
MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	

1

Massachusetts Institute of Technology
Department of Mechanical Engineering

2.161 Signal Processing - Continuous and Discrete
Fall Term 2008

Lecture 131

Reading:

• Proakis & Manolakis, Chapter 3 (The z-transform)

• Oppenheim, Schafer & Buck, Chapter 3 (The z-transform)

Introduction to Time-Domain Digital Signal Processing

Consider a continuous-time filter

� � � � � � � � � � � � 	

�
 � � � � � � � 	
 	 � � �

 � �

 �
 � � � � �
 � � �

such as simple first-order RC high-pass filter:

�
� � �

described by a transfer function

H(s) =
RCs

RCs + 1
.

The ODE describing the system is

τ
dy
dt

+ y = τ
df
dt

where τ = RC is the time constant.
Our task is to derive a simple discrete-time equivalent of this prototype filter based on

samples of the input f(t) taken at intervals ΔT .

� � �
� �
� �
� �
�
�
� � �
�
� � � �

1copyright ©c D.Rowell 2008

13–1

� �

�

If we use a backwards-difference numerical approximation to the derivatives, that is

dx (x(nΔT) − x((n − 1)ΔT)≈
dt ΔT

and adopt the notation y = y(nΔT), and let a = τ/ΔT ,n

a(yn − yn−1) + yn = a(fn − fn−1)

and solving for yn
a a a

yn = yn−1 + fn − fn−1
1 + a 1 + a 1 + a

which is a first-order difference equation, and is the computational formula for a sample-
by-sample implementation of digital high-pass filter derived from the continuous prototype
above. Note that

•	 The “fidelity” of the approximation depends on ΔT , and becomes more accurate when
ΔT � τ .

•	 At each step the output is a linear combination of the present and/or past samples
of the output and input. This is a recursive system because the computation of the
current output depends on prior values of the output.

In general, regardless of the design method used, a LTI digital filter implementation will be
of a similar form, that is

N M

yn = aiyn−i + bifn−i

i=1 i=0

where the ai and bi are constant coefficients. Then as in the simple example above, the
current output is a weighted combination of past values of the output, and current and past
values of the input.

• If ai ≡ 0 for i = 1 . . . N , so that

M �
yn = bifn−i

i=0

The output is simply a weighted sum of the current and prior inputs. Such a filter is
a non-recursive filter with a finite-impulse-response (FIR), and is known as a moving
average (MA) filter, or an all-zero filter.

•	 If bi ≡ 0 for i = 1 . . . M , so that

N

yn = aiyn−i + b0fn

i=0

only the current input value is used. This filter is a recursive filter with an infinite-
impulse-response (IIR), and is known as an auto-regressive (AR) filter, or an all-pole
filter.

13–2

� �

�

�

�

2

• With the full difference equation
N M

yn = aiyn−i + bifn−i

i=1 i=0

the filter is a recursive filter with an infinite-impulse response (IIR), and is known as
an auto-regressive moving-average (ARMA) filter.

The Discrete-time Convolution Sum

For a continuous system

� � � � � � � � � � � � 	
�
 � � � � � � � 	
 	 � � �

 � �

 �
 � � � � �
 � � �
the output y(t), in response to an input f(t), is given by the convolution integral: � ∞

y(t) = f(τ)h(t − τ)dτ
0

where h(t) is the system impulse response.
For a LTI discrete-time system, such as defined by a difference equation, we define the

pulse response sequence {h(n)} as the response to a unit-pulse input sequence {δn}, where

1 n = 0
δn =

0 otherwise.

� � � � � � � � � � � �
� � �

� �
� �
� �
�
�
� � �
�
� � � �

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

If the input sequence {fn} is written as a sum of weighted and shifted pulses, that is
∞

fn = fkδn−k

k=−∞

then by superposition the output will be a sequence of similarly weighted and shifted pulse
responses

∞

yn = fkhn−k

k=−∞

which defines the convolution sum, which is analogous to the convolution integral of the
continuous system.

The z-Transform

The z-transform in discrete-time system analysis and design serves the same role as the
Laplace transform in continuous systems. We begin here with a parallel development of
both the z and Laplace transforms from the Fourier transforms.

13–3

3

�

� �

�

�

The Laplace Transform

(1) We begin with causal f(t) and find its
Fourier transform (Note that because f(t) is
causal, the integral has limits of 0 and ∞): � ∞

F (jΩ) = f(t)e −jΩtdt
0

(2) We note that for some functions f(t) (for
example the unit step function), the Fourier
integral does not converge.

(3) We introduce a weighted function

w(t) = f(t)e −σt

and note
lim w(t) = f(t)
σ→0

The effect of the exponential weighting by e−σt

is to allow convergence of the integral for a
much broader range of functions f(t).

