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Reading: 

Proakis & Manolakis, Sec. 10.2 • 

• Oppenheim, Schafer & Buck, Chap. 7. 

• Cartinhour, Chap. 9. 

1	 FIR Low-Pass Filter Design by Windowing 

In Lecture 15 we examined the creation of a causal FIR filter based upon an ideal low-pass 
filter with cut-off frequency ωc, and found that the impulse response was 

ωc 
�

sin(ωcn
�

h(n) = 
π Ωcn 

−∞ < n < ∞. 

The resulting filter is therefore both infinite in extent and non-causal. 
To create a finite length filter we truncated the impulse response by multiplying {h(n)}

with an even rectangular window function {r(n)} of length M + 1, where 

r(n) = 

�
1 |n| ≤ M/2 

0 otherwise. 

The result was to create a modified filter {h� } with a real frequency response functionn

H �( ej ω) from the convolution 

1 
� π 

H �( ej ω) = H( ej ν )R( ej (ω−ν)) dν 
2π −π 

where 

R( ej ω) = 
sin((M + 1)ω/2) 

sin(ω/2) 

The truncation generates a Gibb’s phenomenon associated with the band edges of H �( ej ω) 
where, as demonstrated in the figure below: 

(a)	 Both the pass-band and the stop-band exhibit significant ripple, and the maxima of the 
ripple is relatively independent of the chosen filter length M + 1. 

1copyright c D.Rowell 2008 
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(b)	 The amplitude of the first side-lobe in the stop-band ia approximately 0.091, corre­
sponding to an attenuation of 21 dB, at that frequency. 

(c) The width of the transition region decreases with M + 1, the filter length. 
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A causal filter was then formed by applying a right-shift of M/2 to the impulse response to 
form {ĥn} where 

ĥ(n) =  h′(n − M/2) 0 ≤ n ≤ M + 1. 

The shift was seen to have no effect on ∣H( ej ω)∣, but created a linear phase taper (lag). 
The windowing method of FIR seeks to improve the filter characteristic by selecting 

an alternate length M + 1 window function {w(n)} with improved spectral characteristics 
W ( ej ω), which when convolved with the ideal low-pass filter function ∣H( ej ω) will produce 
a “better” filter. 

There are many window functions available. We first look at three common fixed param­
eter windows: 

The Bartlett Window: The length M + 1 Bartlett window is a even triangular window ⎧ ⎪1 + 2n/M −M/2 ≤ n ≤ 0 ⎨ 
w(n) =  1 − 2n/M 0 ≤ n ≤ M/2 ⎪ ⎩

0 otherwise, 

as shown for M + 1 = 40 in the figure below. Also plotted is the spectrum ∣W ( ej ω , 
and for comparison the spectrum of the same length rectangular window ∣R( ej ω . 

It can be seen that the main lobe of the Bartlett spectrum is wider than that of the rect­
angular window, but that the side-lobes decrease in amplitude much faster at higher 
frequencies. The Bartlett window produces a monotonically decreasing frequency re­
sponse magnitude, as is shown below. 
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The Hann (or “Hanning”) Window: The Hann window is a raised cosine window 

0.5 + 0.5 cos 2
M
π n −M/2 ≤ n ≤ M/2 

w(n) =  
0 otherwise. 

The Hann window, along with its spectrum, is shown for M + 1 = 40 below. As 
with the Bartlett example above, the spectrum of the rectangular window is given for 
comparison. Again it can be seen that the Hann window has a broader main lobe, but 
with much reduced side-lobes (even compared to the Bartlett window) away from the 
main peak. 
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The Hamming Window: The Hamming window is another raised cosine window, but 
this time on a pedestal. 

0.54 + 0.46 cos 2
M
π n −M/2 ≤ n ≤ M/2 

w(n) =  
0 otherwise. 

so that at the extremities (n = ±M/2), the value w±M/2 = 0.08. From the figure below, 
it can be seen that the Hamming widow has smaller side-lobes close to the main lobe, 
but that the side-lobes distant from the main peak have a higher amplitude. 
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Filter Design Procedure Using a Fixed Window: 
The only design parameters available when using a fixed window are (1) the low-pass cut-off 
frequency ωc, (2) the choice of window type, and (3) the filter length M + 1. Once these 
choices are made, the procedure is as follows 

(a) Form the samples of the ideal low-pass filter of length M + 1.  
� 
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� 

ωc sin(ωcn)
h(n) =  for − M/2 ≤ n ≤ M/2 

π ωcn 

(b) Form the length M + 1 window {wn} of the chosen type. 

