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Lecture 91 

Reading: 

• Class Handout: Introduction to the Operational Amplifier 

• Class Handout: Op-amp Implementation of Analog Filters 

Operational-Amplifier Based State-Variable Filters 

We saw in Lecture 8 that second-order filters may be implemented using the block diagram 
structure 
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and that a high-order filter may be implemented by cascading second-order blocks, and 
possibly a first-order block (if the filter order is odd). 

We now look into a method for implementing this filter structure using operational am­
plifiers. 

1.1 The Operational Amplifier 

What is an operational amplifier? It is simply a very high gain electronic amplifier, with a 
pair of differential inputs. Its functionality comes about through the use of feedback around 
the amplifier, as we show below. 
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The op-amp has the following characteristics: 

•	 It is basically a “three terminal” amplifier, with two inputs and an output. It is a 
differential amplifier, that is the output is proportional to the difference in the voltages 
applied to the two inputs, with very high gain A, 

vout = A(v+ − v−) 

where A is typically 104 – 105, and the two inputs are known as the non-inverting (v+) 
and inverting (v−) inputs respectively. In the ideal op-amp we assume that the gain A 
is infinite. 

•	 In an ideal op-amp no current flows into either input, that is they are voltage-controlled 
and have infinite input resistance. In a practical op-amp the input current is in the 
order of pico-amps (10−12) amp, or less. 

•	 The output acts as a voltage source, that is it can be modeled as a Thevenin source 
with a very low source resistance. 

The following are some common op-amp circuit configurations that are applicable to the 
active filter design method described here. (See the class handout for other common config­
urations). 

The Inverting Amplifier: 
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In the configuration shown above we note 

•	 Because the gain A is very large, the voltage at the node designated summing junc­
tion is very small, and we approximate it as v− = 0 — the so-called virtual ground 
assumption. 

• We assume that the current i− into the inverting input is zero. 

Applying Kirchoff’s Current law at the summing junction we have 

vin vo
i1 + if = + = 0  

R1 Rf 

from which 
Rf 

vout = − vin
Rin 
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The voltage gain is therefore defined by the ratio of the two resistors. The term inverting 
amplifier comes about because of the sign change. 

The Inverting Summer: The inverting amplifier may be extended to include multiple 
inputs: 


 � � � � 
 � � � � 
 � � � � 
 

� 

� 
� 

� 

� � � 

� � 

� � 

� � � � � � 	 � � � � � 
 � � 

� 

� 

� 

  

� 

 
� 

� 

� 

� 

  

As before we assume that the inverting input is at a virtual ground (v− ≈ 0) and apply 
Kirchoff’s current law at the summing junction 

v1 v2 Vout
i1 + i2 + if = + + = 0  

R1 R2 Rf 

or 
Rf Rf 

vout = − v1 + v2
R1 R2 

which is a weighted sum of the inputs. 
The summer may be extended to include several inputs by simply adding additional input 

resistors Ri, in which case 
n � Rf 

vout = − vi
Rii=1 

The Integrator: If the feedback resistor in the inverting amplifier is replaced by a capac­
itor C the amplifier becomes an integrator. 
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At the summing junction we apply Kirchoff’s current law as before but the feedback current 
is now defined by the elemental relationship for the capacitor: 

vin dvout
iin + if = + C = 0  

Rin dt 
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Then 
dvout 1 

= − vin
dt RinC 

or 
1 t 

vout = − vindt + vout(0)
RinC 0 

As above, the integrator may be extended to a summing configuration by simply adding 
extra input resistors: 

1 t n 
vi 

vout = − dt + vout(0)
C Ri0 i=1 

and if all input resistors have the same value R 

1 
� t n 

vout = − vi dt + vout(0)
RC 0 i=1 

1.2 A Three Op-Amp Second-Order State Variable Filter 

A configuration using three op-amps to implement low-pass, high-pass, and bandbass filters 
directly is shown below: 
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Amplifiers A1 and A2 are integrators with transfer functions 

1 1 1 1 
H1(s) =  − and H2(s) =  − . 

