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Massachusetts Institute of Technology

Department of Mechanical Engineering


2.161 Signal Processing - Continuous and Discrete 
Fall Term 2008 

Lecture 71 

Reading: 

• Class handout: Introduction to Continuous Time Filter Design. 

Butterworth Filter Design Example 

(Same problem as in the Class Handout). Design a Butterworth low-pass filter to meet the 
power gain specifications shown below: 
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At the two critical frequencies 

1 
= 0.9 −→ ε = 0.3333 

1 +  ε2 

1 
= 0.05 −→ λ = 4.358 

1 +  λ2 

Then 
log(λ/ε)

N ≥ = 3.70 
log(Ωr/Ωc) 

1copyright ©c D.Rowell 2008 
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we therefore select N=4. The 4 poles (p1 . . . p4) lie on a circle of radius r = Ωcε
−1/N = 13.16 

and are given by 

|pn| = 13.16 
� pn = π(2n + 3)/8 

for n = 1  . . . 4, giving a pair of complex conjugate pole pairs 

p1,4 = −5.04 ± j12.16 

p2,3 = −12.16 ± j5.04 

The transfer function, normalized to unity gain, is 

29993 
H(s) =  

(s2 + 10.07s + 173.2)(s2 + 24.32s + 173.2) 

and the filter Bode plots are shown below. 

Bode Diagram 
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2 Chebyshev Filters 

The order of a filter required to met a low-pass specification may often be reduced by relaxing 
the requirement of a monotonically decreasing power gain with frequency, and allowing 
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“ripple” to occur in either the pass-band or the stop-band. The Chebyshev filters allow 
these conditions: 

Type 1 |H(jΩ)| 2 = 
1 + �2TN 

1 
2 (Ω/Ωc)	 

(1) 

1 
Type 2 |H(jΩ)| 2 = 

1 + �2 (TN 
2 (Ωr/Ωc)/TN 

2 (Ωr/Ω))	 
(2) 

Where TN (x) is the Chebyshev polynomial of degree N . Note the similarity of the form 
of the Type 1 power gain (Eq. (1)) to that of the Butterworth filter, where the function 
TN (Ω/Ωc) has replaced (Ω/Ωc)

N . The Type 1 filter produces an all-pole design with slightly 
different pole placement from the Butterworth filters, allowing resonant peaks in the pass­
band to introduce ripple, while the Type 2 filter introduces a set of zeros on the imaginary 
axis above Ωr, causing a ripple in the stop-band. 

The Chebyshev polynomials are defined recursively as follows 

T0(x)	 = 1
 

T1(x)	 = x
 

T2(x)	 = 2x 2 − 1
 

T3(x)	 = 4x 3 − 3x
 
. . . 

TN (x) = 2xTN−1(x) − TN−2(x), N > 1 (3) 

with alternate definitions 

TN (x)	 = cos(N cos−1(x)) (4) 

= cosh(N cosh−1(x)) (5) 

The Chebyshev polynomials have the min-max property: 

Of all polynomials of degree N with leading coefficient equal to one, the polynomial 

TN (x)/2N−1 

has the smallest magnitude in the interval x This “minimum maximum” 
amplitude is 21−N .	

| | ≤ 1. 

In low-pass filters given by Eqs. (13) and (14), this property translates to the following 
characteristics: 

Filter Pass-Band Characteristic Stop-Band Characteristic 
Butterworth Maximally flat Maximally flat 
Chebyshev Type 1 Ripple between 1 and 1/(1 + �2) Maximally flat 
Chebyshev Type 2 Maximally flat Ripple between 1 and 1/(1 + λ2) 
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2.1 The Chebyshev Type 1 Filter 

With the power response from Eq. (13) 

1 |H(jΩ)| 2 = 
1 + �2TN 

2 (Ω/Ωc) 

and the filter specification from Fig. 1, the required filter order may be found as follows. At 
the edge of the stop-band Ω = Ωr 

1 12 |H(jΩr| = 
1 + �2TN 

2 (Ωr/Ωc) 
≤ 

1 + λ2 

so that 
λ ≤ �TN (Ωr/Ωc) = � cosh 

�
N cosh−1 (Ωr/Ωc)

� 

and solving for N 
cosh−1 (λ/�)

N ≥ 
cosh−1 (Ωr/Ωc) 

(6) 

The characteristic equation of the power transfer function is 

1 + �2TN 
2 

� 

jΩ 
s 

� 

= 0 or TN 

� 

jΩ 
s 

� 

= ± 
j

�c	 c 

Now TN (x) = cos(N cos−1(x)), so that 
� � 

s 
�� 

j 
cos N cos−1 = ±	 (7)

jΩc �	 

If we write cos−1 (s/jΩc) = γ + jα, then 

s	 = Ωc (j cos (γ + jα)) 

= Ωc (sinh α sin γ + j cosh α cos γ) (8) 

which defines an ellipse of width 2Ωc sinh(α) and height 2Ωc cosh(α) in the s-plane. The 
poles will lie on this ellipse. Substituting into Eq. (16) 

