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Lecture 17!

Reading:
e (lass Handout: Frequency-Sampling Filters.
e Proakis and Manolakis: Secs. 10.2.3, 10.2.4
e Oppenheim, Schafer and Buck: 7.4

e Cartinhour: Ch. 9

1 Frequency-Sampling Filters

In the frequency-sampling filters the parameters that characterize the the filter are the
values of the desired frequency response H(e/*) at a discrete set of equally spaced sampling
frequencies. In particular, let
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as shown below for the cases of N even, and N odd. Note that when N is odd there is
no sample at the Nyquist frequency, w = w. The frequency-sampling method guarantees
that the resulting filter design will meet the given design specification at each of the sample
frequencies.
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For convenience denote the complete sample set { Hy} as
Hy=H(*) k=1,...,N—1.
For a filter with a real impulse response {h,} we require conjugate symmetry, that is
Hy_i, = Hy,

and further, for a filter with a real, even impulse response we require {Hy} to be real and
even, that is
Hy_, = Hg.

Within these constraints, it is sufficient to specify frequency samples for the upper half of
the z-plane, that is for

WE =

il 2
N k= s N even.

21 k=o0,.. 21 N odd

g 0,.... 5
and use the symmetry constraints to determine the other samples.

If we assume that H(e’*) may be recovered from the complete sample set {H} by the
cardinal sinc interpolation method, that is

N-1 .
: sin (w — 27k/N)
H(e*) = H
()= M= /N

k=0

then H(e’*) is completely specified by its sample set, and the impulse response, of length
N, may be found directly from the inverse DFT,

{h,} = IDFT {H}
where
=, o
hn:N;erjN n=0,..., N—1
As mentioned above, this method guarantees that the resulting FIR filter, represented by

{h,}, will meet the specification H(e’*) = Hj, at w = wp = 2km/N. Between the given
sampling frequencies the response H(e’*) will be described by the cardinal interpolation.

1.1 Linear-Phase Frequency-Sampling Filter

The filter described above is finite, with length N, but is non-causal. To create a causal filter
with a linear phase characteristic we require an impulse response that is real and symmetric
about its mid-point. This can be done by shifting the computed impulse response to the
right by (N — 1)/2 samples to form

H'(z) = 2 W-D2[(2)

but this involves a non-integer shift for even N. Instead, it is more convenient to add the
appropriate phase taper to the frequency domain samples Hj before taking the IDFT. The
non-integer delay then poses no problems:
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e Apply a phase shift of

k(N —1
ARG e
to each of the samples in the upper half z-plane
; k=0,....,(N—1)/2 (for n odd)
- J Pk ) )
Hj, = Hye { k=0,...,N/2 (for n even)

e Force the lower half plane samples to be complex conjugates.

| = k=1,...,(N—-1)/2 (for n odd)
Nk k k=1,...,N/2—1 (for n even)

e Then the linear-phase impulse response is

{h,} = IDFT {H.}

1.2 A Simple MATLAB Frequency-Sampling Filter

The following is a MATLAB script of a tutorial frequency-sampling filter

h = firfs(samples)
that takes a vector samples of length N of the desired frequency response in the range
0 <w < (N —1)n/N, and returns the linear-phase impulse response {h,} of length 2N — 1.

% 2.161 Classroom Example - firfs - A simple Frequency-Sampling Linear-Phase FIR

% Filter based on DFT interpolation.

% Usage : h = firfs(samples)

% where samples - 1is a row vector of M equi-spaced, real values

% of the freq. response magnitude.

b The samples are interpreted as being equally spaced around
% the top half of the unit circle at normalized (in terms of
% the Nyquist frequency f_N) frequencies from

% 0 to 2(M-1)/(2M-1) x f_N,

% or at frequencies 2k/(2N-1)xf_N for k = 0...M-1

% Note: Because the length is odd, the frequency response

b is not specified at f_N.

yA h - is the output impulse response of length 2M-1 (odd).

% The filter h is real, and has linear phase, i.e. has symmetric

% coefficients obeying h(k) = h(2M+1-k), k = 1,2,...,M+1.

