MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF MECHANICAL ENGINEERING

2.161 Signal Processing - Continuous and Discrete
Fall Term 2008

Lecture 16!

Reading:
e Proakis & Manolakis, Sec. 10.2
e Oppenheim, Schafer & Buck, Chap. 7.

e Cartinhour, Chap. 9.

1 FIR Low-Pass Filter Design by Windowing

In Lecture 15 we examined the creation of a causal FIR filter based upon an ideal low-pass
filter with cut-off frequency w., and found that the impulse response was

we (sin(wen
h(n)—?( an) —00 < n < o0.

The resulting filter is therefore both infinite in extent and non-causal.
To create a finite length filter we truncated the impulse response by multiplying {h(n)}
with an even rectangular window function {r(n)} of length M + 1, where

() = {1 In| < M2

0 otherwise.

The result was to create a modified filter {h/} with a real frequency response function
H'(e*) from the convolution

. 1 4 . .
H'(e¥) = %/ H(e)R(“ ™) dv

where
_ sin((M + 1w/2)

R(e¥) =
(e sin(w/2)
The truncation generates a Gibb’s phenomenon associated with the band edges of H'(e!*)
where, as demonstrated in the figure below:

(a) Both the pass-band and the stop-band exhibit significant ripple, and the maxima of the
ripple is relatively independent of the chosen filter length M + 1.
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(b) The amplitude of the first side-lobe in the stop-band ia approximately 0.091, corre-
sponding to an attenuation of 21 dB, at that frequency.

(c) The width of the transition region decreases with M + 1, the filter length.

IH (&)

0.091

A causal filter was then formed by applying a right-shift of A /2 to the impulse response to
form {h,} where R
h(n)=h(n—M/2) 0<n<M+1.

The shift was seen to have no effect on |H(el“)|, but created a linear phase taper (lag).
The windowing method of FIR seeks to improve the filter characteristic by selecting
an alternate length M + 1 window function {w(n)} with improved spectral characteristics
W (), which when convolved with the ideal low-pass filter function |H(e/*)| will produce
a “better” filter.
There are many window functions available. We first look at three common fixed param-
eter windows:

The Bartlett Window: The length M + 1 Bartlett window is a even triangular window

14 2n/M —M/2<n<0
w(n)=4¢1-2n/M 0<n<M/2

0 otherwise,

)

as shown for M + 1 = 40 in the figure below. Also plotted is the spectrum |W( el
and for comparison the spectrum of the same length rectangular window ‘R( ej“".

It can be seen that the main lobe of the Bartlett spectrum is wider than that of the rect-
angular window, but that the side-lobes decrease in amplitude much faster at higher
frequencies. The Bartlett window produces a monotonically decreasing frequency re-
sponse magnitude, as is shown below.
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The Hann (or “Hanning”) Window: The Hann window is a raised cosine window

0.5+ 0.5cos (32n) —M/2<n<M/2
w(n) = .

0 otherwise.
The Hann window, along with its spectrum, is shown for M + 1 = 40 below. As
with the Bartlett example above, the spectrum of the rectangular window is given for
comparison. Again it can be seen that the Hann window has a broader main lobe, but
with much reduced side-lobes (even compared to the Bartlett window) away from the
main peak.
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The Hamming Window: The Hamming window is another raised cosine window, but

this time on a pedestal.

(n) 0.54+0.46cos(%n) —M/2<n<MJ/2
w(n) =
0 otherwise.

so that at the extremities (n = £M/2), the value w42 = 0.08. From the figure below,
it can be seen that the Hamming widow has smaller side-lobes close to the main lobe,
but that the side-lobes distant from the main peak have a higher amplitude.
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Filter Design Procedure Using a Fixed Window:

The only design parameters available when using a fixed window are (1) the low-pass cut-off
these

frequency w,, (2) the choice of window type, and (3) the filter length M + 1. Once
choices are made, the procedure is as follows

(a) Form the samples of the ideal low-pass filter of length M + 1.

h(n) = <& (M) for — M/2 <n < M/2

™ Wen
(b) Form the length M + 1 window {w,} of the chosen type.
(c) Form the impulse response {h! } where h!, = h,w,.