�	 
s 

�
TN = cos (N (γ + jα))

jΩc 

= cos Nγ cosh Nα − j sin Nγ sinh Nα, 

the characteristic equation becomes 

j 
cos Nγ cosh Nα − j sin Nγ sinh Nα = ± .	 (9) 

Equating the real and imaginary parts in Eq. (21), (1) since cosh x = 0 for real x we require 
cos Nγ = 0, or 

γn = 
(2n − 1)π

n = 1, . . . , 2N (10)
2N 

7–4 



and, (2) since at these values of γ, sin Nγ = ±1 we have 

1 1 
α = ±

N 
sinh−1 

�	 
(11) 

As in the Butterworth design procedure, we select the left half-plane poles as the poles of 
the filter frequency response. 

Design Procedure: 

1. Determine the filter order 

cosh−1 (λ/�)
N ≥ 

cosh−1 (Ωr/Ωc) 

2. Determine α
 

α = ±
N 
1 

sinh−1 1 
�
 

3. Determine γn, n = 1 . . . N
 

(2n − 1)π
 
γn =	 n = 1, . . . , N 

2N 

4. Determine the N left half-plane poles 

pn = Ωc (sinh α sin γn + j cosh α cos γn) n = 1, . . . , N 

5. Form the transfer function 

(a)	 If N is odd
 
−p1p2 . . . pN


H(s) = 
(s − p1)(s − p2) . . . (s − pN ) 

(b)	 If N is even
 

1 p1p2 . . . pN

H(s) = 

1 + �2 (s − p1)(s − p2) . . . (s − pN ) 

The difference in the gain constants in the two cases arises because of 
2the ripple in the pass-band. When N is odd, the response H(j0) = 1, 

2	 
| |

whereas if N is even the value of H(j0) = 1/(1 + �2).| | 
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Example 1 

Repeat the previous Butterworth design example using a Chebyshev Type 1
 
design.
 
From the previous example we have Ωc = 10 rad/s., Ωr = 20 rad/s., � = 0.3333,
 
λ = 4.358. The required order is
 

cosh−1 (λ/�) cosh−1 13.07 
N ≥ 

cosh−1 (Ωr/Ωc) 
= 

cosh−1 2 
= 2.47 

Therefore take N = 3. Determine α: 

1 
�

1
� 

1 
α = sinh−1 = sinh−1(3) = 0.6061 

N � 3 

and sinh α = 0.6438, and cosh α = 1.189. Also, γn = (2n − 1)π/6 for n = 1 . . . 6 
as follows: 

n: 1 2 3 4 5 6 
γn: π/6 π/2 5π/6 7π/6 3π/2 11π/6 
sin γn: 1/2 1 1/2 −1/2 -1 −1/2 
cos γn: 

√
3/2 0 −√3/2 −√3/2 0 

√
3/2 

Then the poles are 

pn = Ωc (sinh α sin γn + j cosh α cos γn)� 
1 

√
3
� 

p1 = 10 0.6438 + j1.189 = 3.219 + j10.30× 
2 

× 
2 

p2 = 10 (0.6438 × 1 + j1.189 × 0) = 6.438 � 
1 

√
3
� 

p3 = 10 0.6438 
2 
− j1.189 = 3.219 − j10.30× × 

2 
� 

1 
√

3
� 

p4 = 10 −0.6438 
2 
− j1.189 = −3.219 − j10.30× × 

2 

p5 = 10 (−0.6438 × 0 − j1.189 × 0) = −6.438 � 
1 

√
3
� 

p6 = 10 −0.6438 + j1.189 = −3.219 + j10.30× 
2 

× 
2 

and the gain adjusted transfer function of the resulting Type 1 filter is 

750 
H(s) = 

(s2 + 6.438s + 116.5)(s + 6.438) 

The pole-zero plot for the Chebyshev Type 1 filter is shown below. 
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2.2 The Chebyshev Type 2 Filter 

The Chebyshev Type 2 filter has a monotonically decreasing magnitude function in the pass­
band, but introduces equi-amplitude ripple in the stop-band by the inclusion of system zeros 
on the imaginary axis. The Type 2 filter is defined by the power gain function: 

|H(jΩ)| 2 = 
1 
N	1 + �2 T 2 (Ωr/Ωc)
 

T 2 (Ωr/Ω)
N 

(12) 

If we make the substitutions 

ΩrΩc
ν = and �̂  = 

1 
Ω �TN (Ωr/Ωc) 

Eq. 24 may be written in terms of the modified frequency ν 

H(jν) 2 = 
�̂2TN 

2 (ν/Ωc)	 | | 
1 + �̂2TN 

2 (ν/Ωc) 
(13) 

which has a denominator similar to the Type 1 filter, but has a numerator that contains a 
Chebyshev polynomial, and is of order 2N . We can use a method similar to that used in the 
Type 1 filter design to find the poles as follows: 