Y
function h = firfs(samples)

h

% Find the length of the input array...

% The complete sample set on the unit circle will be of length (2N-1)
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h

N = 2xlength(samples) -1;

H_d = zeros(1,N);

b

% We want a causal filter, so the resulting impulse response will be shifted
% (N-1)/2 to the right.

% Move the samples into the upper and lower halves of H_d and add the
% linear phase shift term to each sample.

h

Phi = pi*(N-1)/N;

H_d(1) = samples(1);

for j = 2:N/2-1

Phase = exp(-i*(j-1)*Phi);

H_d(j) = samples(j)+*Phase;

H_d(N+2-j) = samples(j)*conj(Phase);
end

h

% Use the inverse DFT to define the impulse response.
h

h = real (ifft(H_d));

The following MATLAB commands were used to generate a filter with 22 frequency samples,
generating a length 43 filter.

h=firfs([1 1110.400000.822220.800000001);
freqz(h,1)

The filter has two pass-bands; a low-pass region with a gain of unity, and a band-pass region
with a gain of two. Notice that the band-edges have been specified with transition samples,
this is discussed further below. The above commands produced the following frequency
response for the filter.
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1.3 The Effect of Band-Edge Transition Samples

One of the advantages of the frequency-sampling filter is that the band-edges may be more
precisely specified than the window method. For example, low-pass filters might be specified
by

h=firfs([111110.4000000]);
with one transition value of 0.4, or

h = firfs([11110.70.200000 0]);
with a pair of transition specifications. The frequency-sampling filter characteristic will pass
through these points, and they can have a significant effect on the stop-band characteristics
of the filter.

The figure below shows the effect of varying the value of a single transition point in a

filter of length N = 33.

Magnitude (dB)

@0z as o ds’os ar os as 1
The values shown are for t = 0.6,0.4 and 0.2. There is clearly a significant improvement in
the stop-band attenuation for for the case ¢t = 0.4.

Similarly the following figure compares the best of these single transition values (¢t = 0.4)
with a the response using two transition points (t; = 0.59, t5 = 0.11). The filter using two
transition points shows a significant improvement in the stop-band over the single point case,
at the expense of the transition width.
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Rabiner et al. (1970) did an extensive linear-programming optimization study to deter-
mine the optimum value of band edge transition values, and tabulated the results for even
and odd filters of different lengths. The results show that for one transition point ¢.,; ~ 0.4,
and for two points ., ~ 0.59, and 0.11.

2 FIR Filter Design Using Optimization

These methods allow much greater flexibility in the filter specification. In general they seek
the filter coefficients that minimize the error (in some sense) between a desired frequency
response Hy(e*) and the achieved frequency response H(e'*). The most common optimiza-
tion method is that due to Parks and McClellan (1972) and is widely available in software
filter design packages (including MATLAB).

The Parks-McClellan method allows

e Multiple pass- and stop-bands.

e [s an equi-ripple design in the pass- and stop-bands, but allows independent weighting
of the ripple in each band.

e Allows specification of the band edges.

equi-ripple transition

1+,

HIVa L/ |
1-01

pass-band stop-band
i equi-ripple
Syl e L /
0 @
23 2 V4

For the low-pass filter shown above the specification would be

1-6 < H(e¥) < 146  in the pass-band 0 < w < w,
—0, < H(¥) < & in the stop-band wy; < w < .

where the ripple amplitudes d; and d, need not be equal. Given these specifications we need
to determine, the length of the filter M + 1 and the filter coefficients {h,} that meet the
specifications in some optimal sense.

If M + 1 is odd, and we assume even symmetry

harek =he  k=0...M/2
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and the frequency response function can be written

M/2
H(e¥) = hg+2 Z hy, cos(wk)
k=1
M/2

= Z a, cos(wk)
k=0

Let Hy(e'*) be the desired frequency response, and define a weighted error
E(e?) =W () (Ha(e) — H(¥))

where W (&%) is a frequency dependent weighting function, but by convention let W (e/*)
be constant across each of the critical bands, and zero in all transition bands. In particular
for the low-pass design

d2/61 in the pass-band
W(e“) =<1 in the stop-band

0 in the transition band.

