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MASSACHUSETTS INSTITUTE OF TECHNOLOGY


DEPARTMENT OF MECHANICAL ENGINEERING 

2.161 Signal Processing - Continuous and Discrete 
Fall Term, 2008 

Quiz #2 (Take Home)

Due in class (1pm) on December 9, 2008


Notes: 

• This is a take-home quiz. 
• Collaboration (with anybody) is expressly forbidden. 
• Do not spend excessive time on this quiz! 
• There are 4 problems, answer them all. 
• Partial credit will be given. 
• You may ask the teaching staff for help ­

but that help will be generally limited to 
ensuring that you have access to the 
required data files. 
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Problem 1: (20 points)


Here is a simple way to design a digital high-pass filter from a low-pass design (this is not a

method we talked about in class). Consider a prototype causal digital low-pass filter H̄lp(e

j ω).

The figure below shows how a digital low-pass filter may be transformed to a high-pass filter

by simply translating (shifting) its frequency response H( ej ω) by  π, that is we create the

high-pass filter from the prototype:


Hhp(e
j ω) =  Hlp( ej(ω−π)). 
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(a) Assume that the original low-pass filter has a recursive difference equation 

N M 

y(n) =  − aky(n − k) +  bkx(n − k) 
k=1 k=0 

corresponding to the discrete-time transfer function 
∑M bkz

−k 
k=0Hlp(z) =  ∑N1 +  k=1 akz−k 

Show that the difference equation of the new high-pass filter is 

N M 

y(n) =  − (−1)k aky(n − k) +  (−1)kbkx(n − k) 
k=1 k=0 

In other words, a high-pass filter may be constructed by simply alternating the signs 
of the coefficients in the low-pass difference equation! 

(b) Show that the two discrete-time impulse responses are related by 

hhp(n) = (−1)nhlp(n) 

(c) How is the phase response � Hhp(e
j ω) of the high-pass filter related to the phase response 

� Hlp(e
j ω) of the prototype low-pass filter? 

Problem 2: (25 points) An acoustic micro-GPS system. 

An experiment on human movement requires that we monitor the position of a person’s head 
during the experiment. The experiment is to be conducted in a room 20×20 ft. with a 10 ft. 
ceiling. Four loudspeakers have been installed in the top four corners of the room as shown 
below: 
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The human subject wears a microphone mounted on a helmet. 

•	 At regular intervals the transmitter broadcasts four uncorrelated wide-band acoustic 
signals si(t), i = 1  . . .  4, simultaneously - each to one of the loudspeakers as shown 
above. 

•	 The sampling rate used in both the transmitted and received signals is 100,000 sam­
ples/sec. 

•	 The microphone signal r(t) is fed to the receiver, which computes and stores the carte­
sian coordinates x, y, z of the subject’s head. 

•	 The transmitter and receiver have precision clocks that are synchronized, in other 
words the receiver knows the time origin of each transmitted signal. 

•	 The speed of sound is 1125 ft/s. 

•	 There is “significant” noise in the room. 

The Problem: You are given a file Q2Prob2.mat containing two MATLAB data ar­
rays: (1) A two-dimensional array s(4,500) containing the four transmitted waveforms 
s, and (2) a one-dimensional array r containing a single data record from the micro­
phone. Your task is to determine the cartesian coordinates (x, y, z) of the location of 
the microphone at this time. 

Notes: 

•	 The system is (deliberately) over-determined. In fact you only need three speakers to 
solve this problem. Just as in the GPS system the use of redundant sources allows 
for situations when one source might be occluded from the microphone. Your solution 
should use all four speakers. Use a least-squares approach to estimate the coordinates 
x, y, z. Suggestion: use MATLAB’s lsqnonlin(). 
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•	 Since this is not a course in numerical optimization, most of the grade will be based 
on setting up the data to pass to the least-squares solver. 

•	 MATLAB’s lsqnonlin() requires you to write a function that returns an error vec­
tor (not the objective function). For example x = lsqnonlin(@myfun, x0) uses the 
function myfun(). See the help. 

Problem 3: (25 points) System Identification 

We talked about the correlation method of system identification briefly in class, that is 

Ĥ(j Ω) = 
Rfy(j Ω) 
Rff (j Ω) 

where Ĥ(j Ω) is the estimated frequency response, Rff (j Ω) = F {ρff (τ)} is the auto-power 
spectrum at the input, and Rfy(j Ω) = F {ρfy(τ)} is the cross-power spectrum between input 
and output. This is all very nice in theory but, as we will see in this problem, things don’t 
always work out quite so well in practice. 

We have an unknown plant with frequency response H(j Ω) and impulse response h(t). 
Our goal is to find estimates Ĥ(j Ω) and ĥ(t) of these quantities from input-output measure­
ments. The system was driven with a wide-band input f(t), and the input and output y(t) 
were sampled. 
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The MATLAB file Q2Prob3.mat contains two data records (each of length 4096), recorded 
at 10,000 samples/sec. The vector f contains the input, and y contains the output. 

