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Massachusetts Institute of Technology

Department of Mechanical Engineering


2.161 Signal Processing - Continuous and Discrete 
Fall Term 2008 

Lecture 21 

Reading: 

• Class handout: Convolution 

• Class handout: Sinusoidal Frequency Response 

Continuous LTI System Time-Domain Response 

A continuous linear filter is a LTI dynamical system (described by an ODE with constant 
coefficients). We are interested in the input-output relationships and seek a method of 
determining the response y(t) to a given input u(t). 
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The relationship is developed as follows (see the handout for a detailed explanation) 

• The input u(t) is approximated as a zero-order (staircase) waveform ũT (t) with intervals 
T . 
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ũT (t) =  u(nT ) for nT ≤ t <  (n + 1)T.  

• The approximation ũT (t) is written as a superposition of non-overlapping pulses 

∞ 

ũT (t) =  pn(t) 
n=−∞ 

c1copyright © D.Rowell 2008 
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where {

u(nT ) nT ≤ t <  (n + 1)T


pn(t) =  
0 otherwise 

For example, p3(t) is shown cross-hatched in the figure above. 

•	 Each component pulse pn(t) is written in terms of a delayed unit pulse δT (t), of width 
T and amplitude 1/T that is: 

pn(t) =  u(nT )δT (t − nT )T 

so that ∞ 

ũT (t) =  u(nT )δT (t − nT )T.  
n=−∞ 

•	 Assume that the system response to an input δT (t) is a known function, and is desig­
nated hT (t) as shown below. If the system is linear and time-invariant, the response 
to a delayed unit pulse, occurring at time nT is simply a delayed version of the pulse 
response: 

yn(t) =  hT (t − nT ) 
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•	 The principle of superposition allows the total system response to ũT (t) to be written 
as the sum of the responses to all of the component weighted pulses: 

∞ 

ỹT (t) =  u(nT )hT (t − nT )T 
n=−∞ 
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For causal systems the pulse response hT (t) is zero for time t <  0, and future com­
ponents of the input do not contribute to the sum, so that the upper limit of the 
summation may be rewritten: 

N 

ỹT (t) =  u(nT )hT (t − nT )T for NT  ≤ t <  (N + 1)T.  
n=−∞ 
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• We now let the pulse width T become very small, and write nT = τ , T = dτ , and note 
that limT →0 δT (t) =  δ(t). As T → 0 the summation becomes an integral and 

N ∑ 
y(t) = lim 

T →0 
u(nT )hT (t − nT )T 

n=−∞ ∫ t 

= u(τ)h(t − τ)dτ (1) 
−∞ 

where h(t) is defined to be the system impulse response, 

h(t) = lim hT (t). 
T →0 

Equation (??) is an important integral in the study of linear systems and is known as the 
convolution or superposition integral. It states that the system is entirely characterized by its 
response to an impulse function δ(t), in the sense that the forced response to any arbitrary 
input u(t) may be computed from knowledge of the impulse response alone. The convolution 
operation is often written using the symbol ⊗: 

t 

y(t) =  u(t) ⊗ h(t) =  u(τ)h(t − τ)dτ. (2) 
−∞ 

Equation (??) is in the form of a linear operator, in that it transforms, or maps, an input 
function to an output function through a linear operation. 
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The form of the integral in Eq. (??) is difficult to interpret because it contains the term 
h(t − τ) in which the variable of integration has been negated. The steps implicitly involved 
in computing the convolution integral may be demonstrated graphically below. The impulse 
response h(τ) is reflected about the origin to create h(−τ), and then shifted to the right 
by t to form h(t − τ). The product u(t)h(t − τ) is then evaluated and integrated to find 
the response. This graphical representation is useful for defining the limits necessary in the 
integration. For example, since for a physical system the impulse response h(t) is zero for all 
t <  0, the reflected and shifted impulse response h(t − τ) will be zero for all time τ > t. The 
upper limit in the integral is then at most t. If in addition the input u(t) is time limited, 
that is u(t) ≡ 0 for t < t1 and t > t2, the limits are: 

⎧ t ⎪ ⎪ ⎨ u(τ)h(t − τ)dτ for t < t2 

yf (t) =  ∫ t1 
t2 (3) ⎪ ⎪ ⎩ u(τ )h(t − τ)dτ for t ≥ t2 

t1 
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See the class handout for further details and examples.
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2 Sinusoidal Response of LTI Continuous Systems 

Of particular interest is the response of an LTI continuous system to sinusoidal inputs of the 
form u(t) =  A sin(Ωt + φ), where A is the amplitude, Ω is the angular frequency (rad/s), 
and φ is a phase angle (rad). (We note that we can also write u(t) =  A sin(2πFt + φ), where 
F is the frequency in Hz.) 