This states that the optimization will control the ratio of the pass-band to stop-band ripple,
and that the transition will not contribute to the error criterion.

Let 2 be a compact subset of the frequency band from 0 to 7 representing the pass- and
stop-bands. The goal is to find the set of filter parameters {ax}, k = 0,...,M/2 + 1 that
minimize the mazimum value of the error E(e/*) over the pass- and stop-bands.

M2
min [max HE(eJ‘”)‘H = min |max ||W(e¥) Hd(ej“)—Zakcos(wk)

over ay Lover Q over ap | over Q =0

where €2 is the disjoint set of frequency bands that make up the pass- and stop-bands of
the filter.

The solution is found by an iterative optimization routine. We do not attempt to cover the
details of the algorithm here, and merely note:

e The method is based on reformulating the problem as one in polynomial approximation,
using Chebyshev polynomials, where

cos(wk) = Ty(cos(w))

where Ty (z) is a polynomial of degree k, (see the Class Handout on Chebyshev filter
design). Consequently

M/2 M/2
H(e¥) = Z ay cos(wk) = Z al, (cos(w))*
k=0 k=0
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e The algorithm uses Chebyshev’s alternation theorem to recognize the optimal solution.
In general terms the theorem is stated:

Define the error E(z) as above, namely
E(e*) =W(el) (Hy(e*) — H(e))
and the maximum error as
IE() [l = argmax,eq | ()]

A necessary and sufficient condition that H(e*) is the unique Lth-order
polynomial minimizing ||E(e/*)|« is that F(e*) exhibit at least L + 2
extremal frequencies, or “alternations”, that is there must exist at least L+2
values of w, wy, € Q, k=1[0,1,..., L+ 1], such that wy < w; < ... < wr41,
and such that

E(e“r) = —E(e+) =+ ([|E(e)]x) -

Note that the alternation theorem is simply a way of recognizing the optimal equi-
ripple solution. For example, the following figure is from a Parks-McClellan low-pass
filter with length M + 1 = 17.

[H(eja)
transition
1+ *

1-01

pass-band stop-band

L /\/ alternation frequencies
o SWWW

3 Ds T

@

From above, H(e*) is written as a polynomial of degree M /2,

so that L = M/2 and the pass- and stop-bands must exhibit at least M /2 + 2 = 10
points of alternation. These 10 points are shown in the figure.

e The Parks-McClellan algoritm uses the Remez exchange optimization method.
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See Proakis and Manolakis Sec. 10.2.4 or Openheim, Schafer and Buck Sec. 7.4 for details.

MATLAB Parks-McClellan Function: The Parks-McClellan algorithm is implemented
in the MATLAB function

b = firpm(M,F,A,W)
where b is the array of filter coefficients, M is the filter order (M+1 is the length of the filter),
F is a vector of band edge frequencies in ascending order, A is a set of filter gains at the band

edges, and W is an optional set of relative weights to be applied to each of the bands.
For example, consider a band-pass filter with two pass-bands as shown below:

A Hy(e’)
pass
1
pass
0.7
stop stop stop
>®
0 o1 w2 3 Wy 5 g 7 g e
transition transition transition transition

There are five distinct bands in this filter, separated by four transition regions. The filter
would require the following specifications:

F = [O W1 W2 W3 W4 Wy Wg Wy Ws 1]

A=[00 1 1 0 0 07 070 0]

Ww=1[101 10 1 10]
where the errors in the stop-bands have been weighted 10 times more heavily than in the
pass-bands. See the MATLAB help/documentation for more details.

B Example 1
Design a length 33 Parks-McClellan band-pass filter with the following band
specifications:
Hye®)
1 P pass
stop stop
0 0.2n 0.4m 0.71 0.851 T ®

transition transition
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Weight the stop-band ripple ten times more heavily than the pass-band.

Solution:

h=firpm(32,[0 0.2 0.4 0.7 0.85 1],[0 0 10 10 O 0],[10 1 10])
freqz(h,1)
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