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Problem 1: Given a waveform x(t) with a pdf of the form 

p(x) = λe−λx x > 0 

= 0 otherwise 

calculate (a) the mean µx, and (b) the variance σx
2 . 

Problem 2: White noise is passed through an ideal low-pass filter with a cut-off frequency 
of ωc. Find the autocorrelation function of the filtered noise. 

Problem 3: A Mini-project: Deblurring the Hubble Telescope Images 

Read the Class Handout: Introduction to Two-Dimensional/Image Processing be­
fore attempting this mini-project. 

As you know, the scientific world was shocked by the poor quality of the initial images 
from the Hubble Space Telescope after its launch April 24, 1990. After it went into orbit, 
it became clear that something was wrong. While the pictures were clearer than those of 
ground-based telescopes, they were blurry, and not the pristine images promised. 

The telescope’s primary mirror had been polished with a ”spherical aberration” flaw. It 
was just slightly the wrong shape, causing the light that reflected from the center of the 
mirror to focus in a different place than the light reflected from the edge. The tiny flaw 
about 1/50th the thickness of a sheet of paper, was enough to seriously degrade the images. 

While the problem was well understood, the hardware fix was time consuming and very 
expensive. The rest is history, we now look in awe at the images from Hubble. 

In this mini-project we are going to use signal processing techniques to deblur some 
Hubble images. We provide you with two blurred images, your task is to sharpen them and 
restore the full fidelity. 

An gray-scale image can be thought of as a two-dimensional function f(x, y), where f • 
is the intensity of the image at point x, y in the image. 

A RGB (red-green-blue) colored image can be thought of having three separate com­• 
ponent images (a red fr(x, y), a green fg(x, y), and a blue fb(x, y)) image. 
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•	 A digital image is made up of pixels - in our case our images will be 512 × 512 pixels. 

Many optical distortions, such as blurring, can be thought of as a linear filtering op­• 
eration, with the difference that 1) the functions being filtered are functions of space 
(not time), and 2) are two-dimensional. 

An image processing filter has a two-dimensional impulse response, known as the point­• 
spread function h(x, y), reflects how an impulsive point at the center of the source image 
is “spread” out in space by the filter. 

The operation of a linear image processing filter is that of 2-D convolution of the 2-D • 
input image with the 2-D point-spread function (see the class handout). 

The two-dimensional Fourier transform is defined (see the class handout), and anal­• 
ogous with 1-D signal processing, the filtering may be done my multiplication in the 
Fourier domain, that is 

Y (j u, j v) = F (j u, j v)H(j u, j v) 

where F (j u, j v) = F2 {f(x, y)}, Y (j u, j v) = F2 {y(x, y)}, H(j u, j v) = F2 {h(x, y)} is 
the image filter’s 2-D frequency response, and u, and v are spatial frequencies with 
units of radians/unit length. 

Let’s assume that the aberrant mirror in the Hubble telescope has caused the true image 
f(x, y) to be blurred by convolution with a known point-spread function h(x, y), so that the 
image we are given is g(x, y). The process of recovering f(x, y) is known as deconvolution, or 
inverse filtering. In one-dimensional temporal linear processing, we might do the following: 

By definition, the inverse filter has a frequency response of 1/H(j ω) so that F (j ω) is re­
covered at its output. While it sounds easy, the process can be fraught with difficulties, 
for example if H(s) has zeros on the imaginary axis the gain of the inverse filter will go to 
infinity at that frequency. Also inverse filters often tend to amplify any high frequency noise. 

In the two-dimensional case, if we know the point-spread function h(x, y) that 
blurred the image, we can construct the inverse filter 1/H(j u, j v) and use it to 
restore the original. 
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Details of the MATLAB Tools You Might Need: 

•	 There are two blurred Hubble images to deal with. These are contained in the MAT­
LAB files blurredimage1.mat, and blurredimage2.mat. Each image is a 512 × 512 
RGB colored image. When loaded into MATLAB the image will be named blurred 
in each case (deal with them one at a time). You can view the image with 

load blurredimage1;

image(blurred);


•	 MATLAB has 2-D fft functions fft2() and ifft2(). Don’t forget that you will have 
to work on all three color planes in the image. 

•	 The mirror design engineers have told us that the distortion was equivalent to convolu­
tion with a Gaussian kernel such as produced by MATLAB’s image processing toolbox 
function fspecial(): 

hsize=25;

sigma = 3;

h = fspecial(’gaussian’, hsize, sigma);


You might want to use mesh(h) to take a look at it. 

If you don’t have access to the Image Processing toolbox, here is how you can construct 
the 2-D kernel: 

siz = (hsize-1)/2;

[x,y] = meshgrid(-siz(2):siz(2),-siz(1):siz(1));

arg = -(x.*x + y.*y)/(2*sigma*sigma);

h = exp(arg);

sumh = sum(h(:));

h = h/sumh;


Note that the sum of elements is set to unity. 

•	 When you have processed an RGB image and want to display it, the display function 
image(myRGBimage) requires that all values be real, positive, and in the range 0 to 1. 

Do not use the Image Processing Toolbox to solve this problem. We want to see each step

you took in solving the problem. Submit the listing of your MATLAB script as a .m file,

and upload your deblurred images before 1pm on the due date.


Problem 4: (This is from the take-home Quiz 2 from last year.)


You have probably realized by now that I just love the sound of my own voice! I used
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Windows Sound Recorder on my PC to make a recording of me saying “good morning” 
so that I can play it to myself each morning when I wake up. It just makes my day... 

Now, here’s the problem. Windows Sound Recorder has a button “Add Echo”, - which 
surprisingly adds an echo to a recorded sound. Unfortunately I clicked on this button before 
I saved the “.wav” file, and the result is that I sound as if I am speaking from inside a tin 
can! I hate that, and I want you to help restore my voice to its natural beauty. 

Your job is to analyze the recorded file to find out exactly how Microsoft added the echo, 
and then to remove it. 

On the class MIT Server is a Microsoft “.wav” file PS9Prob2.wav that contains me 
saying “good morning” to myself. Download the file and load it into MATLAB using the 
wavread() function. If your computer has speakers (or headphones) you can play the sound 
using the sound() or soundsc() functions. Use help audio to see the sound handling 
functions in MATLAB. 

(a)	 Given a function f(t) with autocorrelation φff (τ ), find an expression for the autocorre­
lation function φgg(τ ) of a waveform g(t) where 

g(t) = f(t) + αf(t − Δ)	 (1) 

is f(t) contaminated by an echo with delay Δ and amplitude α. Express your answer 
in terms of φff (τ). 

(b) In the case of a discrete-time signal contaminated by an echo, let 

gn = fn + αfn−m.	 (2) 

where m is the echo delay. Express the echo generation as a linear filtering operation 
and derive the the transfer function H(z). 

Use MATLAB to analyze the .wav file, using the results of part(a), to estimate the 
parameters α and m that Microsoft Windows Sound Recorder used to create the 
echo in the .wav file. 

(c)	 Using your results from (b), design a digital filter that will eliminate the echo contami­
nation from the .wav file. Derive the transfer function, and the difference equation. 

(d)	 Use MATLAB to apply your inverse filter to the sound file and show (hopefully) that 
it has removed the echo. 

Document your process so that we can understand exactly what you did. 
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