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Lecture 14!

Reading:
e Proakis & Manolakis, Chapter 3 (The z-transform)

e Oppenheim, Schafer & Buck, Chapter 3 (The z-transform)

1 The Discrete-Time Transfer Function

Consider the discrete-time LTI system, characterized by its pulse response {h,,}:

convolution
T
{f.} {y,}={f ®h )
LTI system
Z$ —> h —> Z
F(z) Y(z) = F(z)H(z)

multiplication

We saw in Lec. 13 that the output to an input sequence {f,} is given by the convolution
sum:

Yn = fn ® hy, = Z fkhnfk = Z hkfnfkv
k=—00 k=—00

where {h,,} is the pulse response. Using the convolution property of the z-transform we have
at the output
Y(z) = F(2)H(z)

where F(z) = Z{f.}, and H(z) = Z{h,}. Then

is the discrete-time transfer function, and serves the same role in the design and analysis
of discrete-time systems as the Laplace based transfer function H(s) does in continuous
systems.
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In general, for LTI systems the transfer function will be a rational function of z, and may
be written in terms of z or 27!, for example
N(S) . bo + blz_l -+ b22_2 + ...+ bMZ_M
D(s)  ap+aizl4ayz 2+ ... +ayz N

H(z) =

where the b;, ¢=0,...,m, a;, ©=0,...,n are constant coefficients.

2 The Transfer Function and the Difference Equation

As defined above, let

H(Z) o Y(Z) - bo + 612_1 + b22_2 + ...+ bMZ_M
CF(2)  aptazltaz 4. +ayz N

and rewrite as
(ao taz ttagz 4.+ aNz*N) Y(z) = (bo bz bbby 4+ sz*M) F(z)
If we apply the z-transform time-shift property
Z{fur}=2"F(2)
term-by-term on both sides of the equation, (effectively taking the inverse z-transform)

aoYn + @1 Yn—1 + @2Yp—2 + ... + ANYn-N = bUfn + blfnfl + b2fn72 + ...+ benfM
and solve for y,

1 1
Yo = —— (@1Yn—1+ @2¥pn—2+ ...+ anyn-n) + . (bofr + b1 fno1 4+ bofua + ... 4 barfunr)
0

Qo
n—i + — n—i
) Y ; (CLO) /

N
> (=
Qo
which is in the form of a recursive linear difference equation as discussed in Lecture 13.

i=1

The transfer function H(z) directly defines the computational dif-
ference equation used to implement a LTI system.

B Example 1
Find the difference equation to implement a causal LTI system with a transfer
function (1 - 2:-1)(1 — 42-)
— 227 —4z-
H(Z) = 1 —1
2(1— 3271
Solution: g2y g3
H(z) = z7n — 027"+ 8z

_ 1.
1 52
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from which 1

Yn — §yn71 = fnfl - 6fn72 + 8fn737

or

1
Yn = §yn—1 + (fn—l - 6fn—2 + 8fn—3>-

The reverse holds as well: if we are given the difference equation, we can define the system
transfer function.

B Example 2
Find the transfer function (expressed in powers of z) for the difference equation
Yn = 0.25y, o+ 3fn —3fn1
and plot the system poles and zeros on the z-plane.
Solution: Taking the z-transform of both sides
Y (2) = 0.25272Y (2) + 3F(2) — 327 F(2)
and reorganizing

Y(z) 31—z"')  3z(z—1)

H(z) = _ _
)=o) TT-0m2 ~ 2025

which has zeros at z = 0,1 and poles at z = —0.5,0.5:

A 33
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3 Introduction to z-plane Stability Criteria

The stability of continuous time systems is governed by pole locations - for a system to be
BIBO stable all poles must lie in the L.h. s-plane. Here we do a preliminary investigation of
stability of discrete-time systems, based on z-plane pole locations of H(z).
Consider the pulse response h,, of the causal system with
z 1

H(Z):z—azl—az—l

with a single real pole at z = a and with a difference equation

Yn = QYp—1 + fn

A 3{z}
//// T z-plane
7/ N
/ N\
/ \
/ \
/ \
a<-1 | -1<a<0 O<a<1 | a>1
| o \ | >
| Y A P > R{z}
\ /
\ /
\ .
\ / pole location
AN /
N /
N e
~ - _ -~

Clearly the pulse response is

B — 1 n=0
a® n>1

The nature of the pulse response will depend on the pole location:

0 < a < 1: In this case h,, = a™ will be a decreasing function of n and lim,,_,,, h, = 0 and
the system is stable.

a = 1: The difference equation is y,, = y,_1 + f, (the system is a summer and the impulse
response is h, = 1, (non-decaying). The system is marginally stable.

a > 1: In this case h,, = a" will be a increasing function of n and lim,, ., h,, = oo and the
system is unstable.

