
MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

� �

1

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.161 Signal Processing - Continuous and Discrete
Fall Term 2008

Lecture 121

Reading:

• Class Handout: The Fast Fourier Transform

• Proakis and Manolakis (4th Ed.): Secs. 8.1 – 8.3

• Oppemheim Schafer & Buck (2nd Ed.): Secs. 9.0 – 9.3

The Fast Fourier Transform (contd.)

In Lecture 11 we saw that we could write the DFT of a length N sequence as

N−1 N−1
−j 2πmn

Fm = fn e N = fnWN
mn , m = 0, . . . , N − 1

n=0 n=0

where WN = e−j 2π/N . We noted that the number of complex multiplication operations
to compute the DFT is N2, but if we divided the original sequence into two length N/2
sequences (based on even and odd samples) and computed the DFT of each shorter sequence,
they could be combined

Fm = Am + WN
mBm for m = 0 . . . (N/2 − 1), and

Fm = Am−N/2 − WN
m−N/2

Bm−N/2 for m = N/2 . . . (N − 1)

where {Am} is the DFT of the even-numbered samples, and {Bm} is the DFT of the odd-
numbered samples.

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � 	
 � �

 � � � 	 � � � � 	 � � � � � � �

� � � � � � � 	
 � �

 � � � 	 � � � 	 � � � � � � �

� �

 �
 �

 �
 �

 �
 � 	 	 �� � � �

� �

 �
 �

 �
 �

 �
 � 	 	 �� � � 	

�
�

 �

 �
 �
 � �

�
 � �

�
�

 �

 �
 �
 � �

�
 � �

�
�

 �

 �
 �
 � �

�
 � �

�
�

 �

 �
 �
 � �

�
 � �

�
�

 �

 �
 �
 � �

�
 �
 �

 �

 �
 �
 �
 �
�

 � �

�
�

 �

 �
 �
 � �

�
 �
 �

 �

 �
 �
 �
 �
�

 � �

�
�

 �

 �
 �
 � �

�
 �
 �

 �

 �
 �
 �
 �
�

 � �

�
	

 �

 	
 �
 � �

	
 �
 	

 �

 �
 �
 �
 �
�

 � �

1copyright ©c D.Rowell 2008

0–1

�

�

�

� �

� �

�

� �

�

�

�

�

�

	

The total number of required complex multiplications is (N/2)2 for each shorter DFT, and
N/2 to combine the two, giving a total of N(N + 1)/2, which is less than N2 .

If N is divisible by 4, the process may be repeated, and each length N/2 DFT may be
formed by decimating the two N/2 sequences into even and odd components, forming the
length N/4 DFTs, and combining these back into a length N/2 DFT, as is shown for N = 8
below:

� 	 � � � � � � � 	
 � � � � 	 � � � � � � � 	
 � � � � � � � � � � 	
 � �

�

�

�

�

�

�

�

	

� � � � � � � 	
 � �

 � � � 	 � � � � � � �

� �

 �
 �

 �
� �

�

�

�

�

�

�

�

�

� � � � � � � 	
 � �

 � � � 	 � � � � � � �

� �

 �
 �

 �
� �

� � � � � � � 	
 � �

 � � � 	 � � � � � � �

� �

 �
 �

 �
� �

� � � � � � � 	
 � �

 � � � 	 � � � � � � �

� �

 �
 �

 �
� 	

Notice that all weights in the figure are expressed by convention as exponents of W8.
In general, if the length of the data sequence is an integer power of 2, that is N = 2q for
integer q, the DFT sequence {Fm} may be formed by adding additional columns to the left
and halving the length of the DFT at each step, until the length is two. For example if
N = 256 = 28 a total of seven column operations would be required.

The final step is to evaluate the N/2 length-2 DFTs. Each one may be written

F0 = f0 + W2
0f1 = f0 + f1

F1 = f0 + W2
1f1 = f0 − f1,

which is simply the sum and difference of the two sample points. No complex multiplications
are necessary. The 2-point DFT is shown in signal-flow graph form below, and is known as
the FFT butterfly.

