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Problem 1: 
The standard Hilbert transformer is defined as: 

−j Ω > 0 
H(jΩ) = 

+j Ω < 0 

MATLAB uses the same definition and this can be verified by finding the phase of ω → 0+ . The 
implemented filter’s phase has a linear component added to the −π/2 value (for ω > 0). 

Our filter has −π/2 phase shift and this corresponds to: 

A sin ((Ωa − Ω) t) = A (sin(Ωat) cos(Ωt) − cos(Ωat) sin(Ωt)) 

= −A sin(Ωat) sin(Ωt − π/2) − A cos(Ωat) sin(Ωt) 

We have to be careful in implementing the scrambler. The scrambler diagram corresponds to the 
below figure. However, note that the audio play is not affected by sign of output (i.e. a signal is 
played the same as its negative version). 

Ω 
a 

Ω 
a 

(a)	 The delay in implementation does not affect this discussion. So we ignore it for this analysis. 
We consider a sinusoidal component of input as f(t) = sin(Ωot). The output of filter would 
be |H(jΩo)| sin(Ωot+ 6 H(jΩo)) = (1+δ) sin(Ωot−

π 
2 ). We follow this through above diagram 

to compute g(t): 

g(t) = −(1 + δ) sin(Ωot − π/2) sin(Ωat) − cos(Ωat) sin(Ωot) 

= +(1 + δ) cos(Ωot) sin(Ωat) − cos(Ωat) sin(Ωot) 

= sin((Ωa − Ωo)t) + δ sin(Ωat) cos(Ωot) 

δ 
= sin((Ωa − Ωo)t) + (sin((Ωa − Ωo)t) + sin((Ωa + Ωo)t)) 

2



δ	 δ 
= (1 + ) sin((Ωa − Ωo)t) + sin((Ωa + Ωo)t)

2	 2 

As a result due to practical implementation, some “spurious” components are introduced at 
Ωa + Ωo. 

The original signal has a (desired) audio frequency content of Ωo = 300 − 3000 Hz. In the 
beginning, we can pre-process the audio file with a band-pass filter passing 300 − 3000 Hz 
contents and then follow it with the scrambling process. 
We use a Hilbert transformer with a pass-band equal to 300 to (Fs/2 − 300) Hz, where Fs 

is the sampling frequency . The extended pass-band of the filter, is because a high-order 
(low-ripple) “firpm-built” Hilbert filter requires a symmetric pass-band (see MATLAB doc­
umentation). After passing the audio file through our transformer with Ωa = 3500 Hz, the 
output will have a large (desired) spectrum content at 500 − 3200 Hz and a spurious content 
at 3800 − 6500 Hz (which could be folded to some lower frequency). If δ is not small enough, 
we might wish to post-process the filter output with a pass-band filter passing 500− 3200 Hz 
contents and then save it as scrambled signal. This post processing step of scrambling, can 
be considered as a pre-processing step of desrcambling procedure. 
Theoretically, descrambling is the same as scramblibg. However, the practical realization 
of the Hilbert filter is bandwidth limited (while the ideal Hilbert filter is an all-pass filter). 
The Hilbert Filter for desrcambling, requires a pass-band equal to 500 to (Fs/2 − 500) Hz. 
However, if we pre-process the srcambled signal with a pass-band filter passing 500 − 3200 
Hz contents, then we can use the same Hilbert filter for scrambling and descrambling. The 
output of desrcambling can be further post-processed with a pass-band filter passing audio 
contents (300 − 300 Hz). 

(b)	 This is not the complete solution to all parts of the problem. This simply serves to show the 
approach. To study the full solution start with attached Main.m file and follow other scripts. 
Note that the encoding and decoding functions can be identical (if we use proper pre/post 
filters). Here is the encoding script: 

function fout = encode(fin,Fs,Fc)


%% Design the Hilber transformer

% Note: firpm() seems to need the band edges to be symmetric about 0.5

h1=firpm(150,[300*2/Fs 1-300*2/Fs],[1 1 ],’Hilbert’);

% h1=firpm(150,[500*2/Fs 1-500*2/Fs],[1 1 ],’Hilbert’); % change in the decode file

y1=fftfilt(h1,fin);


%% Delay: Approach 1

N=length(h1); %N is odd

y2=zeros(size(fin));y2((N-1)/2+1:end)=fin(1:end-(N-1)/2);

%% Delay: Design the delay filter, Approach 2

% h2 = zeros(1,length(h1));

% h2((N-1)/2+1) = 1;

% Filter the data

% y2=fftfilt(h2,fin);




%% Filter Output

t=(0:length(fin)-1)*(1/Fs);

y3=-y1.*sin(2*pi*Fc*t’);

y4=-y2.*cos(2*pi*Fc*t’);

fout= y3+y4;


The following graph shows one the encoder’s Hilbert transformer (order 150). 

