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Lecture 7!
Reading:

e C(Class handout: Introduction to Continuous Time Filter Design.

1 Butterworth Filter Design Example

(Same problem as in the Class Handout). Design a Butterworth low-pass filter to meet the
power gain specifications shown below:

IHG)? 7
1
0.9
005 ——————— 77/ RN
0 |
0 10 20 0
pass band 3 transition band | stop band

At the two critical frequencies

1
=09 — €=0.3333
1+ e2
1
= 0.05 A =4.358
1+ A2 -

Then Lo\
N> 1os(Ve)

SV 3.7
~ log(€2,/92)

Lcopyright © D.Rowell 2008

7-1



we therefore select N=4. The 4 poles (p; ...ps) lie on a circle of radius r = Q.e~ /N = 13.16
and are given by

pa| = 13.16
lpn = m(2n+3)/8

forn =1...4, giving a pair of complex conjugate pole pairs

pa = —5.044512.16
pas = —12.16 4 j5.04

The transfer function, normalized to unity gain, is

29993
(s +10.07s + 173.2)(s? + 24.32s + 173.2)

H(s) =

and the filter Bode plots are shown below.
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2 Chebyshev Filters

The order of a filter required to met a low-pass specification may often be reduced by relaxing
the requirement of a monotonically decreasing power gain with frequency, and allowing
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“ripple” to occur in either the pass-band or the stop-band. The Chebyshev filters allow
these conditions:

el IHGP = [ramm (1)
(2 1
e MU = T a @0, 00 /1@, /0) 2

Where Ty (x) is the Chebyshev polynomial of degree N. Note the similarity of the form
of the Type 1 power gain (Eq. (1)) to that of the Butterworth filter, where the function
Tn(£2/9,) has replaced (2/Q.)Y. The Type 1 filter produces an all-pole design with slightly
different pole placement from the Butterworth filters, allowing resonant peaks in the pass-
band to introduce ripple, while the Type 2 filter introduces a set of zeros on the imaginary
axis above (2., causing a ripple in the stop-band.

The Chebyshev polynomials are defined recursively as follows

To(l') = 1
Ti(x) = =
Ty(z) = 22°—1
Ts(z) = 42° -3z
TN(ZL‘) = 2[ETN_1(ZL') —TN_Q(ZL'), N >1 (3)
with alternate definitions
Tn(z) = cos(N cos *(z)) (4)

= cosh(N cosh™(z)) (5)
The Chebyshev polynomials have the min-maz property:

Of all polynomials of degree N with leading coefficient equal to one, the polynomial
T (z)/2"

has the smallest magnitude in the interval |x| < 1. This “minimum mazimum”
amplitude is 21N,

In low-pass filters given by Egs. (13) and (14), this property translates to the following
characteristics:

Filter Pass-Band Characteristic Stop-Band Characteristic
Butterworth Maximally flat Maximally flat

Chebyshev Type 1 Ripple between 1 and 1/(1 + €?) Maximally flat

Chebyshev Type 2 Maximally flat Ripple between 1 and 1/(1 + A\?)
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2.1 The Chebyshev Type 1 Filter

With the power response from Eq. (13)

1
2 pr—
I+ ETHQ/)

| H (5€2)]
and the filter specification from Fig. 1, the required filter order may be found as follows. At

the edge of the stop-band 2 = €2,

1 1
= <
14+ e2T2(92./Q) — 1+ X2

[H (%"
so that
A < €Tn (€, /) = ecosh (N cosh™ (€,/92))

and solving for N
cosh™ (\/e)
~ cosh™ (Q,./9)

The characteristic equation of the power transfer function is

1+ (2-) =0 (2 ) =+
+e€ N(ch) or N Q. .