(4) We take the Fourier transform of w(t) � ∞

W (jΩ) = F̃ (jΩ|σ) =
�
f(t)e −σt

�
e −jΩtdt

0 � ∞

= f(t)e −(σ+jΩ)dt
0

and define the complex variable s = σ + jΩ so
that we can write � ∞

F (s) = F̃ (jω|σ) = f(t)e −stdt
0

F (s) is the one-sided Laplace Transform. Note
that the Laplace variable s = σ + jΩ is ex­
pressed in Cartesian form.

The Z transform

(1) We sample f(t) at intervals ΔT to produce
f ∗(t). We take its Fourier transform (and use
the sifting property of δ(t)) to produce

∞

F ∗ (jΩ) = fne −jnΩΔT

n=0

(2) We note that for some sequences fn (for
example the unit step sequence), the summa­
tion does not converge.

(3) We introduce a weighted sequence

{wn} = fnr −n

and note
lim {wn} = {fn}
r→1

The effect of the exponential weighting by r−n

is to allow convergence of the summation for
a much broader range of sequences fn.

(4) We take the Fourier transform of wn

∞

W ∗ (jΩ) = F̃ ∗ (jΩ|r) =
�
fnr −n

�
e −jnΩΔT

n=0
∞

=
�

fn

�
rejΩΔT

�−n

n=0

and define the complex variable z = rejΩΔT so
that we can write

∞

F (z) = F̃ ∗ (jΩ|r) = fnz −n

n=0

F (z) is the one-sided Z-transform. Note that
z = rejΩΔT is expressed in polar form.

13–4

�

� �

� � � �

� � � �

�

�

The Laplace Transform (contd.)

(5) For a causal function f(t), the region of
convergence (ROC) includes the s-plane to the
right of all poles of F (jΩ).

� �

� � � � � � � � � � � �

(6) If the ROC includes the imaginary axis,
the FT of f(t) is F (jΩ):

F (jΩ) = F (s) |s=jΩ

(7) The convolution theorem states � ∞ L
f(t)⊗g(t) = f(τ)g(t−τ)dτ ⇐⇒ F (s)G(s)

−∞

(8) For an LTI system with transfer function
H(s), the frequency response is

H(s) |s=jΩ = H(jΩ)

if the ROC includes the imaginary axis.

The Z transform (contd.)

(5) For a right-sided (causal) sequence {fn}
the region of convergence (ROC) includes the
z-plane at a radius greater than all of the poles
of F (z).

� � � � �

� � � � � � � � � � � �

� � � �

� � � � � � � � � � �

(6) If the ROC includes the unit circle, the
DFT of {fn}, n = 0, 1, . . . , N − 1. is {Fm}
where

jωmFm = F (z) |z=e = F (ejωm),

where ωm = 2πm/N for m = 0, 1, . . . , N − 1.
(7) The convolution theorem states

∞
Z{fn} ⊗ {gn} = fmgn−m ⇐⇒ F (z)G(z)

m=−∞

(8) For a discrete LSI system with transfer
function H(z), the frequency response is

jωH(z) |z=e = H(ejω) |ω| ≤ π

if the ROC includes the unit circle.

From the above derivation, the Z-transform of a sequence {fn} is

∞

F (z) = fnz −n

n=−∞

where z = r ej ω is a complex variable. For a causal sequence fn = 0 for n < 0, the transform

13–5

�

� � �

�

can be written ∞

F (z) = fnz −n

n=0

Example: The finite sequence {f0, . . . , f3} = {5, 3,−1, 4} has the z-transform

F (z) = 5z 0 + 3z −1 − z −2 + 4z −3

The Region of Convergence: For a given sequence, the region of the z-plane in which

the sum converges is defined as the region of convergence (ROC). In general, within the ROC

∞ �fnr −n � < ∞
n=−∞

and the ROC is in general an annular region of the z-plane:

�

�

�

�

�
 � �

�
 � �
� � � � � � �

� � �
�
 � � � � � � � � � � � 	 � � �
� � � ! � � � ! � �� �

(a) The ROC is a ring or disk in the z-plane.

(b) The ROC cannot contain any poles of F (z).

(c)	 For a finite sequence, the ROC is the entire z-plane (with the possible exception of z = 0
and z = ∞.

(d) For a causal sequence, the ROC extends outward from the outermost pole.

(e) for a left-sided sequence, the ROC is a disk, with radius defined by the innermost pole.

(f)	 For a two sided sequence the ROC is a disk bounded by two poles, but not containing
any poles.