We begin by noting that a sinusoid may be expressed in terms of complex exponentials 
through the Euler formulas: 

sin(Ωt) =  
1 ( 

ejΩt − e −jΩt 
) 

2j 

cos(Ωt) =
1 ( 

ejΩt + e −jΩt 
) 

2 

and first finding the steady-state solution to inputs of the form u(t) =  ejΩt . Let the LTI 
system be described by an ODE of the form 

dny dn−1y dy dmu dm−1u du 
an + an−1 + · · · + a1 + a0y = bm + bm−1 + · · · + b1 + b0u. 

dtn dtn−1 dt dtn dtm−1 dt 

The steady-state response of the system (after all initial condition transients have decayed) 
may be found using the method of undetermined coefficients, in which a form of the solution 
is assumed and solved for a set of coefficients. In particular, if the input is u(t) =  ejΩt , 
assume that 

y(t) =  BejΩt . 

Substitution into the differential equation gives 

an(jΩ)n + an−1(jΩ)n−1 + · · · + a1(jΩ) + a0 BejΩt 

= bm(jΩ)m + bn−1(jΩ)m−1 + · · · + b1(jΩ) + b0 ejΩt 

and solving for B 

an(jΩ)n + an−1(jΩ)n−1 + · · · + a1(jΩ) + a0
B = 

bm(jΩ)m + bn−1(jΩ)m−1 + · · · + b1(jΩ) + b0 

so that 
y(t) =  H(jΩ)ejΩt 

where 
N(jΩ) an(jΩ)n + an−1(jΩ)n−1 + · · · + a1(jΩ) + a0

H(jΩ) = = 
D(jΩ) bm(jΩ)m + bn−1(jΩ)m−1 + · · · + b1(jΩ) + b0 

H(jΩ) is defined to be the frequency response function, and N(jΩ) and D(jΩ) are the 
numerator and denominator polynomials respectively. We note the following: 

•	 The output y(t) is simply a (multiplicatively) weighted version of the input. 

•	 H(jΩ) is a property of the system. It is defined entirely by the describing differential 
equation. 
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•	 H(jΩ) is, in general, complex. Even powers of n and m in N(s) and D(s) will generate 
real terms in the polynomials, while odd powers will generate imaginary terms. 

|H(jΩ)| = 
|N(jΩ)|
|D(jΩ)|

� H(jΩ) = � N(jΩ) − � D(jΩ) 

• H(−jΩ) = H(jΩ), where H(jΩ) is the complex conjugate. 

The response to the real sinusoid 

A ( ) 
u(t) =  A sin (Ωt + φ) =  ej(Ωt+φ) − e −j(Ωt+φ) 

2j 

may be found from the principle of superposition by summing the response to each compo­
nent: 

y(t) =  
A

H(jΩ)ej(Ωt+φ) − H(−jΩ)e −j(Ωt+φ) 

2j 

= 
A

H(jΩ)ej(Ωt+φ) − H(jΩ)e −j(Ωt+φ) 

2j 

Combining the real and imaginary parts gives the result 

y(t) =  A |H(jΩ)| sin (Ωt + φ + � H(jΩ)) 

where |H(jΩ)| is the magnitude of the frequency response function, and � H(jΩ) is the phase 
response. 

•	 The response to a real sinusoid is therefore a sinusoid of the same frequency as the 
input. 

•	 The amplitude of the response at an input frequency of Ω has been modified by a factor 
|H(jΩ)|. If  |H(jΩ)| > 1 the input has been amplified by the system, if |H(jΩ)| < 1, 
the signal has been attenuated. 

•	 The system has imposed a frequency dependent phase shift � H(jΩ) on the response. 

Example 1 

A first-order passive RC filter with the following circuit diagram 
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is described by the differential equation 

dvo
RC + vo = Vin(t)

dt 

Find the frequency response function. 

By inspection 
1 

H(jΩ) = 
jRCΩ + 1  

and 

|H(jΩ)| = 
|1| 

= √ 
1 

|1 +  jRCΩ| (RCΩ)2 + 1  
� H(jΩ) = � (1) − � (1 + jRCΩ) = 0 − tan−1 (RCΩ) 

Clearly, as Ω → 0, |H(jΩ)| → 1, and � H(jΩ) → 0 rad. As Ω → ∞, |H(jΩ)| → 0, 
and � H(jΩ) → −π/2 rad (-90◦).


This is a low-pass filter, in that it passes low frequency sinusoids while attenuating

high frequencies.


Example 2 

A new first-order passive RC filter is formed by exchanging the resistor and 
capacitor in the previous example: 
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and is now described by the differential equation 

dvo dVin
RC + vo = RC 

dt dt 

Find the frequency response function. 

By inspection 
jRCΩ 

H(jΩ) = 
jRCΩ + 1  

and 

|H(jΩ)| = 
|jRCΩ| 

= √ 
RCΩ 

|1 +  jRCΩ| (RCΩ)2 + 1  

� H(jΩ) = � (jRCΩ) − � (1 + jRCΩ) = 
π − tan−1 (RCΩ)
2 
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Clearly, as Ω → 0, |H(jΩ)| → 0, and � H(jΩ) → π/2 rad (90◦). As Ω → ∞, 
|H(jΩ)| → 1, and � H(jΩ) → 0 rad (0◦). 

This is a high-pass filter, in that it attenuates low frequency sinusoids while 
passing high frequencies. 
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