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Lecture 191 

Reading: 

Proakis and Manolakis: Sec. 10.3.3 • 

• Oppenheim, Schafer, and Buck: Sec. 7.1 

1 The Design of IIR Filters (continued) 

1.1 Design by the Matched z-Transform (Root Matching) 

Given a prototype continuous filter Hp(s), 
�M


Hp(s) = K k=1(s − zk)
�N (s − pk)k=1

with zeros zk, poles pk, and gain K, the matched z-transform method approximates the ideal 
mapping 

sTHp(s) −→ H(z)|z=e

by mapping the poles and zeros 
�M zk T )

H(z) = K k=1(z − e� �N (z − epkT )k=1

where K � must be determined from some empirical response comparison between the pro­
totype and digital filters. Note that an implicit assumption is that all s-plane poles and 
zeros must lie in the primary strip in the s-plane (that is |�(s)| < π/T ). Poles/zeros on the 
s-plane imaginary axis will map to the unit circle, and left-half s-plane poles and zeros will 
map to the interior of the unit circle, preserving stability. 

1copyright c D.Rowell 2008 
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The steps in the design procedure are: 

1. Determine the poles and zeros of the prototype filter Hp(s). 

2. Map the poles and zeros to the z-plane using z = esT . 

3. Form the z-plane transfer function with the transformed poles/zeros. 

4. Determine the gain constant K � by matching gains at some frequency (for a low-pass 
filter this is normally the low frequency response). 

5. Add poles or zeros at z = 0 to adjust the delay of the filter (while maintaining causal­
ity). 

Example 1 

Use the matched z-transform method to design a filter based on the prototype 
first-order low-pass filter 

a 
Hp(s) = . 

s + a 
Solution: The prototype has a single pole at s = −a, and therefore the digital 
filter will have a pole at z = e−aT . The transfer function is 

1 
H(z) = K � 

z − e−aT 
. 

To find K �, compare the low frequency gains of the two filters: 

lim Hp(j Ω) = 1 
Ω 0→

K �
lim H( ej Ω) = , 
Ω 0 1 − e−aT →

therefore choose K � = 1 − e−aT . Then 

1 − e−aT (1 − e−aT )z−1 

H(z) = = 
z − e−aT 1 − e−aT z−1 

and the difference equation is 

yn = e−aT yn−1 + (1 − e−aT )fn−1. 

Note that this is not a minimum delay filter, because it does not use fn. Therefore 
we can optionally add a zero at the origin, and take 

(1 − e−aT )z (1 − e−aT )
H(z) = = 

z − e−aT 1 − e−aT z−1 

as the final filter design. 
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Example 2 

Use the matched z-transform method to design a second-order band-pass filter 
based on the prototype filter 

s 
Hp(s) = 

s2 + 0.2s + 1 

with a sampling interval T = 0.5 sec. Make frequency response plots to compare 
the prototype and digital filters. 

Solution: The prototype filter as a zero at s = 0, and a complex conjugate 
pole pair at s = −0.1 ± j 0.995, so that 

H(z) = K
z − 1� 

(z − e(−0.1+j 0.995)T )(z − e(−0.1−j 0.995)T ) 

= K � z − 1 
z2 − 1.6718z + 0.9048 

To find K �, compare the gains at Ω = 1 rad/s (the peak response of Hp(j Ω)), 

Hp(j Ω) Ω=1 = 5 ��H
|
( ej ΩT )

��
|
Ω=1 

= 10.54K �. 

and to match the gains K � = 5/10.54 = 0.4612, and 

H(z) = 
2 

0.4612(z − 1) 
z − 1.6718z + 0.9048 
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To create a minimum delay filter, make the order of the numerator and denomi­
nator equal by adding a zero at the origin, 

0.4612z(z − 1) 0.4612(1 − z−1)
H(z) = = 

z2 − 1.6718z + 0.9048 1 − 1.6718z−1 + 0.9048z−2 

and implement the filter as 

yn = 1.6718yn−1 − 0.9048yn−2 + 0.4612(fn − fn−1). 

1.2 Design by the Bilinear Transform 

As noted above, the ideal mapping of a prototype filter to the z-plane is 

Hp sTz=e(s) −→ H(z)|

or 
1 

s −→ 
T 

ln(z) 

so that 
H(z) = Hp(s)|s= 

T 
1 ln(z) . 

The Laurent series expansion for ln(z) is 
�

z − 1 1 
�

z − 1
�3 

1 
�

z − 1
�5 

� 

ln(z) = 2 + + + for �{z} ≥ 0, z = 0. 
z + 1 3 z + 1 5 z + 1 

· · · �

The bilinear transform method uses the truncated series approximation 

1 2 
�

z − 1
� 

s −→ 
T 

ln(z) ≈ 
T z + 1 

In a more general sense, any transformation of the form 
�

z − 1
� �

s + A
� 

s = A which implies z 
z + 1 

= − 
s − A 

is a bilinear transform. In particular, when A = 2/T the method is known as 
Tustin’s method. 

With this transformation the digital filter is designed from the prototype using 

H(z) = Hp(s)|s= 2 ( z−1 )T z+1 
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Example 3 

Find the bilinear transform equivalent of an integrator 

1 
Hp(s) = 

s 
. 