Encoder Hilbert Filter for F =11.025 KHz 
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We passed the input original audio through a band-pass filter (300-3000 Hz) to minimize the 
folding of high frequencies. We used the same filter for the decoder output. We also used a band 
pass filter (500-3200 Hz) for the encoder output or for the decoder input. These pass-band filters 
are implemented as a series of low and high pass filters (all order 200). Otherwise, we could not 
build a nice pass band filter in a single step. All these filters are shown on the next page 

Note that following the original signal through all filters (audio filter, Hilbert, pre-decode, Hilbert 
and audio filter), results in a delay equal to 750 samples ( 3 ∗ (200/2 + 200/2) + 2 ∗ (150/2) ). 
Although 750 might be a large number, but even for our lowest Fs = 11.02 KHz, this means less 
then 0.07 second delay. This small delay is hardly noticeable by our hearing system and hence our 
filter’s orders are not too large. 



Audio Filter (Post−Decoding or Pre−Encoding) 
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Post−Encoding (Pre−Decoding) Filter 
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The following plots resulted from working on PS8Raw.wav:




(1): Magnitude Spectrum of Original Audio 
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(2): Magnitude Spectrum of Encoder Input (After Audio Filter) 
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(3): Magnitude Spectrum of Encoder Output 
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(4): Magnitude Spectrum of Decoder Input (After Decoder Fitler) 
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(5): Magnitude Spectrum of Decoder Output 
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(6): Magnitude Spectrum of Audio Fitered Decoder Output 
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Comparing the input and decoded spectra shows them to be the same. In your solutions, we will 
be looking for stray spectral components that may result from ripple in your Hilbert transformer 
response etc. 



Problem 2: 

(a) If H(s) = 1/s, then the bilinear transform (using Tustin’s approximation) gives: 

1 T z + 1	 T 1 + z−1 

H(z) = = = 
2 z−1 2 z − 1 2 1 − z−1 
T z+1 

(b) From above 
T 

yn = yn−1 + (fn + fn−1)
2


which is the trapezoidal numerical integration rule.


The following MATLAB commands generate the frequency response: 

b = [0.5 0.5];

a = [1 -1];

freqz(b,a)

title(’Bilinear Integrator’)


Bilinear Integrator 
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Note that while the phase is constant at −π/2, the magnitude plot does not show a constant slope 
of -20 dB/decade as does the analog integrator. 



Problem 3: 

(a) The plant 
s 

H(s) = 
s2 + 2s + 1 

has (1) a zero at s = 0, and (2) a pair of coincident poles at s = −1. The root-matching 
(matched z-transform) discrete-time system is 

z − e0T z − 1 
H(z) = K = K 

(z − e−T )(z − e−T ) z2 − 2e−T z + e−2T 

and with T = 0.1 sec., 
z − 1 

H(z) = K 
z2 − 1.809z + 0.8187 

To create a minimum delay filter, make the order of the numerator and denominator equal 
by adding a zero at the origin: 

z2 − z 
H(z) = K 

z2 − 1.809z + 0.8187 

The gain factor K must be determined empirically. This is normally done using the final-
value theorem, but in this case lims→0 H(s) = 0 and the final values cannot be compared. 
Some other amplitude criterion must be used; in this case the peak value of the two step 
responses were compared and found to be 0.367 for the continuous system H(s) and 4.018 
for the discrete system H(z). Then K = 0.367/4.018 = 0.0913. 

0.0913(z2 − z)
H(z) = 

z2 − 1.809z + 0.8187 

Alternatively you might compare the response of the analog system to a ramp input r(t) = t 
with the analogous discrete response to a ramp rn = 0.1n and use their final values to match 
the gains resulting in K = 0.097. The step responses with K = 0.0913 are compared in the 
plot below: 
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Note the slight delay in the digital response. 

