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Massachusetts Institute of Technology 
Department of Mechanical Engineering 

2.161 Signal Processing - Continuous and Discrete 
Fall Term 2008 

Lecture 141 

Reading: 

• Proakis & Manolakis, Chapter 3 (The z-transform) 

• Oppenheim, Schafer & Buck, Chapter 3 (The z-transform) 

The Discrete-Time Transfer Function 

Consider the discrete-time LTI system, characterized by its pulse response {hn}: 
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We saw in Lec. 13 that the output to an input sequence {fn} is given by the convolution 
sum: ∞ ∞ 

yn = fn ⊗ hn = fkhn−k = hkfn−k, 
k=−∞ k=−∞ 

where {hn} is the pulse response. Using the convolution property of the z-transform we have 
at the output 

Y (z) =  F (z)H(z) 

where F (z) =  Z {fn}, and H(z) =  Z {hn}. Then 

Y (z)
H(z) =  

F (z) 

is the discrete-time transfer function, and serves the same role in the design and analysis 
of discrete-time systems as the Laplace based transfer function H(s) does in continuous 
systems. 
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In general, for LTI systems the transfer function will be a rational function of z, and may 
be written in terms of z or z−1, for example 

N(s) b0 + b1z
−1 + b2z

−2 + . . . + bM z
−M 

H(z) =  = 
D(s) a0 + a1z−1 + a2z−2 + . . . + aN z−N 

where the bi, i  = 0, . . . , m, ai, i  = 0, . . . , n  are constant coefficients. 

The Transfer Function and the Difference Equation 

As defined above, let 

Y (z) b0 + b1z
−1 + b2z

−2 + . . . + bM z
−M 

H(z) =  = 
F (z) a0 + a1z−1 + a2z−2 + . . . + aN z−N 

and rewrite as 

a0 + a1z −1 + a2z −2 + . . . + aN z −N Y (z) =  b0 + b1z −1 + b2z −2 + . . . + bM z −M F (z) 

If we apply the z-transform time-shift property 

Z {fn−k} = z −kF (z) 

term-by-term on both sides of the equation, (effectively taking the inverse z-transform) 

a0yn + a1yn−1 + a2yn−2 + . . . + aN yn−N = b0fn + b1fn−1 + b2fn−2 + . . . + bM fn−M 

and solve for yn 

1 1 
yn = − (a1yn−1 + a2yn−2 + . . . + aN yn−N ) +  (b0fn + b1fn−1 + b2fn−2 + . . . + bM fn−M ) 

a0 a0 
N ( ) M ( ) ∑ −ai 

∑ bi

= yn−i + fn−i


a0 a0i=1 i=0 

which is in the form of a recursive linear difference equation as discussed in Lecture 13. 

The transfer function H(z) directly defines the computational dif­
ference equation used to implement a LTI system. 

Example 1 

Find the difference equation to implement a causal LTI system with a transfer 
function 

(1 − 2z−1)(1 − 4z−1)
H(z) =  

z(1 − 1
2 z

−1) 

Solution: 
z−1 − 6z−2 + 8z−3 

H(z) =  
1 − 1 z−1 

2 
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from which 
1 

yn − yn−1 = fn−1 − 6fn−2 + 8fn−3,
2

or 
1 

yn = yn−1 + (fn−1 − 6fn−2 + 8fn−3). 
2

The reverse holds as well: if we are given the difference equation, we can define the system 
transfer function. 

Example 2 

Find the transfer function (expressed in powers of z) for the difference equation 

yn = 0.25yn−2 + 3fn − 3fn−1 

and plot the system poles and zeros on the z-plane. 

Solution: Taking the z-transform of both sides 

Y (z) = 0.25z −2Y (z) + 3F (z) − 3z −1F (z) 

and reorganizing 

Y (z) 3(1 − z−1) 3z(z − 1)
H(z) = = = 

F (z) 1 − 0.25z−2 z2 − 0.25 

which has zeros at z = 0, 1 and poles at z = −0.5, 0.5:
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3 Introduction to z-plane Stability Criteria 

The stability of continuous time systems is governed by pole locations - for a system to be 
BIBO stable all poles must lie in the l.h. s-plane. Here we do a preliminary investigation of 
stability of discrete-time systems, based on z-plane pole locations of H(z). 

Consider the pulse response hn of the causal system with 

z 1 
H(z) =  = 

z − a 1 − az−1 

with a single real pole at z = a and with a difference equation 

yn = ayn−1 + fn. 
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Clearly the pulse response is 
1 n = 0  

hn = 
an n ≥ 1 

The nature of the pulse response will depend on the pole location: 

0 < a < 1: In this case hn = an will be a decreasing function of n and limn→∞ hn = 0 and 
the system is stable. 

a = 1: The difference equation is yn = yn−1 + fn (the system is a summer and the impulse 
response is hn = 1, (non-decaying). The system is marginally stable. 

a > 1: In this case h = an will be a increasing function of n and limn→∞ h = ∞ and the n n 

system is unstable. 

