
Filter output

0
−4

0.02 0.04 0.06 0.08 0.1 0.12
Time (sec)

0.14 0.16 0.18 0.2

Note the delay in the filter output.

14