(c) Form the impulse response {h′ } where h′ = hnwn.n n 

(d) Shift all samples to the right by M/2 samples. 

Example 1 

Write some MATLAB code to design a length 41 low-pass FIR filter with cut-off 
frequency ωc = 0.4π using a Hamming window. Plot the magnitude and pahase 
of the resulting filter. 

Solution: The following MATLAB code was used: 

n=-20:20;

wc=0.4*pi;

h = (wc/pi)*sinc(wc/pi*n);

hprime = h.*hamming(41)’;

% All done - no need to shift - just interpret hprime as the shifted

% impulse response.

% Plot the frequency response:

freqz(hprime,1);


which generated the following frequency response plots: 
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Note that the linear phase characteristic has jump discontinuities of π (or 180◦) 
when H ′( ej ω) changes sign. 

The following figure shows a comparison of length 41 filters designed with the Bartlett, Hann, 
and Hamming windows. 
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Notice that while the Bartlett window generates a filter with less attenuation in the stop-
band, it has no ripple in the stop-band (no sign changes in H ′( ej ω)) and therefore no jump 
discontinuities in its linear phase characteristic. 

General Comments on Window Taper Consider the family of window functions that 
are raised cosine functions on a pedestal, characterized by 

α + (1  − α) cos 2π n −M/2 ≤ n ≤ M/2 
wα(n) =  M 

0 otherwise. 

where the parameter α, for 1 ≥ α ≥ 0.5, defines the degree of taper. When α = 1  we  have  
the rectangular window with zero taper, when α = 0.5 we have the Hann window (maximum 
taper) , and the Hamming window corresponds to α = 0.54. 
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These window functions may written as a linear combination of the rectangular window 
wrect(n), and the Hann window wHann(n): 

wα(n) = 2(1 − α)wHann(n) + 2(α − 0.5)wrect(n) 

The spectra of these windows Wα( ej ω) will therefore be a similar combination of the spectra 
Wrect( ej ω) of the rectangular window, and WHann( ej ω) of the Hann window. 

Wα( ej ω) = 2(1 − α)WHann( ej ω) + 2(α − 0.5)Wrect( ej ω) 
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Although we have only discussed raised cosine windows here, in general the degree of taper 
affects the convolution kernel as follows: 

•	 As the taper increases the width of the main lobe increases, causing the transition 
band-width in the filter to increase. 

•	 As the taper increases the amplitude of the side-lobes decreases more rapidly away 
from the main lobe, with the result that the filter stop-band attenuation is significantly 
increased at high frequencies. 

The Kaiser Window: The Kaiser window, defined as ⎧ ( ) 
2 ⎪ n ⎨ I0 β 1−(M/2 )

wK (n, β) =  I0(β) 2
,	 −M 

2 ≤ n ≤ M ⎪ ⎩0,	 otherwise 

where I0() is the zero-order modified Bessel function of the first kind, and the parameter β 
provides a convenient control over the window taper (and the resultant trade-off between 
lower side-lobe amplitudes and the width of the main lobe). (Note: Some authors define the 
window in terms of a parameter α = 2β/M .) 

Kaiser windows for β = 2, 4, 6 are shown below: 
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The effect of the parameter β on the window taper, and the compromise between the width 
of the main lobe and sidelobe amplitude can be easily seen. These three window functions 
were used to design low-pass FIR filters with ωc = 0.4π. the frequency response magnitudes 
are shown below 
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The compromise between stop-band attenuation and transition steepness can be clearly seen. 
The Kaiser window is very commonly used in FIR filters. 

2 Window FIR Filters or Other Filter Types 

High-Pass Filter: Given an ideal low-pass filter Hlp( ej ω), a high-pass filter Hhp( ej ω) may  
be created: 

Hhp( ej ω) = 1  − Hlp( ej ω) 

� � � � � � � � � �� . 
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Then the impulse response is 

{hhp(n)} = IDFT {1} − IDFT Hlp( ej ω) 

= δ(n) − 
ωc sin(ωcn) 
π ωcn 

After windowing to a length M + 1  ( ) 

h(n) =  w(n) δ(n) − 
ωc sin(ωcn) 

, |n| ≤ M/2. 
π ωcn 
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The impulse response is then shifted to the right by M/2 samples to make it causal as before. 

