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Lecture 13!

Reading:
e Proakis & Manolakis, Chapter 3 (The z-transform)

e Oppenheim, Schafer & Buck, Chapter 3 (The z-transform)

1 Introduction to Time-Domain Digital Signal Processing

Counsider a continuous-time filter

Continuous
fit)—> system [—>Y(D)

(h(t), H(s))

such as simple first-order RC high-pass filter:
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| ©
+
v R v
—0
described by a transfer function
RC's
H .
() RCs+1
The ODE describing the system is
dy ~~ _df
PV ArT

where 7 = R(C' is the time constant.
Our task is to derive a simple discrete-time equivalent of this prototype filter based on
samples of the input f(¢) taken at intervals AT

. DSP
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If we use a backwards-difference numerical approximation to the derivatives, that is
dz _ (z(nAT) —x((n — 1)AT)
dt "~ AT
and adopt the notation y, = y(nAT), and let a = 7/AT,

a(yn - yn—l) + Yn = a(fn - fn—l)

and solving for y,

a N a 7 a
_1+ayn_1 a’" 14a

Yn fn—l

which is a first-order difference equation, and is the computational formula for a sample-
by-sample implementation of digital high-pass filter derived from the continuous prototype
above. Note that

e The “fidelity” of the approximation depends on AT, and becomes more accurate when
AT < 7.

e At each step the output is a linear combination of the present and/or past samples
of the output and input. This is a recursive system because the computation of the
current output depends on prior values of the output.

In general, regardless of the design method used, a LTT digital filter implementation will be
of a similar form, that is

N M
Yn = Z AilYn—i + Z blfn—z
=1 =0

where the a; and b; are constant coefficients. Then as in the simple example above, the
current output is a weighted combination of past values of the output, and current and past
values of the input.

e Ifa;=0fori=1...N, so that

M
=0

The output is simply a weighted sum of the current and prior inputs. Such a filter is
a non-recursive filter with a finite-impulse-response (FIR), and is known as a moving
average (MA) filter, or an all-zero filter.

e Ifb,=0fore=1...M, so that

N
Yn = z QiYn—i + bOfn
i=0
only the current input value is used. This filter is a recursive filter with an infinite-
impulse-response (IIR), and is known as an auto-regressive (AR) filter, or an all-pole

filter.
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e With the full difference equation

N M
= Z AiYn—i + Z bi fr—i
i=1 i=0

the filter is a recursive filter with an infinite-impulse response (IIR), and is known as
an auto-regressive moving-average (ARMA) filter.

2 The Discrete-time Convolution Sum

For a continuous system

Continuous
flt)—> system [—>Y(D)
(h(t), H(s))

the output y(t), in response to an input f(¢), is given by the convolution integral:

/ F(FIh(t — 7)dr

where h(t) is the system impulse response.
For a LTT discrete-time system, such as defined by a difference equation, we define the
pulse response sequence {h(n)} as the response to a unit-pulse input sequence {4, }, where

5 — 1 n=0
" )0 otherwise.

T{Sn} {hn}
DSP 5
y algorithm Yo TI Tea o
24012 2N s 012 2n

then by superposition the output will be a sequence of similarly weighted and shifted pulse
responses

n — Z fkhnfk

k=—o00

which defines the convolution sum, which is analogous to the convolution integral of the
continuous system.

3 The z-Transform

The z-transform in discrete-time system analysis and design serves the same role as the
Laplace transform in continuous systems. We begin here with a parallel development of
both the z and Laplace transforms from the Fourier transforms.
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The Laplace Transform

(1) We begin with causal f(¢) and find its
Fourier transform (Note that because f(t) is
causal, the integral has limits of 0 and oo):

F(jQ) = /Ooo f(t)e 7%t

(2) We note that for some functions f(t) (for
example the unit step function), the Fourier
integral does not converge.

(3) We introduce a weighted function

ft)e™

w(t)

and note

lim w(t) = f(¢)

c—0

ot

The effect of the exponential weighting by e~
is to allow convergence of the integral for a
much broader range of functions f(t).

(4) We take the Fourier transform of w(t)

/OO (f(t)e’”t) eIt
0
/ N f(t)e @t Dat

0

W () = F(jQo)

and define the complex variable s = o + j€2 so
that we can write

F(s) = F(jw|o) = /Ooo f(t)e *tdt

F(s) is the one-sided Laplace Transform. Note
that the Laplace variable s = o 4 7€) is ex-
pressed in Cartesian form.
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The Z transform

(1) We sample {(t) at intervals AT to produce
f*(t). We take its Fourier transform (and use
the sifting property of §(¢)) to produce

F*(]Q) _ Z fne—anAT
n=0

(2) We note that for some sequences f, (for
example the unit step sequence), the summa-
tion does not converge.

(3) We introduce a weighted sequence

{wn} = {fnr_n}

and note

lim {wn} = {/.}

The effect of the exponential weighting by r~
is to allow convergence of the summation for
a much broader range of sequences f,.

n

(4) We take the Fourier transform of wy,

o0

Z (fn,r,—n) e—anAT

n=0

S
n=0

W*(jQ) = F*(jQr)

and define the complex variable z = re/?A7 5o
that we can write

F) = POl = 3 fue "

F(z) is the one-sided Z-transform. Note that
2z = re??AT i expressed in polar form.



The Laplace Transform (contd.)

(5) For a causal function f(t), the region of
convergence (ROC) includes the s-plane to the
right of all poles of F'(j<2).

jQ

s - plane

x
N .

w

a

(6) If the ROC includes the imaginary axis,
the FT of f(t) is F(j9):

F(G) = F(s) |s=jo

(7) The convolution theorem states

F(O)@g(t) = / " f(n)glt—r)dr L5 F(5)G(s)

(8) For an LTI system with transfer function
H(s), the frequency response is

H{(s) [s=jo = H(58)

if the ROC includes the imaginary axis.

