
MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

�

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

2.161 Signal Processing - Continuous and Discrete
Fall Term 2008

Solution of Problem Set 8: FIR Linear Filters

Assigned: November 6, 2008	 Due: November 18, 2008

Problem 1:
The standard Hilbert transformer is defined as:

−j Ω > 0
H(jΩ) =

+j Ω < 0

MATLAB uses the same definition and this can be verified by finding the phase of ω → 0+ . The
implemented filter’s phase has a linear component added to the −π/2 value (for ω > 0).

Our filter has −π/2 phase shift and this corresponds to:

A sin ((Ωa − Ω) t) = A (sin(Ωat) cos(Ωt) − cos(Ωat) sin(Ωt))

= −A sin(Ωat) sin(Ωt − π/2) − A cos(Ωat) sin(Ωt)

We have to be careful in implementing the scrambler. The scrambler diagram corresponds to the
below figure. However, note that the audio play is not affected by sign of output (i.e. a signal is
played the same as its negative version).

Ω
a

Ω
a

(a)	 The delay in implementation does not affect this discussion. So we ignore it for this analysis.
We consider a sinusoidal component of input as f(t) = sin(Ωot). The output of filter would
be |H(jΩo)| sin(Ωot+ 6 H(jΩo)) = (1+δ) sin(Ωot−

π
2). We follow this through above diagram

to compute g(t):

g(t) = −(1 + δ) sin(Ωot − π/2) sin(Ωat) − cos(Ωat) sin(Ωot)

= +(1 + δ) cos(Ωot) sin(Ωat) − cos(Ωat) sin(Ωot)

= sin((Ωa − Ωo)t) + δ sin(Ωat) cos(Ωot)

δ
= sin((Ωa − Ωo)t) + (sin((Ωa − Ωo)t) + sin((Ωa + Ωo)t))

2

δ	 δ
= (1 +) sin((Ωa − Ωo)t) + sin((Ωa + Ωo)t)

2	 2

As a result due to practical implementation, some “spurious” components are introduced at
Ωa + Ωo.

The original signal has a (desired) audio frequency content of Ωo = 300 − 3000 Hz. In the
beginning, we can pre-process the audio file with a band-pass filter passing 300 − 3000 Hz
contents and then follow it with the scrambling process.
We use a Hilbert transformer with a pass-band equal to 300 to (Fs/2 − 300) Hz, where Fs

is the sampling frequency . The extended pass-band of the filter, is because a high-order
(low-ripple) “firpm-built” Hilbert filter requires a symmetric pass-band (see MATLAB doc­
umentation). After passing the audio file through our transformer with Ωa = 3500 Hz, the
output will have a large (desired) spectrum content at 500 − 3200 Hz and a spurious content
at 3800 − 6500 Hz (which could be folded to some lower frequency). If δ is not small enough,
we might wish to post-process the filter output with a pass-band filter passing 500− 3200 Hz
contents and then save it as scrambled signal. This post processing step of scrambling, can
be considered as a pre-processing step of desrcambling procedure.
Theoretically, descrambling is the same as scramblibg. However, the practical realization
of the Hilbert filter is bandwidth limited (while the ideal Hilbert filter is an all-pass filter).
The Hilbert Filter for desrcambling, requires a pass-band equal to 500 to (Fs/2 − 500) Hz.
However, if we pre-process the srcambled signal with a pass-band filter passing 500 − 3200
Hz contents, then we can use the same Hilbert filter for scrambling and descrambling. The
output of desrcambling can be further post-processed with a pass-band filter passing audio
contents (300 − 300 Hz).