Now T (z) = cos(N cos™!(z)), so that

cos (N cos™! (;5))) - i% (7)

If we write cos™ (s/j€.) = v + ja, then

s = Qc(jeos(y+jo))
= Q. (sinhasiny + j cosh a cos7y) (8)

which defines an ellipse of width 29, sinh(a) and height 2€. cosh(a) in the s-plane. The
poles will lie on this ellipse. Substituting into Eq. (16)

T (5) = s+ da)

= cos Nycosh Na — jsin Nvsinh Na,

the characteristic equation becomes

costycoshNa—jsianysinhNa:j:‘z. (9)
€
Equating the real and imaginary parts in Eq. (21), (1) since cosh x # 0 for real = we require
cos Ny =0, or
(2n— 1)

7 —1.... 2N 1
Yo 5N n=1,..., (10)
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and, (2) since at these values of 7, sin Ny = £1 we have
1 1
o= :I:N sinh™! - (11)

As in the Butterworth design procedure, we select the left half-plane poles as the poles of
the filter frequency response.

Design Procedure:

1. Determine the filter order

cosh™ (\/e)
~ cosh™ (Q,/9,)

2. Determine «

1 1
o = Zl:N Sinh_l E

3. Determine v,, n=1...N

(2n — )7

n=1,...,N

4. Determine the N left half-plane poles

Pn = Q¢ (sinh asiny,, + j cosh a cos ) n=1,...

5. Form the transfer function
(a) If N is odd
—pPip2---PN
H(s) =
(5) (s —p1)(s—p2)...(s—pn)

(b) If N is even

1 DbiP2 - --PN
Hi(s) = 1+e(s—p1)(s—pa)...(s—pn)

The difference in the gain constants in the two cases arises because of
the ripple in the pass-band. When N is odd, the response |H(j0)> = 1,
whereas if N is even the value of |H(j0)|* = 1/(1 + €2).
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B Example 1

Repeat the previous Butterworth design example using a Chebyshev Type 1
design.

From the previous example we have ). = 10 rad/s., 2, = 20 rad/s., e = 0.3333,
A = 4.358. The required order is

cosh™' (\/e)  cosh™'13.07 5 47
~cosh™ ' (Q,/Q)  cosht2 7

Therefore take N = 3. Determine «a:

1 1 1
o= sinh ™ (—) =3 sinh™!(3) = 0.6061

€

and sinh o = 0.6438, and cosh v = 1.189. Also, 7, = (2n — 1)w/6 forn =1...6
as follows:

n: 1 2 3 4 5) 6
V' 7/6 w/2 5m/6 "n/6  3w/2 1lw/6
siny,:  1/2 1 12 —1/2 1 —1/2

cosyn: V3/2 0 —V3/2 —V3/2 0 V32
Then the poles are
pn = Qe (sinhasin~y, + jcosh acosv,)
pr = 10 <0.6438 X % +51.189 x ?) = 3.219 + j10.30
pe = 10(0.6438 x 1+ j1.189 x 0) = 6.438

1 3
ps = 10 <0.6438 X 5~ 71.189 x \/7_> = 3.219 — 510.30

1 3
py = 10 (—0.6438 X 3~ 71.189 x \/7_) = —3.219 — 510.30

ps = 10(—0.6438 x 0 — j1.189 x 0) = —6.438
V3

1
e = 10 (—0.6438 X 5 + 1189 7) = —3.219 + j10.30

and the gain adjusted transfer function of the resulting Type 1 filter is

750
(s2+ 6.4385 + 116.5)(s + 6.438)

H(s) =
The pole-zero plot for the Chebyshev Type 1 filter is shown below.
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2.2 The Chebyshev Type 2 Filter

The Chebyshev Type 2 filter has a monotonically decreasing magnitude function in the pass-
band, but introduces equi-amplitude ripple in the stop-band by the inclusion of system zeros
on the imaginary axis. The Type 2 filter is defined by the power gain function:

1
. 2
T (2-/9)
If we make the substitutions
0,0, P 1
V= n = —
o M7 /)
Eq. 24 may be written in terms of the modified frequency v
T2 (v/Q,
|H(ju) | = — /i) (13)

T eTEv/0)

which has a denominator similar to the Type 1 filter, but has a numerator that contains a
Chebyshev polynomial, and is of order 2/N. We can use a method similar to that used in the
Type 1 filter design to find the poles as follows:

1. First define a complex variable, say 7 = p + jv (analogous to the Laplace variable
s =0 + jQ used in the type 1 design) and write the power transfer function:
 @TH(r/)
L+ ETR(7/j )

[H(r)["
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The poles are found using the method developed for the Type 1 filter, the zeros are
found as the roots of the polynomial Tx(7/j€2.) on the imaginary axis 7 = jv. From
the definition Tiy(x) = cos (N cos™! ()) it is easy to see that the roots of the Chebyshev
polynomial occur at

(O

and from Eq. (25) the system zeros will be at

—1/2
Tn = 7€) COS (W) n=1...N.