Solution: 
�

1
��� �

T 
� 

1 + z−1 

H(z) = 
s 

�� =
2 s= 2 ( z−1 ) 1 − z−1 

T z+1 

and the difference equation is 

T 
yn = yn−1 + (fn + fn−1)

2 

which is the classical trapezoidal (or mid-point) rule for numerical integration. 

The bilinear transform maps the left half s-plane to the interior of the unit circle, and thus 
preserves stability. In addition, we will see below that it maps the entire imaginary axis of 
the s-plane to the unit circle, and thus avoids aliasing in the frequency response. 

Thus every point on the frequency response of the continuous-time prototype filter, is mapped 
to a corresponding point in the frequency response of the discrete-time filter, although with a 
different frequency. This means that every feature in the frequency response of the prototype 
filter is preserved, with identical gain and phase shift, at some frequency the digital filter. 

Example 4 

Find the bilinear transform equivalent of a first-order low-pass filter 

a 
Hp(s) = . 

s + a 
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Solution:


� 
a 

�����H(z) = 
s + a s= 2 ( z−1 

T z+1 ) 
(aT/2)(z + 1) 

= 
(z − 1) + (aT/2)(z + 1) 

(aT/2)(1 + z−1) 
= 

(1 + aT/2) − (1 − aT/2)z−1 

and the difference equation is 

1 − aT/2 aT/2 
yn = 

1 + aT/2
yn−1 + 

1 + aT/2 
fn. 

Comparing the frequency responses of the two filters, 

H( ej ΩT )
��
Ω=0 

= 1 � 0 = Hp(j 0) 

π 
lim H( ej ΩT ) = 0

� � 
= lim Hp(j Ω), 

Ω→π/T 
� − 

2 Ω→∞ 

demonstrating the assertion above that the entire frequency response of the pro­
totype filter has been transformed to the unit circle. 

1.2.1 Frequency Warping in the Bilinear Transform 

The mapping 
2 

�
z − 1

� 

s ←→ 
T z + 1


implies that when z = ej ΩT ,


j ΩT


s =
2 

� 
e − 1

� 

= j 
2

tan 

�
ΩT 

� 

T ej ΩT + 1 T 2 

so that �
2 

�
ΩT 

��
H( ej ΩT ) = Hp j tan 

T 2 

which gives a nonlinear warping of the frequency scales in the frequency response of the two 
filters. 
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In particular 
H( ej 0) = Hp (j 0) , and H( ej π) = Hp (j ∞) 

and there is no aliasing in the frequency response. 

1.2.2 Pre-warping of Critical Frequencies in Bilinear Transform Filter Design 

The specifications for a digital filter must be done in the digital domain, that is the critical 
band-edge frequencies must relate to the performance of the final design - not the continuous 
prototype. 

Therefore, in designing the continuous prototype we need to choose band-edge frequencies 
that will warp to the correct values after the bilinear transform. This procedure is known as 
pre-warping. For example, if we are given a specification for a digital low-pass filter such as 
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we would pre-warp the frequencies Ωc and Ωr to 

2 ΩcT 2 ΩrT 
Ω�

c = tan , and Ω�
r = tan 

T 2 T 2 

and design the prototype to meet the specifications with Ω�
c and Ω�

c as the band edges. 

Design Procedure: For any class of filter (band-pass, band-stop) the procedure is: 
(1) Define all band-edge critical frequencies for the digital filter. 

(2) Pre-warp all critical frequencies using Ω� = (T/2) tan(ΩT/2). 

(3) Design the continuous prototype using the pre-warped frequencies. 

(4) Use the bilinear transform to transform Hp(s) to H(z). 

(5) Realize the digital filter as a difference equation. 

Example 5 

Use the bilinear transform method to design a low-pass filter, with T = .01 sec., 
based on a prototype Butterworth filter to meet the following specifications. 

Solution: Pre-warp the band-edges: 

2 
�

ΩcT 
�

Ω�
c = tan = 64.9839 rad/s 

T 2 
2 

�
ΩrT 

�
Ω�

r = tan = 145.3085 rad/s. 
T 2 

From the specifications � = 0.3333 and λ = 4.358, and the required order for the 
prototype Butterworth filter is 

log(λ/�)
N ≥ 

log(Ω�
r/Ω

�
c)

= 3.1946 
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so take N = 4. The four poles (p1, . . . , p4) lie on a circle of radius Ω�
c�
−1/N = 

82.526, 

|pn| = 82.526, 
� pn = π(2n + 3)/8 

for n = 1 . . . 4. The prototype transfer function is 

p1p2p3p4
Hp(s) = 

(s − p1)(s − p2)(s − p3)(s − p4) 
5.3504 × 107 

= . 
s4 + 223.4897s3 + 24974s2 + 1.6348 × 106s + 5.3504 × 107 

Applying the bilinear transform 

H(z) = Hp(s)|s= ( z−1 )2 
T z+1 

gives 

0.0112(1 + z−1)4 

H(z) = 
1.0000 − 1.9105z−1 + 1.6620z−2 − 0.6847z−3 + 0.1128z−4 

and the frequency response of the digital filter (as a power gain) is shown below: 
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