�
�

 �
 �

�

 �
 �

�

�

 �
�

 �
 � �

 �
 � �

�
�

 �
 �

�

 �
 �

�

�

 �
�

 �
 � �

 �
 � �

The complete FFT algorithm for N = 8 is shown below. We note that if N = 2q, there
will be q = log2(N) columns in the signal-flow graph, and after the sum and difference to
form the 2-point DFTs there will be log2(N) − 1 column operations, each involving N/2
complex multiplications, giving a total of N/2 (log2(N) − 1) ≤ N2 . We will address the
issue of computational savings in more detail later.

0–2

�

�

�

�

�

�

�

� � � � � � � 	 � � � � 	 � � � � 	 � � � � � � � 	
 � � � � 	 � � � � � � � 	
 � � � � � � � � � � 	
 � �

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

Input Bit-Reversal:
Notice that the algorithm described above requires that the input sequence { fn} be re­
ordered in the left-hand column to accomplish the even-odd decomposition at each step.
The particular order reqired by this form of the FFT is known as input bit reversal, which
refers to a simple algorithm to determine the position k of the sample fn in the re-ordered
sequence:

1. Express the index n as a N -bit binary number.

2. Reverse the order of the binary digits (bits) in the binary number.

3. Translate the bit-reversed binary number back into decimal, to create the position in
the sequence k.

For example, the re-ordered position of f37 in a data sequence of length N = 256 = 28 is
found from

bit reversal
3710 = 001001012 −→ 101001002 = 16410

so that f37 would be positioned at k = 164 in the decimated input sequence.
The re-ordering procedure for N = 8 is:

Input position n: 0 1 2 3 4 5 6 7
(000)2 (001)2 (010)2 (011)2 (100)2 (101)2 (110)2 (111)2

Bit reversal ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
(000)2 (100)2 (010)2 (110)2 (001)2 (101)2 (011)2 (111)2

Modified position k: 0 4 2 6 1 5 3 7

The Inverse Fast Fourier Transform (IFFT):
The inverse FFT is defined as

N−1
1 j 2πmn

Nfn = Fm e , n = 0, . . . , N − 1 (1)
N

m=0

0–3

�

� � �

While the IFFT can be implemented in the same manner as the FFT described above, it is
possible to use a forward FFT routine to compute the IFFT as follows: Since the conjugate
of a product is the product of the conjugates, if we take the complex conjugate of both sides
we have

N−1
1 −j 2πmn

Nfn = Fm e .
N

m=0

The right-hand side is recognized as the DFT of Fm and can be computed using a for­
ward FFT, such as described above. The complete IDFT may therefore be computed by
conjugating the output, that is

N−1
1 −j 2πmn

Nfn = Fm e , n = 0, . . . , N − 1 (2)
N

m=0

The steps are:

1. Conjugate the data set {Fm}.
2. Compute the forward FFT.

3. Conjugate the result and divide by N .

Computational Savings of the FFT:
As expressed above the computational requirements (in terms of complex multiplications) is
MFFT = (N/2) log2(N) if the initial 2-point DFTs are implemented with exponentials. The
number of complex multiplications for the direct DFT computation is MDFT = N2) We can
therefore define a speed improvement factor MFFT/MDFT as is shown below:

N MDFT MFFT MFFT/MDFT

4 16 4 0.25
8 64 12 0.188

16 256 32 0.125
32 1,024 80 0.0781
64 4,096 192 0.0469

128 16,384 448 0.0273
256 65,536 1024 0.0156
512 262,144 2,304 0.00879

1024 1,048,576 5,120 0.00488
2048 4,194,304 11,264 0.00268
4096 16,777,216 24,576 0.00146

Spectral Leakage in the DFT and Apodizing (Windowing) Func­
tions

Often apparently spurious spectral components will appear in the output of a DFT compu­
tation. This phenomenon is known as spectral leakage. We examine the origin of this effect