(b) The system has repeated poles at s = −1. Then H(s) may be expressed in partial fractions as 

1 1 
H(s) = − 

s + 1 (s + 1)2 

and 
� � �� � � �� 

H(z) = Z L−1 1 
−Z L−1 1 

s + 1 (s + 1)2 

z T e−T 

= − (from tables) 
z − e−T (z − e−T )2 

z(z − e−T (1 + T )) 
= 

z2 − 2e−T z + e−2T 

z2 − 0.9953z 
= 

z2 − 1.8097z + 0.8187 

As we discussed in class, this form of impulse invariant simulation suffers from a gain error, 
and a correction 

z2 − 0.9953z 
H ′ (z) = TH(z) = 0.1 

z2 − 1.8097z + 0.8187 

is more frequently used. The step responses of H(s) and H ′ (z) are compared in the following 
plot. 

Impulse Invariant Simulation − Step Response 

and we note: 

• The final value is incorrect (due to aliasing in the transfer function), and 

• Further empirical gain adjustment is necessary to match the peak responses. 
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(c) With the bilinear transform
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The step responses of H(s) and H(z) are compared in the following plot. 

Bilinear Simulation − Step Response 
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The frequency response of these three discrete approximations of our continuous filter, are plotted 
and compared to the frequency response of the continuous filter in the next page. In general, root 
matching and impulse invariant filters are approximately the same and show almost exactly the 
same curves. 
The magnitude plot shows that below 1 Hz, all of the three filters match very well with the 
continuous filter. However as the frequency increases toward the Nyquist frequency the bilinear 
filters deviates strongly from the continuos filter and the two others almost follow the continuos 
curve. 
On the other hand, in the phase plot, the bilinear filter almost exactly matches the continuos filter, 
while the two others deviate strongly from the continuous filter and only match it at very low 
frequencies (i.e. below 0.3 Hz). 
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Problem 4: 

(a)	 From the specifications 

1 
= 0.5 −→ ǫ = 1 

1 + ǫ2 

1 
= 0.1 −→ λ = 3 

1 + λ2


For a continuous filter (no pre-warping)
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Therefore take N = 4. 

(b) In the pre-warped analog filter the critical frequencies will be 

ω ′ = 
2 

tan 
ωcT 

= 72654 rad/s c T 2 

ω ′ = 
2 

tan 
ωrT 

= 90992 rad/s r T 2


and the order is given by


cosh−1(λ/ǫ) cosh−1(3/1)

N ≥ =	 = 2.53 

cosh−1(ωr/ωc) cosh−1(.9099/.7265)


Therefore take N = 3.


(c)	 MATLAB gave me a lot of problems with ill-conditioning while trying to do this! I had to 
scale the sampling rate back – for example by a factor of 100, to 500 samples/sec.: 

[b, a] = cheby1(3, 3, 2*pi*100, ’s’);

[bz,az] = bilinear(b, a, 500, 100) %let bilinear() do the pre-warping


or 

T = 1/500; wc = 2*pi*100;

wc_{p} = (2/T)*tan(wc*T/2); %do the pre-warping directly.

[b, a] = cheby1(3, 3, wc_{p}, ’s’);

[bz,az] = bilinear(b, a, 500)


or 

[b, a] = cheby1(3, 3, 0.4);


all give the same result:


.04756z3 + 0.14273z2 + +0.14273z + 0.04756

H(z) = 

z3 − 1.3146z2 + 1.17043z − 0.47524 

(d) The pole-zero plot and frequency response plots are shown on the next page. 
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(e) We have to pre-warp the band limits to use them in converting the prototype continuous low 
pass filter (with cut-off frequency of 1 rad/sec) to our prototype continuous band pass filter. 

0.04758z6 − 0.14273z4 + 0.14273z2 − 0.04758 
Hbp(z) = 

z6 − 1.6480z5 + 2.3066z4 − 2.1191z3 + 1.9118z2 − 0.9916z + 0.47524 
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T = 1/500;

wc1 = 2*pi*50;

wc2 = 2*pi*150;


wc1_p = (2/T)*tan(wc1*T/2);

wc2_p = (2/T)*tan(wc2*T/2);


[b, a] = cheby1(3, 3, 1,’s’); % Design LP with wc=1 rad/sec

[b,a]=lp2bp(b,a,sqrt(wc1_p*wc2_p),(wc2_p-wc1_p)); %Change to BP

[bz,az] = bilinear(b, a, 500);