(b)	 This is not the complete solution to all parts of the problem. This simply serves to show the
approach. To study the full solution start with attached Main.m file and follow other scripts.
Note that the encoding and decoding functions can be identical (if we use proper pre/post
filters). Here is the encoding script:

function fout = encode(fin,Fs,Fc)

%% Design the Hilber transformer

% Note: firpm() seems to need the band edges to be symmetric about 0.5

h1=firpm(150,[300*2/Fs 1-300*2/Fs],[1 1],’Hilbert’);

% h1=firpm(150,[500*2/Fs 1-500*2/Fs],[1 1],’Hilbert’); % change in the decode file

y1=fftfilt(h1,fin);

%% Delay: Approach 1

N=length(h1); %N is odd

y2=zeros(size(fin));y2((N-1)/2+1:end)=fin(1:end-(N-1)/2);

%% Delay: Design the delay filter, Approach 2

% h2 = zeros(1,length(h1));

% h2((N-1)/2+1) = 1;

% Filter the data

% y2=fftfilt(h2,fin);

%% Filter Output

t=(0:length(fin)-1)*(1/Fs);

y3=-y1.*sin(2*pi*Fc*t’);

y4=-y2.*cos(2*pi*Fc*t’);

fout= y3+y4;

The following graph shows one the encoder’s Hilbert transformer (order 150).

Encoder Hilbert Filter for F =11.025 KHz
s

5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ag

ni
tu

de
 (

dB
)

−5

−10

−15

−20

Normalized Frequency (×π rad/sample)

0

P
ha

se
 (

de
gr

ee
s)

−5000

−10000

−15000
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (×π rad/sample)

We passed the input original audio through a band-pass filter (300-3000 Hz) to minimize the
folding of high frequencies. We used the same filter for the decoder output. We also used a band
pass filter (500-3200 Hz) for the encoder output or for the decoder input. These pass-band filters
are implemented as a series of low and high pass filters (all order 200). Otherwise, we could not
build a nice pass band filter in a single step. All these filters are shown on the next page

Note that following the original signal through all filters (audio filter, Hilbert, pre-decode, Hilbert
and audio filter), results in a delay equal to 750 samples (3 ∗ (200/2 + 200/2) + 2 ∗ (150/2)).
Although 750 might be a large number, but even for our lowest Fs = 11.02 KHz, this means less
then 0.07 second delay. This small delay is hardly noticeable by our hearing system and hence our
filter’s orders are not too large.

Audio Filter (Post−Decoding or Pre−Encoding)
20

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

0

−20

−40

−60

−80

−100

−120

−140

−160
0 2000 4000

Low Pass: Fs=11.025 KHz
High Pass: Fs=11.025 KHz
Low Pass: Fs=22.05 KHz
High Pass: Fs=22.05 KHz

6000 8000 10000
Frequency (Hz)

Post−Encoding (Pre−Decoding) Filter
20

0

−20

−40

−60

−80

−100

−120

−140

−160
0 2000 4000

Low Pass: Fs=11.025 KHz
High Pass: Fs=11.025 KHz
Low Pass: Fs=22.05 KHz
High Pass: Fs=22.05 KHz

6000 8000 10000
Frequency (Hz)

The following plots resulted from working on PS8Raw.wav:

(1): Magnitude Spectrum of Original Audio

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Frequency (Hz)

(2): Magnitude Spectrum of Encoder Input (After Audio Filter)

4500

4000

3500

3000

2500

2000

1500

1000

500

0

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000

Frequency (Hz)

(3): Magnitude Spectrum of Encoder Output

4500

4000

3500

3000

2500

2000

1500

1000

500

0

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000

Frequency (Hz)

(4): Magnitude Spectrum of Decoder Input (After Decoder Fitler)

4500

4000

3500

3000

2500

2000

1500

1000

500

0

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000

Frequency (Hz)

(5): Magnitude Spectrum of Decoder Output

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Frequency (Hz)

(6): Magnitude Spectrum of Audio Fitered Decoder Output

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Frequency (Hz)

Comparing the input and decoded spectra shows them to be the same. In your solutions, we will
be looking for stray spectral components that may result from ripple in your Hilbert transformer
response etc.

Problem 2:

(a) If H(s) = 1/s, then the bilinear transform (using Tustin’s approximation) gives:

1 T z + 1	 T 1 + z−1

H(z) = = =
2 z−1 2 z − 1 2 1 − z−1
T z+1

(b) From above
T

yn = yn−1 + (fn + fn−1)
2

which is the trapezoidal numerical integration rule.