—1 < a < 0: In this case h,, = a" will be a oscillating but decreasing function of n and
lim,,_, h, = 0 and the system is stable.

n

a = —1: The difference equation is y,, = —y,_1 + f, and the impulse response is h,, = (—1)",
that is a pure oscillator. The system is marginally stable.

a < —1: In this case h,, = a™ will be a oscillating but increasing function of n and lim,, ., |h,| =
oo and the system is unstable.
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This simple demonstration shows that this system is stable only for the pole position —1 <
a < 1. In general for a system

PSS HCEEN
Hk:1(2 — D)

having complex conjugate poles (py) and zeros (zy) :

A discrete-time system will be stable only if all of the poles of its
transfer function H(z) lie within the unit circle on the z-plane.

4 The Frequency Response of Discrete-Time Systems

Consider the response of the system H(z) to an infinite complex exponential sequence
fn = Ae“" = Acos(wn) + jAsin(wn),

where w is the normalized frequency (rad/sample). The response will be given by the con-
volution

o = D hfaw= Y he (A0

k=—00 k=—00
= A ( > hke_j“’”“> elon
k=—00
= AH(e¥)e“"

where the frequency response function H(e*) is

H(el*) = H(2)]

z:e.i w

that is

The frequency response function of a LTI discrete-time system is
H(z) evaluated on the unit circle - provided the ROC includes the
unit circle. For a stable causal system this means there are no poles
lying on the unit circle.

AT{z}
O<o<n 1 z-plane
P (| N
e N
/ N .
o increasing ,” el
/ \
/ \
/ N I, ©=0
O=T7 | @ \K )‘R{Z}
®=-n'-1 "
\ /
\ /
\ /
\ /
\ /
N 7/
\\\ -j1 ///
—T<0<0 T




Alternatively, the frequency response may be based on a physical frequency (2 associated
with an implied sampling interval AT, and

H(e QAT) = H(2)|,_oar

which is again evaluated on the unit circle, but at angle QAT

A3{z}
0<Q<n/AT i z-plane
Qincreasing / b elQAT
/ \
Nyquist frequency // \
\
/ I Q=0
Q=7m/AT A QATN 1k > %{z
Q=-m/AT -1 "
\ /
\ /
\ /
N\ /
AN e
N N -1 _ 7
—t/AT<Q <N -

From the definition of the DTFT based on a sampling interval AT
H*(jQ) _ Z h, e—manAT _ H(Z)|Z:e—manAT
n=0

we can define the mapping between the imaginary axis in the s-plane and the unit-circle in
the z-plane

§=jQ, 2 = WA
: e AS{Z}
Nyquist frequency A g >
2 s-plane mapping
) P A z-plane
jn/AT T T T .
////’ // \\\\;\ eJQoAT
Pid / \
0 L Nyquist frequency // \
0® \
/ =
voriman st N Q= AT Zr Gat) L8 fm{z}
—— "primary" strip >o Q=-gAT 1 mo
\ I
‘J’ | |
\ /
\ 7
N\ /
\\ . //
/AT ~d -

i

The periodicity in H(e*AT) can be clearly seen, with the “primary” strip in the s-plane
(defined by —n/AT < Q < 7/AT) mapping to the complete unit-circle. Within the primary
strip, the Lh. s-plane maps to the interior of the unit circle in the z-plane, while the r.h.
s-plane maps to the exterior of the unit-circle.
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Aside: We use the argument to differentiate between the various classes of transfer
functions: ,
H(s) H(j9) H{(z) H(e*)
) 7 ) )
Continuous Continuous Discrete Discrete
Transfer Frequency Transfer Frequency
Function Response Function Response

5 The Inverse z-Transform

The formal definition of the inverse z-transform is as a contour integral in the z-plane,
1 o0
27 J -

F(2)z" tdz

where the path is a ccw contour enclosing all of the poles of F(z).

Cauchy’s residue theorem states

L h F(z)dz = ZRGS [F'(2), Pk

21} J—oo

where F'(z) has N distinct poles pg, K = 1,..., N and ccw path lies in the
ROC.

For a simple pole at z = z,

Res [F(2), zo] = lim (2 — 2,) F(2),

Z2—20

and for a pole of multiplicity m at z = z,

Res [F(z), z,] = lim ! ™ (z — 2,)"F(2)

2=z (m — 1)1 dzm—1

The inverse z-transform of F'(z) is therefore

fo=Z2ZF(2)} = ZRes [F(2)2""", pi] -

B Example 3

A first-order low-pass filter is implemented with the difference equation
Yn = 0.8Yyn_1 + 0.2f,.