0–4

2

�

�	 �

�	 �

� �

briefly here by considering a finite sample set (length N) of a sinusoid of the form

f(t) = cos(at)

so that
fn = cos(anΔT) n = −N/2, . . . N/2 − 1

Notice that in effect we have sampled a “windowed” version of f(t), or

f̃(t) = f(t)rect(NΔT)

where the rect function is defined

rect(t) = 	
1 |t| < 1/2,
0 otherwise

The Fourier transform of the windowed sinusoid is the convolution of the two Fourier trans­
forms

F {cos(at)} = π (δ(Ω − a) + δ(Ω + a))
sin(ΩNΔT/2)F {rect(NΔT)} = NΔT

ΩNΔT/2

and the Fourier transform of the product is

F̃ (jΩ) = F {rect(NΔT) cos(at)}

1

= (F {rect(NΔT)} ⊗ F {cos(at)})
2π
NΔT sin ((Ω − a)NΔT/2) sin ((Ω + a)NΔT/2)

=	 +
2 (Ω − a)NΔT/2 (Ω + a)NΔT/2

and the spectrum of the sampled waveform is

F̃ ∗ (jΩ) =
1

F̂ (jΩ)
ΔT
N sin ((Ω − a)NΔT/2) sin ((Ω + a)NΔT/2)

=	 +
2 (Ω − a)NΔT/2 (Ω + a)NΔT/2

which is a pair of sinc functions centered on frequencies Ω = a and Ω = −a. The spacing of
the zeros of each of the sinc functions is at intervals of ΔΩ = 2π/NΔT .

We may consider the DFT as a comb filter that displays discrete lines of the spectrum
F̃ ∗(jΩ) at frequencies:

2πm
Ω = ; m = 0, 1, 2, . . . , N − 1

NΔT

so that in the DFT,

Fm = F̃ ∗ 2πm
NΔT

Now consider what happens in two situations:

0–5

(a)	 The frequency a in f(t) = cos(at) is such that the data record contains an integer
number of periods. In this case the length of the data record

2π	 2πM
NΔT	 = M or a = , for M integer.

a	 NΔT

The DFT is � �

N sin(π(m − M)) sin(π(m + M))

Fm = +	 (3)
2 π(m − M) π(m + M)

that is Fm = N/2 for m = ±M and Fm = 0 otherwise, which is what we would expect.

(b)	 The frequency a in f(t) = cos(at) is such that the data record does not contain an integer
number of periods. In this case the peak and zeros of the sinc functions will not line
up with the frequencies 2πm/(NΔT) in the DFT and the results will (1) not show the
peak of the sinc functions, and (2) will show finite components at all frequencies. This
is the origin of spectral leakage.

Spectral leakage occurs when frequency components in the input function f(t) are
not harmonics of the fundamental frequency k0 = 2π/(NΔT), defined by the length
of data record NΔT . Under such conditions the lines in the DFT do not accurately
reflect the amplitude of the component, and spurious components appear adjacent
to the component.

This phenomenon is illustrated in the following two figures based on a DFT of length 16. In
the first case the frequency of the the sinusoid is chosen so that there are four cycles in the
data record. The DFT shows two clean components at the appropriate frequency with no
evidence of leakage.

−1

−0.5

0

0.5

1

f(
t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

2

4

6

8

10

M
ag

ni
tu

de

−8 −6 −4 −2 0 2 4 6 8
m

In the second case the data record contains 3.5 cycles of the sinusoidal component. The
spectral leakage is severe: both the height of the main peak is reduced, and significant
amplitudes are recorded for all spectral components.

0–6

�

�

�

�

−1

−0.5

0

0.5

1

f(
t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

2

4

6
M

ag
ni

tu
de

−8 −6 −4 −2 0 2 4 6 8
m

Reduction of Leakage by an Apodizing (Windowing) Function The reason for the
appearance of leakage components in the DFT of a truncated data set is the convolution of
the data spectrum with that of the truncation window (the rect function). Each sinusoidal
component in f(t) has a spectrum F (jΩ) that is a pair of impulses in the frequency domain:
multiplication by the truncating function causes a spread in the width of the component.

