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Lecture 19!

Reading:
e Proakis and Manolakis: Sec. 10.3.3

e Oppenheim, Schafer, and Buck: Sec. 7.1

1 The Design of IIR Filters (continued)

1.1 Design by the Matched z-Transform (Root Matching)

Given a prototype continuous filter H,(s),

M
_ KHk:l (S - Zk)
- N
[Ti=i(s — pk)
with zeros zy, poles p, and gain K, the matched z-transform method approximates the ideal
mapping

»(s)

Hy(s) — H(2)|.—cor
by mapping the poles and zeros

H(z) — K’ ngzl(z — esz)
Hk:1(z - eka)

where K’ must be determined from some empirical response comparison between the pro-
totype and digital filters. Note that an implicit assumption is that all s-plane poles and
zeros must lie in the primary strip in the s-plane (that is |3(s)| < 7/T"). Poles/zeros on the
s-plane imaginary axis will map to the unit circle, and left-half s-plane poles and zeros will
map to the interior of the unit circle, preserving stability.
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steps in the design procedure are:

. Determine the poles and zeros of the prototype filter H,(s).

. Map the poles and zeros to the z-plane using z = e*7.

. Form the z-plane transfer function with the transformed poles/zeros.

. Determine the gain constant K’ by matching gains at some frequency (for a low-pass
filter this is normally the low frequency response).

. Add poles or zeros at z = 0 to adjust the delay of the filter (while maintaining causal-
ity).

B Example 1

Use the matched z-transform method to design a filter based on the prototype

first-order low-pass filter
a

s+a
Solution: The prototype has a single pole at s = —a, and therefore the digital
filter will have a pole at z = =T, The transfer function is

1
2z — el

H(z)=K'

To find K’, compare the low frequency gains of the two filters:

lim H,(jQ) = 1

Q—0

. K’
lim H(e¥) = ————
lim H(e'™) Il

therefore choose K’ =1 — e %I, Then

B 1— efaT _ (1 _ efaT)Zfl

z —e—oT 1 —eaTz-1

H{(z)
and the difference equation is

Yn = e_aTyn—l + (1 - e_aT)fn—l-

Note that this is not a minimum delay filter, because it does not use f,,. Therefore
we can optionally add a zero at the origin, and take

H(z) = (1—e® )z: (1 — e

z —e—ol 1 —eaTz-1

as the final filter design.
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B Example 2

Use the matched z-transform method to design a second-order band-pass filter
based on the prototype filter

Hy(s) =

s
s2+0.2s+1

with a sampling interval T" = 0.5 sec. Make frequency response plots to compare
the prototype and digital filters.

Solution: The prototype filter as a zero at s = 0, and a complex conjugate
pole pair at s = —0.1 £j0.995, so that

z—1
(z — e(70.1+j0.995)T)(Z — o(-01-j 0.995)T)

H(z) = K

K z—1
22 —1.6718z + 0.9048

To find K', compare the gains at 2 = 1 rad/s (the peak response of H,(j(?)),

|Hp(j Q)|Q:1 =9

|H(T)|,_, = 10.54K".

and to match the gains K’ = 5/10.54 = 0.4612, and

H(2) 0.4612(z — 1)
e =
22 —1.6718z + 0.9048
5
4t
8
2
=
&
= 3f
Q
2
2
3
14
3 2r
=
[}
=}
g
e
1r prototype
matched z-transfrom
Il Il Il Il Il Il
0 1 2 3 4 5 6

Frequency (rad/s)

19-3



To create a minimum delay filter, make the order of the numerator and denomi-
nator equal by adding a zero at the origin,

0.46122(2 —1) 0.4612(1 — z71)

H(z) = =
(2) 22 —1.6718240.9048 1 —1.6718271 4 0.90482~2

and implement the filter as

1.2 Design by the Bilinear Transform

As noted above, the ideal mapping of a prototype filter to the z-plane is
HP(S) B H(Z)|z:eST

or
s — % In(z)

so that

The Laurent series expansion for In(z) is

3 5
Z_1+1(Z_1) +1(Z—1) +] for R{z} >0,z # 0.

z+1 3 \z+1 5\z+1

In(z) =2

The bilinear transform method uses the truncated series approximation

11() 2 (-1
—_— z_
S A S A P

In a more general sense, any transformation of the form

z—1 o _ s+ A
S—A(Z+1> which implies Z__(S—A>

is a bilinear transform. In particular, when A = 2/T the method is known as
Tustin’s method.

With this transformation the digital filter is designed from the prototype using
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B Example 3

Find the bilinear transform equivalent of an integrator

Solution:

and the difference equation is

T
Yn = Yn—1 + E (fn + fnfl)

which is the classical trapezoidal (or mid-point) rule for numerical integration.