. The poles and zeros are mapped back to the s-plane using s = 2,Q./7 and the N left
half-plane poles are selected as the poles of the filter.

. The transfer function is formed and the system gain is adjusted to unity at = 0.

B Example 2

Repeat the previous Chebyshev Type 1 design example using a Chebyshev Type
2 filter.

From the previous example we have . = 10 rad/s., Q, = 20 rad/s., € = 1/3,
A = 4.358. The procedure to find the required order is the same as before, and
we conclude that N = 3. Next, define

0.0, 200

Q Q
1

In(2/2)  T(2)

=0.1154

M™>
|

Determine «:

1 1\ 1
a = sinh”! (E> = 5 sinh™!(8.666) = 0.9520

and sinh o = 1.1024, and cosh o = 1.4884.
The values of 7, = (2n — 1)7/6 for n = 1...6 are the same as the design for the
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Type 1 filter, so that the poles of |H(7)|* are

Pn = Qe (sinhasiny, + jcosh acosy,)

no= 10 1.1024 % - —|—j1 4834 x ?) — 5.512 + 12.890

T, = 10(1.1024 x 1—|—j1 4884 x 0) = 11.024

3
7 o= 10(1.1024 x = —j1 488 x {) = 5.512 — j12.890

1 3
s = 10 ( 1.1024 x 5~ 71.4884 x f) = —5.512 — 512.890

1
75 = 10| —1.1024 x 3 — 71.488 x O) = —11.024

1 3
Te = ( 11024 % 5 + j1.4884 x %) — —5.512 + j12.890

The three left half-plane poles (74,75, 76) are mapped back to the s-plane using
s = Q,Q./T giving three filter poles

p1,p2 = —5.609 £ 513.117
p3 = —18.14

The system zeros are the roots of

Ta(v/jQ0) = 4(v/jQ)’ = 3(v/jQ) = 0

from the definition of Ty (z), giving v; = 0 and vy, v3 = £58.666. Mapping these
back to the s-plane gives two finite zeros z1, zo = +3523.07, 23 = 0o (the zero at
oo does not affect the system response) and the unity gain transfer function is

—D1P2DP3 (s —21)(s — =)
Z1%22 (8 - pl)(S - pz)(S - p3)
6.9365(s% + 532.2)
(s +18.14)(s> + 11.22s + 203.5)

H(s)

The pole-zero plot for this filter is shown in below. Note that the poles again lie
on ellipse, and the presence of the zeros in the stop-band.
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2.3 Comparison of Filter Responses

Bode plot responses for the three previous example filters are shown below:
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While all filters meet the design specification, it can be seen that the Butterworth and
the Chebyshev Type 1 filters are all-pole designs and have an asymptotic high-frequency
magnitude slope of —20N dB/decade, in this case -80 dB/decade for the Butterworth design
and -60 dB/decade for the Chebyshev Type 1 design. The Type 2 Chebyshev design has
two finite zeros on the imaginary axis at a frequency of 23.07 rad/s, forcing the response to
zero at this frequency, but with the result that its asymptotic high frequency response has
a slope of only -20 dB/decade. Note also the singularity in the phase response of the Type
2 Chebyshev filter, caused by the two purely imaginary zeros.

The pass-band and stop-band power responses are shown in below. Notice that the design
method developed here guarantees that the response will meet the specification at the cut-off
frequency (in this case |H(jQ)]> = 0.9 at Q. = 10. Other design methods (such as used by
MATLAB) may not use this criterion.
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