Leakage may be reduced (but not eliminated) by using a different function to truncate
the series instead of the implicit rect function. These functions are known as an apodizing,
or windowing, functions and are chosen to smoothly taper the data record to zero at the
extremities, while minimizing the spectral spreading of each component. The data record
then becomes

f̃(t) = f(t)w(t)

or in the samples
f̃n = fnwn

where w(t) (or wn) is the windowing function. There are many windowing functions in
common use, the following are perhaps the most common:

Bartlett Window: This is a triangular ramp, tapered to zero at the extremities of the
record

w(t) = 	
1 − |t − T/2| /(T/2) 0 ≤ t < T
0 otherwise,

1 − |n − N/2| /(N/2) 0 ≤ n < N
wn =

0	 otherwise.

Hanning Window This is a smoothly tapered window

0.5 (1.0 + cos(π(t − T/2)/(T/2))) 0 ≤ t < T
w(t) =

0	 otherwise,

0.5 (1.0 + cos(π(n − N/2)/(N/2))) 0 ≤ n < N
wn =

0	 otherwise.

0–7

�

�

Hamming Window This is a smoothly tapered window that is similar to the Hanning
window

0.54 + 0.46 cos(π(t − T/2)/(T/2)) 0 ≤ t < T
w(t) =

0 otherwise.

0.54 + 0.46 cos(π(n − N/2)/(N/2)) 0 ≤ n < N
wn =

0 otherwise.

The magnitude spectra of these three windows are shown below, in linear and logarithmic
plots for (a) Bartlett, (b) Hanning, and (c) Hamming windows. In each case the spectrum
is shown in linear and logarithmic (dB) form. The frequency scale is normalized to units
of line spacing (2π/NΔT) radians/sec. The spectrum of the implicit rectangular window is
shown as a dotted line in each case. The various windows are a compromise and trade-off the
width of the central peak and attenuation of leakage components distant from the peak. For
example, the Hamming window has greater attenuation of components close to the cental
peak, while the Hanning window has greater attenuation away from the peak.

Magnitude Magnitude (dB)

1

Bartlett

0

0.8
−20

0.6

−40

0.4

−60
0.2

0 −80
−10 −5 0 5 10 −10 −5 0 5 10

Frequency (a) Frequency

Magnitude Magnitude (dB)

1

Hanning
0

0.8
−20

0.6

−40

0.4

−60
0.2

0 −80
−10 −5 0 5 10 −10 −5 0 5 10

Frequency (b) Frequency

Magnitude Magnitude (dB)
1

Hamming
0

0.8
−20

0.6

−40

0.4

−60
0.2

0 −80

Hamming

−10 −5 0 5 10 −10 −5 0 5 10
Frequency

(c) Frequency

Bartlett

Hanning

In each case it can be noted:

0–8

•	 The width of the central lobe is wider than that of the rectangular window, indicating
that the main lobe will be approximately two lines in width.

•	 The magnitude of the side-lobes is significantly reduced, indicating that leakage away
from the main peak will be reduced.

These two effects are demonstrated in the following two plots. In the first plot there are three
periods in the data record, and the data set as used has been windowed using a Hanning
function. In the non-windowed case there would be no leakage but the central peak has now
been “smeared” to occupy three lines.

−1

−0.5

0

0.5

1

f(
t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

0

1

2

3

4

5

M
ag

ni
tu

de

−8 −6 −4 −2 0 2 4 6 8
m

In the second case the data set contains 3.5 periods of a cosinusoid, and has been windowed
with a Hanning function. Here it can be seen that the leakage components away from the
main peak have been significantly attenuated.

0–9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

t (sec)

f(
t)

−8 −6 −4 −2 0 2 4 6 8
0

1

2

3

4

m

M
ag

ni
tu

de

0–10