(d) Shift all samples to the right by M /2 samples.

(o)

B Example 1

Write some MATLAB code to design a length 41 low-pass FIR filter with cut-off
frequency w. = 0.47 using a Hamming window. Plot the magnitude and pahase
of the resulting filter.

Solution: The following MATLAB code was used:

n=-20:20;

wc=0.4x*pi;

h = (wc/pi)*sinc(wc/pi*n);
hprime = h.*hamming(41)’;

% All done - no need to shift - just interpret hprime as the shifted

% impulse response.
%» Plot the frequency response:
freqz(hprime,1);

which generated the following frequency response plots:
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Note that the linear phase characteristic has jump discontinuities of 7 (or 180°)
when H'(e“) changes sign.

The following figure shows a comparison of length 41 filters designed with the Bartlett, Hann,
and Hamming windows.
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Notice that while the Bartlett window generates a filter with less attenuation in the stop-
band, it has no ripple in the stop-band (no sign changes in H'(€“)) and therefore no jump
discontinuities in its linear phase characteristic.

General Comments on Window Taper Consider the family of window functions that
are raised cosine functions on a pedestal, characterized by

M

(n) a+ (1—a)cos (Bn) —M/2<n<M/2
we(n) =
0 otherwise.

where the parameter «, for 1 > a > 0.5, defines the degree of taper. When o = 1 we have
the rectangular window with zero taper, when a = 0.5 we have the Hann window (maximum
taper) , and the Hamming window corresponds to o = 0.54.

AW,
Rectangular
a=1
increasing taper
a=0.5 1
Hann
.. | Hamming
“la=0.54
n
-M/2 0 M2

These window functions may written as a linear combination of the rectangular window
Wreet (1), and the Hann window wyan,(n):

W (n) = 2(1 — @)wgann (1) + 2(a — 0.5)wWyect (1)

The spectra of these windows W, () will therefore be a similar combination of the spectra
Wieet(€/9) of the rectangular window, and Wi, (€¢'*) of the Hann window.

Wa(e®) = 2(1 — @) Wiann(@“) 4 2(a — 0.5) Wieer (@)
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Although we have only discussed raised cosine windows here, in general the degree of taper
affects the convolution kernel as follows:

e As the taper increases the width of the main lobe increases, causing the transition
band-width in the filter to increase.

e As the taper increases the amplitude of the side-lobes decreases more rapidly away
from the main lobe, with the result that the filter stop-band attenuation is significantly
increased at high frequencies.

The Kaiser Window: The Kaiser window, defined as
wi-Gia)')
Io(B) ’

0, otherwise

wK(na ﬁ) =

M M
TSNSy

where /() is the zero-order modified Bessel function of the first kind, and the parameter (3
provides a convenient control over the window taper (and the resultant trade-off between
lower side-lobe amplitudes and the width of the main lobe). (Note: Some authors define the
window in terms of a parameter a = 23/M.)

Kaiser windows for § = 2,4,6 are shown below:

AW(n) O/\ 20 log 4o(|W(e))W(1)])
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The effect of the parameter 3 on the window taper, and the compromise between the width
of the main lobe and sidelobe amplitude can be easily seen. These three window functions
were used to design low-pass FIR filters with w, = 0.47. the frequency response magnitudes
are shown below
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The compromise between stop-band attenuation and transition steepness can be clearly seen.
The Kaiser window is very commonly used in FIR filters.

2 Window FIR Filters or Other Filter Types

High-Pass Filter: Given an ideal low-pass filter H;,(e*), a high-pass filter Hy,(e/*) may
be created:

th(er> =1- Hlp(e']w)
AH)p(el®) A Hip(6/9)

1 oo

>
Zw
0 e z 0 (2] 4

Then the impulse response is
{hnp(n)} = IDFT{1} —IDFT {H, ()}
= 0(n)

After windowing to a length M + 1

we sin(w.n)

T W

we sin(w.n)

h(n) = w(n) (5(n) ) . Il < MJ2.

T  Wen
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The impulse response is then shifted to the right by M /2 samples to make it causal as before.