The bilinear transform maps the left half s-plane to the interior of the unit circle, and thus
preserves stability. In addition, we will see below that it maps the entire imaginary axis of
the s-plane to the unit circle, and thus avoids aliasing in the frequency response.

AJQ A3{z} z-plane
s-plane
jon I
>C > f}{{z}

Thus every point on the frequency response of the continuous-time prototype filter, is mapped
to a corresponding point in the frequency response of the discrete-time filter, although with a
different frequency. This means that every feature in the frequency response of the prototype
filter is preserved, with identical gain and phase shift, at some frequency the digital filter.

B Example 4
Find the bilinear transform equivalent of a first-order low-pass filter
a
H = .
p(5) st a
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Solution:

2 (z—1

H(z) = (sia> s=7(51)

(aT/2)(z+1)
(z—1)+ (aT/2)(z+ 1)
(aT/2)(1+271)
(14 aT/2) — (1 —aT/2)z1

and the difference equation is

_1—al)/2 aTl/2

= Trar T i are

Yn

Comparing the frequency responses of the two filters,

H(J9T =1/0 = H,(j0)

)|Q:O
. QT _E T .
Gl ) =00 (=5) = fim 1G9,

demonstrating the assertion above that the entire frequency response of the pro-
totype filter has been transformed to the unit circle.

1.2.1 Frequency Warping in the Bilinear Transform
The mapping

implies that when z = /%7,
2 (9 1 2, Qr
s=———— ) =j=tan | —
T\ +1) 7T 2

H(e") = H, (j %tan (QTT»

which gives a nonlinear warping of the frequency scales in the frequency response of the two
filters.

so that
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N

\Qp

N\Q' frequency in prototype filter

Q T 7 Qq

frequency in digital filter

In particular . .
H(e") = H,(j0), and H(e'™) = H, (joo)

and there is no aliasing in the frequency response.

1.2.2 Pre-warping of Critical Frequencies in Bilinear Transform Filter Design

The specifications for a digital filter must be done in the digital domain, that is the critical
band-edge frequencies must relate to the performance of the final design - not the continuous
prototype.

Therefore, in designing the continuous prototype we need to choose band-edge frequencies
that will warp to the correct values after the bilinear transform. This procedure is known as
pre-warping. For example, if we are given a specification for a digital low-pass filter such as

()P /

|
|
0 Qc Q Q (rad/sec)

pass band 3 transition band | stop band
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we would pre-warp the frequencies €2. and €2, to

2 QT 2 QT
Q. = 7 tan ——, and Q| = 7 tan —

and design the prototype to meet the specifications with €2, and €2/, as the band edges.

Design Procedure: For any class of filter (band-pass, band-stop) the procedure is:
(1) Define all band-edge critical frequencies for the digital filter.

(2) Pre-warp all critical frequencies using Q' = (7'/2) tan(277/2).
(3) Design the continuous prototype using the pre-warped frequencies.

(4) Use the bilinear transform to transform H,(s) to H(z).

(5) Realize the digital filter as a difference equation.

B Example 5

Use the bilinear transform method to design a low-pass filter, with 7" = .01 sec.,
based on a prototype Butterworth filter to meet the following specifications.

|H(j2nF)|? 7
1
1
7+2709
T - Z
=005|-————%5—————-
1+ 0 |
|
0 10 20 F (Hz)
pass band 3 transition band 3 stop band

Solution: Pre-warp the band-edges:

2 QT
Q. = Ttan( 5 ):64.9839 rad/s

2 0T
Q. = ?tan< 5 ) = 145.3085 rad/s.

From the specifications € = 0.3333 and A = 4.358, and the required order for the
prototype Butterworth filter is

o s/

— L - =3.194
= Tog(ay ) — 190
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so take N = 4. The four poles (pi,...,ps) lie on a circle of radius e !

82.526,

pa| = 82.526,
lpn = m(2n+3)/8

for n = 1...4. The prototype transfer function is

(8> _ DP1P2P3P4
(s =p1)(s — p2)(s — p3)(5s — pa)
5.3504 x 107

st 4 223.4897s% + 2497452 + 1.6348 x 10%s + 5.3504 x 107"

Applying the bilinear transform

gives

B 0.0112(1 4 2~ 1)
~ 1.0000 — 1.91052~1 + 1.66202—2 — 0.68472—3 + 0.11282—4

H(z)

N

and the frequency response of the digital filter (as a power gain) is shown below:

o
)

Power Response |H(j27rF)|2
o
o
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»
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