The Z transform (contd.)

(5) For a right-sided (causal) sequence {f,}
the region of convergence (ROC) includes the

z-plane at a radius greater than all of the poles
of F(z).

(6) If the ROC includes the unit circle, the
DFT of {f,}, n = 0,1,...,N — L. is {F,}
where

Fn = F(Z) ‘zzejwm = F(ejwm>7

where w,,, = 2rm/N for m=0,1,..., N — 1.

(7) The convolution theorem states

(@ {gnt = D fugn-m <= F(2)G(2)

m=—00

(8) For a discrete LSI system with transfer
function H(z), the frequency response is
H(2) | = H(™) o] <7

if the ROC includes the unit circle.

From the above derivation, the Z-transform of a sequence {f,} is

F(Z) = Z fnzin

n=—0oo

where z = re/“ is a complex variable. For a causal sequence f,, = 0 for n < 0, the transform
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can be written .
F(z) = Z fnz "
n=0
Example: The finite sequence {fo, ..., fs} = {5,3, —1,4} has the z-transform
F(z) =52"+3271 — 272 44277
The Region of Convergence: For a given sequence, the region of the z-plane in which

the sum converges is defined as the region of convergence (ROC). In general, within the ROC

o
Z ‘fnr_”‘ < 00

n=—oo

and the ROC is in general an annular region of the z-plane:

ROC
F(z) converges for
r<r<r,

(a) The ROC is a ring or disk in the z-plane.
(b) The ROC cannot contain any poles of F'(z).

(c) For a finite sequence, the ROC is the entire z-plane (with the possible exception of z = 0
and z = oo.

(d) For a causal sequence, the ROC extends outward from the outermost pole.
(e) for a left-sided sequence, the ROC is a disk, with radius defined by the innermost pole.

(f) For a two sided sequence the ROC is a disk bounded by two poles, but not containing
any poles.

(g) The ROC is a connected region.

z-Transform Examples: In the following examples {u,} is the unit step sequence,

0 n<0
Uy =
1 n>0
and is used to force a causal sequence.
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(1) A{f.} ={6.} (the digital pulse sequence)
From the definition of F(2):

F(z)=1"=1 for all z.

(2) {fu} ={a"un}

F(z) = Z a"z " = (az 1)”
n=0 n—0
{a"} & F(z) = ! — = : for |z| > a.
l—az"! z-a
since -
Zx” for x < 1.

n=0

(3)  {fu} ={un} (the unit step sequence).

Zz S for |z| <1

1—271 z—1

n=0
from (2) with a = 1.
(4) {fu} ={e"u.}.
F(Z) _ Z R Z (e—bz—l)n
n=0 n=0
) 2 _ 1 _ < ~b
{e }%F(z)_l—e—bz—l_z—e—b" for |z| > e™".

from (2) with a = e,

(5) {fa} = {e I}

0

F(Z) _ Z +Z —b —1

I S ,
 l—ebz  1— etz

Note that the item fy = 1 appears in each sum, therefore it is necessary to subtract 1.

{ethl) 2, 1— e for e < |z| < €
e or e z| < €.
(1 — e7b2)(1 — e7b2z71)
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z-plane

/

/ o~

//
/

(6) {fn} ={e7"u,} = {cos(won)u,} — 7 {sin(won)u,} .
F(z) = Z{cos(won)u, } — jZ {sin(won)u,}
From (1)

F(z) = ﬁ for |z| > 1
1 — cos(wg)z~! — jsin(wp)
1 —2cos(wp)ze—1+ 272
2% — cos(wp)z — j sin(wp)z
22 — 2cos(wp)z + 1

2

and therefore

2% — cos(wp)z
Z {cos(won)u,} = 2~ cos(w)z 1 1 for |z| > 1

: sin(wp)2*
Z {sin(won)u,} = 7 cos(wg)z 1 1 for 2| > 1

Properties of the z-Transform: Refer to the texts for a full description. We simply
summarize some of the more important properties here.

(a) Linearity:

a{fu} +b{g} < aF(z) +bG(z)  ROC: Intersection of ROC; and ROC,.

(b) Time Shift:

{fo-m} N 2 "F(2) ROC: ROCy except for z =01if k <0, 0r z =00 if £ > 0.
If gn = fnfma

(e 9] o0

G(z) = Z fomz " = Z sz_(ker) =z""F(2).

n=—oo k=—o0

This is an important property in the analysis and design of discrete-time systems. We
will often have recourse to a unit-delay block:

13-8



I,

(c) Convolution:

Unit Delay >y =f

7-

1

{fi} ® {g.} < F(2)G(2)

ROC: Intersection of ROCy and ROC,,.

[e.9]

where {f,} @ {g.} = Z frxGn—r 1s the convolution sum.

k=—o00

Let

Y(2) = Z (-

Z fkgnk> Z"

n=—oco n=—o00 \k=—o00
= ifk(Zgnkznk> kaz ngzm
- FIGE T
(d) Conjugation of a complex sequence:
{F.} <5 F(z)  ROC: ROC;

(e) Time reversal:

{fon} < F(1/2)

1 1
ROC: — < |z| < —
1

T

where the ROC of F(z) lies between r; and rs.

(e) Scaling in the z-domain:

{a"f} <= Fa™t2)

ROC: |a|r < |z| < |a| 2

where the ROC of F(z) lies between r; and rs.

(e) Differentiation in the z-domain:

Z

dF(z)

—z

dz

ROC: ry < |zl <m

where the ROC of F(z) lies between r; and 7.
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