(g) The ROC is a connected region.

z-Transform Examples: In the following examples {un} is the unit step sequence,

0 n < 0
un =

1 n ≥ 0

and is used to force a causal sequence.

13–6

(1) {fn} = {δn} (the digital pulse sequence)
From the definition of F (z):

F (z) = 1z 0 = 1 for all z.

(2) {fn} = {anun}

n
�

z−n
�

F (z) =
∞

a =
∞ �

az−1
�n

n=0 n=0

n Z
F (z) =

1
=

z	
for z > a. {a } ←→

1 − az−1 z − a
| |

since
 ∞
1
 n

�
x = for x < 1.

1 − x
n=0

(3)	 {fn} = {un} (the unit step sequence).

∞
1 z

F (z) =
�

z−n = = for z < 1
1 − z−1 z − 1

| |
n=0

from (2) with a = 1.

(4) {fn} =
�

e−bnun

�
.

∞ ∞

F (z) =
�

e−bn z−n =
� �

e−b z−1
�n

n=0 n=0

�
e−bn

�	 1 zZ
F (z) = =	 for z > e−b .

z−1	 z − e−bn
←→

1 − e−b
| |

from (2) with a = e−b .

n
(5) {fn} =
�

e−b| |�.

0 ∞

F (z) =
� �

e−b z
�−n

+
� �

e−b z−1
�n − 1

n=−∞ n=0

1 1

=

1 − e−bz
+

1 − e−bz−1
− 1

Note that the item f0 = 1 appears in each sum, therefore it is necessary to subtract 1.

n	 b
�

e−b| |� Z
F (z) =

1 − e−2b

for e−b < z < e . ←→
(1 − e−bz)(1 − e−bz−1)	

| |

13–7

Â (z)

Á (z)
z - p l a n e

R O C

X Xe - b e b

(6)	 {fn} = { e−jω0nun} = {cos(ω0n)un} − j {sin(ω0n)un} .

F (z) = Z {cos(ω0n)un} − jZ {sin(ω0n)un}

From (1)

1

F (z) =	

1 − e−jω0 z−1
for z > 1| |

1 − cos(ω0)z
−1 − j sin(ω0)

=
1 − 2 cos(ω0)z∗−1 + z−2

z2 − cos(ω0)z − j sin(ω0)z
2

=
z2 − 2 cos(ω0)z + 1

and therefore

z2 − cos(ω0)z Z {cos(ω0n)un} =	 for z > 1
2z − 2 cos(ω0)z + 1

| |
sin(ω0)z

2

Z {sin(ω0n)un} =	 for z > 1
2z − 2 cos(ω0)z + 1	

| |

Properties of the z-Transform: Refer to the texts for a full description. We simply
summarize some of the more important properties here.

(a) Linearity:

Z
aF (z) + bG(z) ROC: Intersection of ROCf and ROCg.a {fn} + b {gn} ←→

(b) Time Shift:

Z
z−mF (z){fn−m} ←→ ROC: ROCf except for z = 0 if k < 0, or z = ∞ if k > 0.

If gn = fn−m,
∞	 ∞

fkz
−(k+m)G(z) =

�
fn−mz−n =

�
= z−mF (z).

n=−∞ k=−∞

This is an important property in the analysis and design of discrete-time systems. We
will often have recourse to a unit-delay block:

13–8

f y = fn nz n - 1- 1
U n i t D e l a y

(c) Convolution:

Z{fn} ⊗ {gn} ←→ F (z)G(z) ROC: Intersection of ROCf and ROCg.

∞
where {fn} ⊗ {gn} =

�
fkgn−k is the convolution sum.

k=−∞
Let

∞ ∞
� ∞

�

Y (z) =
�

ynz−n =
� �

fkgn−k z−n

n=−∞ n=−∞ k=−∞

∞
� ∞

� ∞ ∞

=
�

fk

�
gn−kz

−(n−k) z−k =
�

fkz
−k

�
gmz−m

k=−∞ n=−∞ k=−∞ m=−∞

= F (z)G(z)

(d) Conjugation of a complex sequence:

�
fn

� Z
F (z) ROC: ROCf←→

(e) Time reversal:

Z
F (1/z) ROC:

1
< z <

1 {f−n} ←→
r1

| |
r2

where the ROC of F (z) lies between r1 and r2.

(e) Scaling in the z-domain:

Z
F (a−1 {a nfn} ←→ z) ROC: |a| r1 < |z| < |a| r2

where the ROC of F (z) lies between r1 and r2.

(e) Differentiation in the z-domain:

{nfn}
Z dF (z)

ROC: r2 < z < r1←→ −z
dz

| |

where the ROC of F (z) lies between r1 and r2.

13–9