−1 < a < 0: In this case hn = an will be a oscillating but decreasing function of n and 
limn→∞ hn = 0 and the system is stable. 

a = −1: The difference equation is yn = −yn−1 + fn and the impulse response is hn = (−1)n , 
that is a pure oscillator. The system is marginally stable. 

a < −1: In this case hn = an will be a oscillating but increasing function of n and limn→∞ |hn| = 
∞ and the system is unstable. 
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This simple demonstration shows that this system is stable only for the pole position −1 < 
a <  1. In general for a system ∏M (z − zk)

H(z) =  K k=1∏N (z − pk)k=1

having complex conjugate poles (pk) and zeros (zk) :  

A discrete-time system will be stable only if all of the poles of its 
transfer function H(z) lie within the unit circle on the z-plane. 

The Frequency Response of Discrete-Time Systems 

Consider the response of the system H(z) to an infinite complex exponential sequence 

fn = A ej ωn = A cos(ωn) +  jA sin(ωn), 

where ω is the normalized frequency (rad/sample). The response will be given by the con­
volution 

∞ ∞ ∑ ∑ 
yn = hkfn−k = hk 

( 
A ej ω(n−k) 

) 

k=−∞ k=−∞ ( ) ∞ ∑ 
= A hk e −j ωk ej ωn 

k=−∞ 

= AH(ej ω)ej ωn 

where the frequency response function H(ej ω) is  

H(ej ω) =  H(z)| j ωz=e

that is


The frequency response function of a LTI discrete-time system is 
H(z) evaluated on the unit circle - provided the ROC includes the 
unit circle. For a stable causal system this means there are no poles 
lying on the unit circle. 
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Alternatively, the frequency response may be based on a physical frequency Ω associated 
with an implied sampling interval ΔT , and 

H(ej ΩΔT ) =  H(z)| j ΩΔTz=e

which is again evaluated on the unit circle, but at angle ΩΔT .
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From the definition of the DTFT based on a sampling interval ΔT 

∞ 

H ∗ (jΩ) = h −mjnΩΔT = H(z)|n e z=e−mjnΩΔT 

n=0 

we can define the mapping between the imaginary axis in the s-plane and the unit-circle in 
the z-plane 

s = j Ωo ←→ z = ej ΩoΔT 
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The periodicity in H( ej ΩΔT ) can be clearly seen, with the “primary” strip in the s-plane 
(defined by − π/ΔT < Ω < π/ΔT ) mapping to the complete unit-circle. Within the primary 
strip, the l.h. s-plane maps to the interior of the unit circle in the z-plane, while the r.h. 
s-plane maps to the exterior of the unit-circle. 
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Aside: We use the argument to differentiate between the various classes of transfer 
functions: 

H(s) H(jΩ) H(z) H( ej ω) 
� � � � 

Continuous Continuous Discrete Discrete 
Transfer Frequency Transfer Frequency 
Function Response Function Response 

The Inverse z-Transform 

The formal definition of the inverse z-transform is as a contour integral in the z-plane, 

1 
∮ ∞ 

F (z)z n−1 dz 
2πj −∞ 

where the path is a ccw contour enclosing all of the poles of F (z). 

Cauchy’s residue theorem states 

1 ∞ ∑ 
F (z) dz = Res [F (z), pk]

2πj −∞ k 

where F (z) has N distinct poles pk, k = 1, . . . , N  and ccw path lies in the 
ROC. 
For a simple pole at z = zo 

Res [F (z), zo] = lim (z − zo)F (z), 
z→zo 

and for a pole of multiplicity m at z = zo 

1 dm−1 

Res [F (z), zo] = lim (z − zo)
mF (z) 

z→zo (m − 1)! dzm−1 

The inverse z-transform of F (z) is therefore


fn = Z−1 {F (z)} = Res 
[ 
F (z)z n−1 , pk 

] 
. 

k 

Example 3 

A first-order low-pass filter is implemented with the difference equation 

yn = 0.8yn−1 + 0.2fn. 

Find the response of this filter to the unit-step sequence {un}. 
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Solution: The filter has a transfer function 

Y (z) 0.2 0.2z 
H(z) = = = 

F (z) 1 − 0.8z−1 z − 0.8 

The input {fn} = {un} has a z-transform 

z 
F (z) =  

z − 1 

so that the z-transform of the output is 

0.2z2 

Y (z) =  H(z)U(z) =  
(z − 1)(z − 0.8) 

and from the Cauchy residue theorem 

yn	 = Res Y (z)z n−1 , 1 + Res Y (z)z n−1 , 0.8 

= lim(z − 1)Y (z)z n−1 + lim (z − 0.8)Y (z)z n−1 

z→1 z→0.8

0.2zn+1 0.2zn+1 

=	 lim + lim 
z→1 z − 0.8 z→0.8 z − 1 

= 1  − 0.8n+1 

which is shown below 
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Example 4 

Find the impulse response of the system with transfer function 

1 z2 z2 

H(z) =  = = 
1 +  z−2 z2 + 1  (z + j 1)(z − j 1)  
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Solution: The system has a pair of imaginary poles at z = ±j 1. From the 
Cauchy residue theorem 

hn = Z−1 {H(z)} = Res 
[ 
H(z)z n−1 , j 1  

] 
+ Res 

[ 
H(z)z n−1 , −j 1  

] 

n+1 n+1z z
= lim + lim 

z→j1 z + j 1  z→−j 1  z − j 1 

1 1


= (j 1)n+1 − (−j 1)n+1 

j 2 j 2

=
j n ( 

1 + (−1)n+1 
) 