Band-Pass Filter: A band-pass filter Hbp( ej ω) may be designed from a pair of low-pass 
filters Hlpu( ej ω) and Hlpl( ej ω) with cut-off frequencies ωcu and ωcl respectively, 

Hbp( ej ω) =  Hlpu( ej ω) − Hlpl( ej ω). 

� � � � � � � � � �� . 
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Then 

hbp(n) =  w(n) 

( 
ωcu 

π 
sin(ωcun) 

ωcun 
− 

ωcl 

π 
sin(ωcln) 

ωcln 

) 

, |n| ≤ M/2. 

Band-stop Filter: A band-stop filter Hbs( ej ω) may be designed from a low-pass filters 
Hlp( ej ω) and a high-pass filter Hhp( ej ω) with cut-off frequencies ωcl and ωcu respectively, 

Hbs( ej ω) =  Hlp( ej ω) +  Hhp( ej ω). 

� � � � � � � � � �3 - 
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� 

� � � � � � 

Then ( ) 
ωcu sin(ωcun) ωcl sin(ωcln)

hbs(n) =  w(n) + δ(n) − , |n| ≤ M/2. 
π ωcun π ωcln 

We show below that a linear phase high-pass or band-stop filter must have a length 
M + 1 that is odd. 
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3 The Zeros of a Linear Phase FIR Filter 

Consider the transfer function of a FIR system with an even-symmetric impulse response of 
length M + 1  

M 

H(z) =  hkz −k 

k=0 

The order of the polynomial is M . Also 

M M M ∑ ∑ ∑ 
k M −(M−k) M −nH(z −1) =  hkz hkz	 hM−nz= z	 = z 

k=0 k=o	 n=o 

where n = M − k. Because {hk} is even-symmetric, hk = hM−k, and the polynomials in 
H(z) and H(z−1) are identical 

H(z −1) =  z(M)H(z). 

This means that if z1 is a zero of H(z), that is H(z1) = 0, then also H(1/z1) = 0, and 
therefore 1/z1 is also a zero of H(z). 

If z1 = r ej θ, then 1/z1 = (1/r) e−j θ and the reciprocal zeros may be drawn on the z-plane 
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In addition, zeros are either real or appear in complex conjugate pairs, with the result 

•	 A general complex zero will be a member of a group of four zeros that are a “quad” of 
reciprocal conjugates. 

•	 A pair complex zeros on the unit circle are their own reciprocals, and so will exist only 
as a pair. 

•	 A general real zero will be a member of a conjugate pair. 

•	 A zero at z = ±1 will satisfy its own reciprocal, and therefore may exist on its own. 
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The figure below shows a quad of zeros associated with a complex zero z1, a conjugate pair 
of zeros on the unit circle associated with z2, a reciprocal pair associated with the real zero 
z3, and a single zero z4 at z = −1. 
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In addition 

M M M ∑ 1 ∑ 1 ∑

H(z) =  hkz −k = hkz M−k = hM−nz n


zM zM 
k=0 k=0 n=0 

where n = M − k. But with even symmetry h(M − n) =  h(n), and since (−1)k = (−1)−k , 
at z = −1 

H(−1) = (−1)−M H(−1). 

If M is odd, H(−1) = −H(−1), thus forcing H(−1) = 0, therefore H(z) has a zero at 
z = −1 if the filter length M + 1 is even. 

Any filter with a finite response magnitude at ω = π cannot have a zero at z = −1. 
For an even-symmetric FIR filter this requires that the filter length M + 1 be odd 
(or equivalently that the number of zeros be even). Linear phase FIR high-pass and 
band-stop filters must have an odd filter length. 

Example 2 

Draw the pole-zero plot for a length 40 low-pass linear-phase FIR filter with 
ωc = 0.4ı using a Kaiser window with β = 3.  

Solution: The plot below was generated with the MATLAB commands: 

>> b=fir1(39,0.4,kaiser(40,3)); 
>> zplane(b,1) 
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The complex reciprocal conjugate quads in the pass-band, conjugate pairs on the 
unit circle in the stop-band, and real axis reciprocals can be clearly seen. 

Notice that because M + 1 = 40 is even, there is a zero at z = −1, and that this 
filter would not be satisfactory for transformation to a high-pass or band-stop 
filter. 
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