1. First define a complex variable, say	 τ = µ + jν (analogous to the Laplace variable 
s = σ + jΩ used in the type 1 design) and write the power transfer function: 

�2TN |H(τ)| 2 = 
1 + �̂2TN 

2 (τ/jΩc) 
ˆ 2 (τ/jΩc) 
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The poles are found using the method developed for the Type 1 filter, the zeros are 
found as the roots of the polynomial TN (τ/jΩc) on the imaginary axis τ = jν. From 
the definition TN (x) = cos (N cos−1 (x)) it is easy to see that the roots of the Chebyshev 
polynomial occur at 

x = cos 

�
(n − 1/2)π 

N 

� 

n = 1 . . . N 

and from Eq. (25) the system zeros will be at 

τn = jΩc cos 

�
(n − 1/2)π 

� 

n = 1 . . . N. 
N 

2. The poles and zeros are mapped back to the s-plane using s = ΩrΩc/τ and the N left 
half-plane poles are selected as the poles of the filter. 

3. The transfer function is formed and the system gain is adjusted to unity at Ω = 0. 

Example 2 

Repeat the previous Chebyshev Type 1 design example using a Chebyshev Type 
2 filter. 

From the previous example we have Ωc = 10 rad/s., Ωr = 20 rad/s., � = 1/3, 
λ = 4.358. The procedure to find the required order is the same as before, and 
we conclude that N = 3. Next, define 

ΩrΩc 200 
ν = = 

Ω Ω 
1 3 

ˆ = 0.1154 
�TN (Ωr/Ωc) T3(2) 

Determine α: 

1 
�

1
� 

1 
α = sinh−1 = sinh−1(8.666) = 0.9520 

N �̂ 3 

and sinh α = 1.1024, and cosh α = 1.4884.
 

The values of γn = (2n − 1)π/6 for n = 1 . . . 6 are the same as the design for the
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Type 1 filter, so that the poles of H(τ) 2 are| | 

pn = Ωc (sinh α sin γn + j cosh α cos γn)� 
1 

√
3
� 

τ1 = 10 1.1024 + j1.4884 = 5.512 + j12.890× 
2 

× 
2 

τ2 = 10 (1.1024 × 1 + j1.4884 × 0) = 11.024 � 
1 

√
3
� 

τ3 = 10 1.1024 
2 
− j1.488 = 5.512 − j12.890× × 

2 
� 

1 
√

3
� 

τ4 = 10 −1.1024 
2 
− j1.4884 = −5.512 − j12.890× × 

2 
� 

1 
�

τ5 = 10 −1.1024 ×
 
2 
− j1.488 × 0 = −11.024
 

� 
1 

√
3
� 

τ6 = 10 −1.1024 + j1.4884 = −5.512 + j12.890× 
2 

× 
2 

The three left half-plane poles (τ4, τ5, τ6) are mapped back to the s-plane using 
s = ΩrΩc/τ giving three filter poles 

p1, p2 = −5.609 ± j13.117 

p3 = −18.14 

The system zeros are the roots of 

T3(ν/jΩc) = 4(ν/jΩc)
3 − 3(ν/jΩc) = 0 

from the definition of TN (x), giving ν1 = 0 and ν2, ν3 = ±j8.666. Mapping these 
back to the s-plane gives two finite zeros z1, z2 = ±j23.07, z3 = ∞ (the zero at 
∞ does not affect the system response) and the unity gain transfer function is 

H(s) = 
−p1p2p3 (s − z1)(s − z2) 

z1z2 (s − p1)(s − p2)(s − p3) 
6.9365(s2 + 532.2) 

= 
(s + 18.14)(s2 + 11.22s + 203.5) 

The pole-zero plot for this filter is shown in below. Note that the poles again lie 
on ellipse, and the presence of the zeros in the stop-band. 
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2.3 Comparison of Filter Responses 

Bode plot responses for the three previous example filters are shown below: 
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While all filters meet the design specification, it can be seen that the Butterworth and 
the Chebyshev Type 1 filters are all-pole designs and have an asymptotic high-frequency 
magnitude slope of −20N dB/decade, in this case -80 dB/decade for the Butterworth design 
and -60 dB/decade for the Chebyshev Type 1 design. The Type 2 Chebyshev design has 
two finite zeros on the imaginary axis at a frequency of 23.07 rad/s, forcing the response to 
zero at this frequency, but with the result that its asymptotic high frequency response has 
a slope of only -20 dB/decade. Note also the singularity in the phase response of the Type 
2 Chebyshev filter, caused by the two purely imaginary zeros. 

The pass-band and stop-band power responses are shown in below. Notice that the design 
method developed here guarantees that the response will meet the specification at the cut-off 
frequency (in this case |H(jΩ)|2 = 0.9 at Ωc = 10. Other design methods (such as used by 
MATLAB) may not use this criterion. 
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