The following MATLAB commands generate the frequency response:

b = [0.5 0.5];

a = [1 -1];

freqz(b,a)

title(’Bilinear Integrator’)

Bilinear Integrator
50

0

−50

−100
0	 0.2 0.4 0.6 0.8 1

Normalized Frequency (×π rad/sample)

0

−20

−40

−60

−80

−100

0	 0.2 0.4 0.6 0.8 1

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

	
M

ag
ni

tu
de

 (
dB

)

Note that while the phase is constant at −π/2, the magnitude plot does not show a constant slope
of -20 dB/decade as does the analog integrator.

Problem 3:

(a) The plant
s

H(s) =
s2 + 2s + 1

has (1) a zero at s = 0, and (2) a pair of coincident poles at s = −1. The root-matching
(matched z-transform) discrete-time system is

z − e0T z − 1
H(z) = K = K

(z − e−T)(z − e−T) z2 − 2e−T z + e−2T

and with T = 0.1 sec.,
z − 1

H(z) = K
z2 − 1.809z + 0.8187

To create a minimum delay filter, make the order of the numerator and denominator equal
by adding a zero at the origin:

z2 − z
H(z) = K

z2 − 1.809z + 0.8187

The gain factor K must be determined empirically. This is normally done using the final-
value theorem, but in this case lims→0 H(s) = 0 and the final values cannot be compared.
Some other amplitude criterion must be used; in this case the peak value of the two step
responses were compared and found to be 0.367 for the continuous system H(s) and 4.018
for the discrete system H(z). Then K = 0.367/4.018 = 0.0913.

0.0913(z2 − z)
H(z) =

z2 − 1.809z + 0.8187

Alternatively you might compare the response of the analog system to a ramp input r(t) = t
with the analogous discrete response to a ramp rn = 0.1n and use their final values to match
the gains resulting in K = 0.097. The step responses with K = 0.0913 are compared in the
plot below:

Step Response

A
m

pl
itu

de

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

−0.05

Continuous
Root matching

0 2 4 6 8 10 12
Time (sec)

Note the slight delay in the digital response.

(b) The system has repeated poles at s = −1. Then H(s) may be expressed in partial fractions as

1 1
H(s) = −

s + 1 (s + 1)2

and
� � �� � � ��

H(z) = Z L−1 1
−Z L−1 1

s + 1 (s + 1)2

z T e−T

= − (from tables)
z − e−T (z − e−T)2

z(z − e−T (1 + T))
=

z2 − 2e−T z + e−2T

z2 − 0.9953z
=

z2 − 1.8097z + 0.8187

As we discussed in class, this form of impulse invariant simulation suffers from a gain error,
and a correction

z2 − 0.9953z
H ′ (z) = TH(z) = 0.1

z2 − 1.8097z + 0.8187

is more frequently used. The step responses of H(s) and H ′ (z) are compared in the following
plot.

Impulse Invariant Simulation − Step Response

and we note:

• The final value is incorrect (due to aliasing in the transfer function), and

• Further empirical gain adjustment is necessary to match the peak responses.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

continuous
Impulse invariant

� �

� �

(c) With the bilinear transform

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 z−1
T z+1

H(z) =
� � ��2 � �

2 z−1 2 z−1+ 2 + 1
T z+1 T z+1

2T z2 − 1
=

(4 + 4T + T 2)z2 + (2T 2 − 8)z + (4 − 4T + T 2)

0.0454(z2 − 1)
=

z2 − 1.8095z + 0.8186

The step responses of H(s) and H(z) are compared in the following plot.

Bilinear Simulation − Step Response

bilinear
continuous

0 2 4 6 8 10

The frequency response of these three discrete approximations of our continuous filter, are plotted
and compared to the frequency response of the continuous filter in the next page. In general, root
matching and impulse invariant filters are approximately the same and show almost exactly the
same curves.
The magnitude plot shows that below 1 Hz, all of the three filters match very well with the
continuous filter. However as the frequency increases toward the Nyquist frequency the bilinear
filters deviates strongly from the continuos filter and the two others almost follow the continuos
curve.
On the other hand, in the phase plot, the bilinear filter almost exactly matches the continuos filter,
while the two others deviate strongly from the continuous filter and only match it at very low
frequencies (i.e. below 0.3 Hz).