R1C1 s R2C2 s 

Let τ1 = R1C1 and τ2 = R2C2. Because of the gain factors in the integrators and the sign 
inversions we have 

dv2 d2v2 
v1(t) =  −τ2 and v3(t) =  τ1τ2 . 

dt dt2 

Amplifier A3 is the summer. However, because of the sign inversions in the op-amp circuits 
we cannot use the elementary summer configuration described above. Applying Kirchoff’s 
Current Law at the non-inverting and inverting inputs of A3 gives 

Vin − v+ v1 − v+ v3 − v− v2 − v− 
+ = 0 and + = 0. 

R5 R6 R4 R1 
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Using the infinite gain approximation for the op-amp, we set v− = v+ and 

R3 R5 R4 R6 
v3 − v1 + v2 = Vin,

R3 + R4 R5 + R6 R3 + R4 R5 + R6 

and substituting for v1 and v3 we generate a differential equation in v2 

d2v2 
� 

1 +  R4/R3 
� 

dv2 
� 

R4 1 
� � 

1 +  R4/R3 
� 

+ + v2 = Vin
dt2 τ1(1 + R6/R5) dt R3 τ1τ2 τ1τ2 (1 + R5/R6) 

which corresponds to a low-pass transfer function with 

Klpa0
H(s) =  

s2 + a1s + a0 

where 

a0 = 

� 
R4 

R3 

� 
1 

τ1τ2 � � 
1 +  R4/R3 1 

a1 = 
1 +  R6/R5 τ1 

1 +  R3/R4
Klp = 

1 +  R5/R6 

A Band-Pass Filter: Selection of the output as the output of integrator A1 generates 
the transfer function −Kbpa1s 

Hbp(s) =  −τ1sHlp(s) =  
s2 + a1s + a0 

where 
R6

Kbp = 
R5 

A High-Pass Filter: Selection of the output as the output of the summer A3 generates 
the transfer function 

Hhp(s) =  τ1τ2s 2Hlp(s) =  
Khps

2 

s2 + a1s + a0 

where 
1 +  R4/R3

Khp = 
1 +  R5/R6 

A Band-Stop Filter: The band-stop configuration may be implemented with an addi­
tional summer to add the outputs of amplifiers A2 and A (with appropriate weights). 

1.3 A Simplified Two Op-amp Based State-variable Filter: 

If the required filter does not require a high-pass action (that is, access to the output of 
the summer A1 above) the summing operation may be included at the input of the first 
integrator, leading to a simplified circuit using only two op-amps shown below: 
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Consider the input stage: 
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With the infinite gain assumption for the op-amps, that is V− = V+ , and with the assumption 
that no current flows in either input, we can apply Kirchoff’s Current Law (KCL) at the 
node designated (a) above: 

1 1 
i1 + if − i3 = (Vin − va) + sC1(v1 − va) − va = 0  

R1 R3 

Assuming va = Vout, and realizing that the second stage is a classical op-amp integrator with 
transfer function 

Vout(s) 1 
= − 

v1(s) R2C2s 

1 1 
(Vin − Vout) + sC1(−R2C2sVout − Vout) − Vout = 0  

R1 R3 

which may be rearranged to give the second-order transfer function 

Vout(s) 1/τ1τ2 
= 

Vin(s) s2 + (1/τ2)s + (1 +  R1/R3)/τ1τ2 

which is of the form 
Klpa0

Hlp(s) =  
s2 + a1s + a0 

where 

1 
a0 = (1 +  R1/R3) 

τ1τ2 

1 
a1 = 

τ2 

1 
Klp = 

1 +  R1/R3 

9–6 



� 
� � � � 

� � 

� � 

� � 

� � � � � 
� � 

� � 

! 

� � � � 

� � 

1.4 First-Order Filter Sections: 

Single pole low-pass filter sections with a transfer function of the form


KΩ0

H(s) =  

s + Ω0 

may be implemented in either an inverting or non-inverting configuration as shown in Fig. 
11. 
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The inverting configuration (a) has transfer function 

Vout(s) Zf R1 1/R1C 
= − = − 

Vin(s) Zin R2 s + 1/R1C 

where Ω0 = 1/R1C and K = −R1/R2. 
The non-inverting configuration (b) is a first-order R-C lag circuit buffered by a non-

inverting (high input impedance) amplifier (see the class handout) with a gain K = 1 +  
R3/R2. Its transfer function is � � 

Vout(s) 
= 1 +  

R3 1/R1C 
. 