Band-Pass Filter: A band-pass filter Hy,(e*) may be designed from a pair of low-pass
filters Hy,,(€¥) and Hyy(e'*) with cut-off frequencies w,, and w,; respectively,

pr(ejw) = HZPU(ejw) - Hlpl(e'iw)-

Ny,

\Hlp (ejw) A pr(ej[”)

1 e — - -

0 (22} Dey V4

Then
Weu SIN(Weyn)  we sin(wen)

) = wio)

Band-stop Filter: A band-stop filter Hy,(e'“) may be designed from a low-pass filters
Hy,(e¥) and a high-pass filter Hy,( ') with cut-off frequencies wy and w., respectively,

) . Il < My2.

T WeN T Wan

Hbs(ej“’) = Hlp(ej“)) + th(ej“).

AHp(e/@)
1
\
\
\
\
|
\
\
|
\
\
0 Wl Dey 7z >w
Then _ )
Wey SIN(Wey, M Wel SIN(Wen
his(n) = w(n) ( sin(weun) +6(n) — JM) : In| < M/2.
Y Wen N T Weh

We show below that a linear phase high-pass or band-stop filter must have a length
M + 1 that is odd.
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3 The Zeros of a Linear Phase FIR Filter

Consider the transfer function of a FIR system with an even-symmetric impulse response of
length M + 1

M
H(z) = Z hyz "
k=0

The order of the polynomial is M. Also

M M M
H(z") = Z hpzt = M Z hyz~M=k) = M Z harenz™ "
k=0 k=o n=o

where n = M — k. Because {h;} is even-symmetric, hy = hp;_g, and the polynomials in
H(z) and H(z71) are identical

H(z™Y) = 2 H(2).

This means that if z; is a zero of H(z), that is H(z;) = 0, then also H(1/2z;) = 0, and
therefore 1/z is also a zero of H(z).
If z; = rel? then 1/z; = (1/r) e ? and the reciprocal zeros may be drawn on the z-plane

/\3{2}

RN{z}
)

In addition, zeros are either real or appear in complex conjugate pairs, with the result

e A general complex zero will be a member of a group of four zeros that are a “quad” of
reciprocal conjugates.

e A pair complex zeros on the unit circle are their own reciprocals, and so will exist only
as a pair.

e A general real zero will be a member of a conjugate pair.

e A zero at z = +1 will satisfy its own reciprocal, and therefore may exist on its own.
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The figure below shows a quad of zeros associated with a complex zero z;, a conjugate pair

of zeros on the unit circle associated with zy, a reciprocal pair associated with the real zero
z3, and a single zero z4 at z = —1.

ATz}

i1

o] 721

24

In addition

H(z) = b = 5 3 ™ = o5 ) b
k=0 k=0 n=0

where n = M — k. But with even symmetry h(M — n) = h(n), and since (—1)F = (=1)7%,
at z = —1

H(—1) = (-1)"MH(-1).

If M is odd, H(—1) = —H(—1), thus forcing H(—1) = 0, therefore H(z) has a zero at
z = —1 if the filter length M + 1 is even.

Any filter with a finite response magnitude at w = 7 cannot have a zero at z = —1.
For an even-symmetric FIR filter this requires that the filter length M + 1 be odd
(or equivalently that the number of zeros be even). Linear phase FIR high-pass and
band-stop filters must have an odd filter length.

B Example 2

Draw the pole-zero plot for a length 40 low-pass linear-phase FIR filter with
w. = 0.41 using a Kaiser window with g = 3.

Solution: The plot below was generated with the MATLAB commands:

>> b=fir1(39,0.4,kaiser(40,3));
>> zplane(b,1)

16-11



1 © .
0.8F 0 .
0-6 . O -
0.4} © o

E 0.2+ O i

g oo S 39 S S

£

(o))

g 02 o |
041 o o
-0.6 o |
0.8} o) i

Ak o i
1 0.5 0 0.5 1
Real Part

The complex reciprocal conjugate quads in the pass-band, conjugate pairs on the
unit circle in the stop-band, and real axis reciprocals can be clearly seen.

Notice that because M + 1 = 40 is even, there is a zero at z = —1, and that this

filter would not be satisfactory for transformation to a high-pass or band-stop
filter.
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