(a)	 Use the two data vectors to estimate H(j Ω) using the correlation method. Make plots 
of the magnitude and phase responses. (They are a bit messy!) 

(b)	 From your Ĥ(j Ω) find an estimate of the impulse response ĥ(n). Make a plot of the 
first 40 samples, using the stem() function. 

(c)	 Now repeat (a) and (b), but this time truncate the correlation functions so as to save 
only the first 100 lags (a total of 201 samples). Apply a Hamming window of length 201 
to the new correlation sequences ρff (n), and cross-correlation ρfy(n), −100 ≤ n ≤ 100, 
before computing the power spectra. 

(d)	 Discuss any improvements you see in the estimates of the frequency response and/or 
impulse response resulting from the windowing. 

Notes: 

•	 In xcorr(x,y) MATLAB defines the cross-correlation function of two real sequences 
as


Rxy(m) =  E {x(n + m)y(n)} .
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•	 Keep the following a secret: to help you assess your results, the “unknown” plant was 
created using 

[b, a] = butter(3,[0.15 0.5]) 

•	 Hand in your MATLAB script and the plots you made. 

Problem 4: (30 points) Image Deblurring Revisited 

In the image deblurring problem of Prob. Set 9 we were very careful to give you high precision 
values (MATLAB’s double precision) for the RGB components of each pixel. Practical images 
are not stored with such accuracy; the intensity values are quantized to a fixed precision, 
commonly 8 bits or a total of 28 = 256 possible levels for each of the RGB values. This 
introduces an error into each of the pixels in the image. The following indicates a 1-D 
time-based quantized signal with quantization interval Δ: 
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The upshot is that quantization introduces random errors (or additive noise) into a sampled 
data set, and common (dubious) assumptions about the noise are that 

•	 The noise is uniformly distributed across the quantization interval Δ, and 

•	 the noise is white. 

Whether or not the noise is truly “white” can be debated, but the significant thing for us is 
that it has significant high frequency content. The simple inverse filter you constructed for 
Prob. Set 9 had extremely large high-frequency gain (≈ 1013), with the result that it could 
not tolerate any high frequency content in the blurred image without numerical failure. 

In this problem we want you to modify your solution to the deblurring problem so that 
it will handle an image that has only eight bits of precision in the RGB values (with the 
resulting noise). Here are two simple empirical methods. 

Method 1: A common way of dealing with noise amplification in inverse filters is to set an 
empirically chosen hard limit on the maximum gain in the inverse filter. In one-dimensional 
filtering, if the distorting filter is H(j Ω) and the inverse filter is 

1 
Hinv(j Ω) = 

H(j Ω) 
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we can choose a maximum value γ for |Hinv(j Ω)| in a modified inverse filter 

1 1 ⎪ ⎪ if |H(j Ω)| > 
H ′ 

inv(j Ω) = 
⎨ 

H(j Ω) 
γ |H(j Ω)| 

⎧ 

γ 
1 ⎪ ⎪ if |H(j Ω)| ≤  . ⎩ 

H(j Ω) γ 

Notice that this retains the phase response, but limits the magnitude to a maximum of γ. 

Method 2: Reza made the following suggestion. He reasoned that although the deblurred 
image has higher frequency spectral content, is still essentially band-limited and we do 
not need to retain all of the high frequency content. Therefore, eliminate high frequencies 
completely if the gain exceed the criterion γ using the modified inverse filter 

⎧ 
1	 1 ⎪ 

H ′ (j Ω) = 
⎨ 

H(j Ω) 
if |H(j Ω)| >

γ 
1inv ⎪ ⎩0  if  |H(j Ω)| ≤  . 
γ 

To save you time, we have provided a basic deblurring file Q2Prob4.m that is based on our 
solution to Prob. Set 9. Modify and use this file to investigate this problem. We also have 
provided one of the blurred images used in Prob. Set 9, renamed to Q2Prob4.mat. 

•	 Q2Prob4.m starts by quantizing the image to 8 bits and converting it back to double 
precision (but quantized) image with the line 

blurred8 = double(uint8(255*blurred))/255; 

(a)	 Modify Q2Prob4.m to implement Method 1. Investigate the effect of γ on the resulting 
image. Start with γ = 1000, and find a value that you think is a good compromise 
between image sharpness and noise. (There is no “correct” answer) 

(b) Use your value of γ chosen in (a) and implement Method 2. 

(c)	 Compare the images from (a) and (b) (with the same value of γ), explain any differences 
you see. In particular, look at the edges of the images. 

(d)	 Define the “energy” in a RGB image as the sum of the squared values of all pixels across 
the whole image plane and all the color planes. Also define the signal to noise ratio 
(SNR) as 

energy in the inverse filtered image 
SNR =	 . 

energy in the inverse filtered noise 

Compute the SNR for Method 1 and Method 2 for values of γ = 1000, 100, 30, 3 before 
any intensity scaling. Does a high SNR generate a “better” output? Briefly (within a 
few lines) discuss any compromises you see with regard to SNR and deblurring. 
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