Vin(s) R2 s + 1/R1C 
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Classroom Demonstration


Example 2 in the class handout “Op-Amp Implementation of Analog Filters” describes a 
state-variable design for a 5th-order Chebyshev Type I low-pass filter with Ωc = 1000 rad/s 
and 1dB ripple in the passband. 
The transfer function is 

122828246505000 
H(s) =  

(s2 + 468.4s + 429300)(s2 + 178.9s + 988300)(s + 289.5) 
429300 988300 289.5 

= × × 
s2 + 468.4s + 429300 s2 + 178.9s + 988300 s + 289.5 

which is implemented in the handout as a pair of second-order two-op-amp sections followed 
by a first-order block: 
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This filter was constructed on a bread-board using 741 op-amps, and was demonstrated 
to the class, driven by a sinusoidal function generator and with an oscilloscope to display 
the output. The demonstration included showing (1) the approximately 10% ripple in the 
passband, and (2) the rapid attenuation of inputs with frequency above 157 Hz (1000 rad/s). 
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2 Introduction to Discrete-Time Signal Processing 

Consider a continuous function f(t) that is limited in extent, T1 ≤ t < T2. In order to 
process this function in the computer it must be sampled and represented by a finite set of 
numbers. The most common sampling scheme is to use a fixed sampling interval ΔT and to 
form a sequence of length N : {fn} (n = 0  . . . N  − 1), where 

fn = f(T1 + nΔT ). 

In subsequent processing the function f(t) is represented by the finite sequence {fn} and the 
sampling interval ΔT . 

In practice, sampling occurs in the time domain by the use of an analog-digital (A/D) 
converter. 
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(i) The sampler (A/D converter) records the signal value at discrete times nΔT to produce 
a sequence of samples {fn} where fn = f(nΔT ) (ΔT is the sampling interval. 
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(ii)	 At each interval, the output sample yn is computed, based on the history of the input 
and output, for example 

1 
yn = (fn + fn−1 + fn−2)

3 
3-point moving average filter, and 

yn = 0.8yn−1 + 0.2fn 

is a simple recursive first-order low-pass digital filter. Notice that they are algorithms. 

(iii) The reconstructor takes each output sample and creates a continuous waveform. 

In real-time signal processing the system operates in an infinite loop: 
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2.1 Sampling 

The mathematical operation of sampling (not to be confused with the operation of an analog-
digital converter) is most commonly described as a multiplicative operation, in which f(t) is  
multiplied by a Dirac comb sampling function s(t; ΔT ), consisting of a set of delayed Dirac 
delta functions: ∞ 

s(t; ΔT ) =  δ(t − nΔT ). 
n=−∞ 

We denote the sampled waveform f�(t) as  
∞ 

f �(t) =  s(t; ΔT )f(t) =  f(t)δ(t − nΔT ) 
n=−∞ 
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Note that f�(t) is a set of delayed and weighted delta functions, and that the waveform must 
be interpreted in the distribution sense by the strength (or area) of each component impulse. 
The implied process to produce the discrete sample sequence {fn} is by integration across 
each impulse, that is 

� nΔT+ � nΔT+ ∞ 

fn = f �(t)dt = f(t)δ(t − nΔT )dt 
nΔT− nΔT− 

n=−∞ 

or 
fn = f(nΔT ) 

by the sifting property of δ(t). 

2.2 The Spectrum of the Sampled Waveform f �(t): 

Notice that sampling comb function s(t; ΔT ) is periodic and is therefore described by a 
Fourier series: ∞

1 jnΩ0t s(t; ΔT ) =  e
ΔT 

n=−∞ 

where all the Fourier coefficients are equal to (1/ΔT ), and where Ω0 = 2π/ΔT is the fun­
damental angular frequency. Using this form, the spectrum of the sampled waveform f�(t) 
may be written 

� ∞ �∞ � ∞ 
−jΩt dtF �(jΩ) = f�(t) e−jΩt dt =

1 
f(t) ejnΩ0t e 

−∞ ΔT 
n=−∞ −∞ 

∞
1 

= F (j (Ω − nΩ0))
ΔT 

n=−∞ 
∞ � � �� 

1 2πn 
= F j Ω − 

ΔT ΔT 
n=−∞ 

The Fourier transform of a sampled function f�(t) is periodic in the frequency domain with 
period Ω0 = 2π/ΔT , and is a superposition of an infinite number of shifted replicas of the 
Fourier transform, F (jΩ), of the original function scaled by a factor of 1/ΔT . 
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