Find the response of this filter to the unit-step sequence {u,}.
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Solution: The filter has a transfer function

Y(2) 0.2 0.2z

H(z) = _ _
) =5 1087 2-0s

The input {f,} = {u,} has a z-transform

z
F(z) =
(2) = —
so that the z-transform of the output is
0.222
Y((2)=H((2)U(z) =

and from the Cauchy residue theorem

Yo = Res[Y(2)2" ", 1] + Res [V (2)z""",0.8]
= lin%(z —1)Y(2)z" ' + li%ls(z —0.8)Y(2)2"!
. 0.2z . 0.2z
= lim im
=1 2z—08  =2-08 z—1
= 1-0.8""

which is shown below

Yn
T e ®© 0 0 0 0 0 0 0
08
0.6
04
0.2 I
i
0 2 4 6 8 10 12 14 16 18
n (samples)
B Example 4
Find the impulse response of the system with transfer function
1 2 2
1+272 2241 (z+jl)(z—j1)
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Solution: The system has a pair of imaginary poles at z = +j1. From the
Cauchy residue theorem
h, = Z '{H(2)} =Res[H(2)z""",j1] + Res [H(z)z"", —j1]

n+1 Zn—i—l

i
zLj1z+J1+z—1>r—][}1z—j1
1 1
D" = =
j2 j2
j" n
- ?(1+(—1) 1)
P 0 n odd
" (=12 noeven

= cos(nm/2)

_,] 1)n+1

where we note that the system is a pure oscillator (poles on the unit circle) with
a frequency of half the Nyquist frequency.

I
1 Y

05 |
ol e el ool ool oglegl oy,
- Co4 ;o8 12 I s
05
AF
B Example 5
Find the impulse response of the system with transfer function
1 22 22
1+2z+272 2242z4+41  (2+41)2
Solution: The system has a pair of coincident poles at z = —1. The residue at
z = —1 must be computed using
1 dm—l

Res[F(). 20 = 1 oy

(z — 2z,)"F(2).
With m =2, at z = —1,

Res [H(z)z"il,—l] = lim ——(z— 1)2H(z)z”*1



The impulse response is
h, = Z "{H(z)} = Res [H(2)z"", 1] = (n + 1)(—1)".

h

n

20

20 +

Other methods of determining the inverse z-transform include:

Partial Fraction Expansion: This is a table look-up method, similar to the method

used for the inverse Laplace transform. Let F'(z) be written as a rational function of

2L

M —k
— biZ
F(z) —Z]@*O —
> hmp @iz "
ny:l(l - Ciz_l)
Hszl(l —d;iz71)

If there are no repeated poles, F'(z) may be expressed as a set of partial fractions.

Ay,
F(Z):ZW

k=1

where the A, are given by the residues at the poles

Ay = lim (1 — dpz™ ) F(2).

z—dy,
Since
z 1
1-— dkz—l

fn = <Z Ap (dk)n> U,

(di)" un
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B Example 6

Find the response of the low-pass filter in Ex. 3 to an input

fu=(~0.5)"

Solution: From Ex. 3, and from the z-transform of {f,},

1 0.2
Fl2)=——  H()=—
(&) =195 () =108
so that
0.2
% —
() = GFosa-os
A A
140521 1-082-1
Using residues
P - B ¥
z——-051—08z"1 1.3
0.2 0.16
Ay = -

li =
ey 14+ 0.5271 1.3

and

0.1 1 0.16 1
g = =21 ALl e —
Y 3 {1+O.52_1}+ 1.3 {1—0.8z—1}
1

1
0. . 016 .,
= 15 (-05)"+5(08)

Note: (1) If F(z) contains repeated poles, the partial fraction method must be ex-
tended as in the inverse Laplace transform.

(2) For complex conjugate poles — combine into second-order terms.
Power Series Expansion: Since
[e.e]
F (Z) = Z fn2™"
n=—00

if F(z) can be expressed as a power series in 2!, the coefficients must be f,,.
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B Example 7
Find Z7! {log(1 4+ az™1)}.
Solution: F'(z) is recognized as having a power series expansion:

Ly (DM
F(z) =log(l1+az™") = g — 2 for |a| < |2|
n
n=1

Because the ROC defines a causal sequence, the samples f,, are
0 forn <0
fo= 14 (<1yHan

n

forn > 1.

Polynomial Long Division: For a causal system, with a transfer function written as
a rational function, the first few terms in the sequence may sometimes be computed
directly using polynomial division. If F'(z) is written as

F(2) = gg;; =fot fizl + oz 4 o

the quotient is a power series in z~! and the coefficients are the sample values.

B Example 8
Determine the first few terms of f,, for
-1
Fi) =1 —12er212+ 2
using polynomial long division.
Solution:
L+4z7t + 72724
1-2271 4 272) 14257
122714272
4771 — 72
4271 — 8272 4 4273
Tz72— 4273
so that I
F(z) = 1_21__1Z+z_2 =144 472774

and in this case the general term is

fn=3n+1 for n > 0.

14-12



In general, the computation can become tedious, and it may be difficult to recognize
the general term from the first few terms in the sequence.
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