0

−10

−20

−30

−40

−50

−60

−70
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (Hz)

Root matching
Impulse Invariant
Bilinear
Continuous

80

60

40

20

0

−20

−40

−60

−80

−100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (Hz)

Root matching
Impulse Invariant
Bilinear
Continuous

Problem 4:

(a)	 From the specifications

1
= 0.5 −→ ǫ = 1

1 + ǫ2

1
= 0.1 −→ λ = 3

1 + λ2

For a continuous filter (no pre-warping)

cosh−1(λ/ǫ) cosh−1(3/1)

N ≥ =	 = 3.022

cosh−1(ωr/ωc) cosh−1(11.75/10)

P
ha

se
 (

de
gr

ee
s)

	
M

ag
ni

tu
de

 (
dB

)

� �

� �

Therefore take N = 4.

(b) In the pre-warped analog filter the critical frequencies will be

ω ′ =
2

tan
ωcT

= 72654 rad/s c T 2

ω ′ =
2

tan
ωrT

= 90992 rad/s r T 2

and the order is given by

cosh−1(λ/ǫ) cosh−1(3/1)

N ≥ =	 = 2.53

cosh−1(ωr/ωc) cosh−1(.9099/.7265)

Therefore take N = 3.

(c)	 MATLAB gave me a lot of problems with ill-conditioning while trying to do this! I had to
scale the sampling rate back – for example by a factor of 100, to 500 samples/sec.:

[b, a] = cheby1(3, 3, 2*pi*100, ’s’);

[bz,az] = bilinear(b, a, 500, 100) %let bilinear() do the pre-warping

or

T = 1/500; wc = 2*pi*100;

wc_{p} = (2/T)*tan(wc*T/2); %do the pre-warping directly.

[b, a] = cheby1(3, 3, wc_{p}, ’s’);

[bz,az] = bilinear(b, a, 500)

or

[b, a] = cheby1(3, 3, 0.4);

all give the same result:

.04756z3 + 0.14273z2 + +0.14273z + 0.04756

H(z) =

z3 − 1.3146z2 + 1.17043z − 0.47524

(d) The pole-zero plot and frequency response plots are shown on the next page.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

3

Im
ag

in
ar

y
P

ar
t

−1 −0.5 0 0.5 1
Real Part

0

−50

−100

−150
0	 0.5 1 1.5 2 2.5

Frequency (Hz) x 10
4

0

−50

−100

−150

−200

−250

−300
0	 0.5 1 1.5 2 2.5

Frequency (Hz) x 10
4

P
ha

se
 (

de
gr

ee
s)

	
M

ag
ni

tu
de

 (
dB

)

(e) We have to pre-warp the band limits to use them in converting the prototype continuous low
pass filter (with cut-off frequency of 1 rad/sec) to our prototype continuous band pass filter.

0.04758z6 − 0.14273z4 + 0.14273z2 − 0.04758
Hbp(z) =

z6 − 1.6480z5 + 2.3066z4 − 2.1191z3 + 1.9118z2 − 0.9916z + 0.47524

P
ha

se
 (

de
gr

ee
s)

	
M

ag
ni

tu
de

 (
dB

)

20

0

−20

−40

−60

−80

−100

−120

−140

−160

−180

−200

4
x 10

0 0.5 1 1.5 2 2.5

X: 5000
Y: −3

Frequency (Hz)

X: 1.5e+04
Y: −3

0

−100

−200

−300

−400

−500

−600

−700
0	 0.5 1 1.5 2 2.5

Frequency (Hz) x 10
4

T = 1/500;

wc1 = 2*pi*50;

wc2 = 2*pi*150;

wc1_p = (2/T)*tan(wc1*T/2);

wc2_p = (2/T)*tan(wc2*T/2);

[b, a] = cheby1(3, 3, 1,’s’); % Design LP with wc=1 rad/sec

[b,a]=lp2bp(b,a,sqrt(wc1_p*wc2_p),(wc2_p-wc1_p)); %Change to BP

[bz,az] = bilinear(b, a, 500);