2 

0 n odd 
hn = 

(−1)n/2 n even 

= cos(nπ/2) 

where we note that the system is a pure oscillator (poles on the unit circle) with 
a frequency of half the Nyquist frequency. 
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Example 5 

Find the impulse response of the system with transfer function 

1 z2 z2 

H(z) =  = = 
1 + 2z + z−2 z2 + 2z + 1  (z + 1)2 

Solution: The system has a pair of coincident poles at z = −1. The residue at 
z = −1 must be computed using 

1 dm−1 

Res [F (z), zo] = lim (z − zo)
mF (z). 

z→zo (m − 1)! dzm−1 

With m = 2,  at  z = −1, 

Res 
[ 
H(z)z n−1 , −1 

] 
= lim 

1 d
(z − 1)2H(z)z n−1 

z→−1 (1)! dz 
d n+1 = lim z 

z→−1 dz

= (n + 1)(−1)n
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The impulse response is 

hn = Z −1 { H(z)} = Res H(z)z n−1 , − 1 = (n + 1)(− 1)n . 
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Other methods of determining the inverse z-transform include: 

Partial Fraction Expansion: This is a table look-up method, similar to the method 
used for the inverse Laplace transform. Let F (z) be written as a rational function of 
z−1: ∑M biz

−k 

F (z) =  k=0 ∑N −kaizk=0 ∏M −1)(1 − cizk=1= ∏N (1 − diz−1)k=1

If there are no repeated poles, F (z) may be expressed as a set of partial fractions. 

N ∑ Ak
F (z) =  

1 − dkz−1 
k=1 

where the Ak are given by the residues at the poles 

Ak = lim (1 − dkz −1)F (z). 
z→dk 

Since 
Z 1 

(dk)
n un ←→ 

1 − dkz−1 

N 

fn = Ak (dk)
n un. 

k=1 

14–10




{ } { } 

∑ 

Example 6 

Find the response of the low-pass filter in Ex. 3 to an input 

fn = (−0.5)n 

Solution: From Ex. 3, and from the z-transform of {fn}, 
1 0.2 

F (z) =  , H(z) =
1 − 0.5z−1 1 − 0.8z−1 

so that 

0.2 
Y (z) =  

(1 + 0.5z−1)(1 − 0.8z−1) 
A1 A2 

= + 
1 + 0.5z−1 1 − 0.8z−1 

Using residues 

0.2 0.1 
A1 = lim = 

z→−0.5 1 − 0.8z−1 1.3 
0.2 0.16 

A2 = lim = 
z→0.8 1 + 0.5z−1 1.3 

and 

yn =
0.1 Z−1 1 

+
0.16 Z−1 1 

1.3 1 + 0.5z−1 1.3 1 − 0.8z−1 

0.1 0.16 
= (−0.5)n + (0.8)n 

1.3 1.3 

Note: (1) If F (z) contains repeated poles, the partial fraction method must be ex­
tended as in the inverse Laplace transform. 
(2) For complex conjugate poles – combine into second-order terms. 

Power Series Expansion: Since 

∞ 

F (z) =  fnz −n 

n=−∞ 

if F (z) can be expressed as a power series in z−1, the coefficients must be fn. 

14–11




) 

Example 7 

Find Z−1 {log(1 + az−1)}.

Solution: F (z) is recognized as having a power series expansion:


∞ 
a

F (z) = log(1 + az −1) =  
∑ (−1)n+1 n 

z −n for |a| < |z|
n 

n=1 

Because the ROC defines a causal sequence, the samples fn are ⎧ ⎨0 for n ≤ 0 
fn = (−1)n+1 na⎩ for n ≥ 1. 

n 

Polynomial Long Division: For a causal system, with a transfer function written as 
a rational function, the first few terms in the sequence may sometimes be computed 
directly using polynomial division. If F (z) is written as 

N(z−1) −1 −2 −2F (z) =  
D(z−1)

= f0 + f1z + f2z + f2z + · · ·  

the quotient is a power series in z−1 and the coefficients are the sample values. 

Example 8 

Determine the first few terms of fn for 

1 + 2z−1 

F (z) =  
1 − 2z−1 + z−2 

using polynomial long division. 

Solution: 
1 + 4z−1 + 7z−2 + · · ·  

1 − 2z−1 + z−2 1 + 2z−1 

1 − 2z−1 + z−2 

4z−1 − z−2 

4z−1 − 8z−2 + 4z−3 

7z−2 − 4z−3 

so that 
1 + 2z−1 

F (z) =  
1 − 2z−1 + z−2 

= 1 + 4z −1 + 7z −2 + · · ·  

and in this case the general term is 

fn = 3n + 1 for n ≥ 0. 
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In general, the computation can become tedious, and it may be difficult to recognize 
the general term from the first few terms in the sequence. 
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