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Lecture 22!

Reading:
e Proakis and Manolakis: Secs. 12,1 — 12.2
e Oppenheim, Schafer, and Buck:
e Stearns and Hush: Ch. 13

1 The Correlation Functions (continued)

In Lecture 21 we introduced the auto-correlation and cross-correlation functions as measures
of self- and cross-similarity as a function of delay 7. We continue the discussion here.

1.1 The Autocorrelation Function

There are three basic definitions

(a) For an infinite duration waveform:

which may be considered as a “power” based definition.

(b) For an finite duration waveform: If the waveform exists only in the interval ¢; <
t <ty

to
pur() = [ 1O+ di
t1
which may be considered as a “energy” based definition.
(c) For a periodic waveform: If f(t) is periodic with period T

torT
o =7 [ s

to

for an arbitrary ¢y, which again may be considered as a “power” based definition.
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B Example 1

Find the autocorrelation function of the square pulse of amplitude a and duration
T as shown below.

A f(t)

The wave form has a finite duration, and the autocorrelation function is

pys(r) = / FO)F(t+7)dt

The autocorrelation function is developed graphically below

A f(t)
a
0 T >t
A f(t+2)
a
-T 0 T-T >t
A pr(7)
a2
pi(2) = a*(T-7)
T 0 T -7
T—1
2
prp(T) = / a”dt
0
= a*(T —|7|) —T<7<T
=0 otherwise.
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B Example 2
Find the autocorrelation function of the sinusoid f(t) = sin(2t + ¢).

Since f(t) is periodic, the autocorrelation function is defined by the average over
one period

to+T
Grp(T) = %/ FO)F(t+7)dt.

to

and with tyg =0

0 27/

brp(T) = sin(Qt + @) sin(Qt + 7) + ¢) dt

27 Jo

1
= 3 cos(§2t)

and we see that ¢s(7) is periodic with period 27/ and is independent of the
phase ¢.

1.1.1 Properties of the Auto-correlation Function

(1) The autocorrelation functions ¢¢(7) and pss(7) are even functions, that is
Ors(=7) = ps(7), and prp(=7) = pyss(7).

(2) A maximum value of ps¢(7) (or ¢ss(7) occurs at delay 7 =0,

pss(T)| < psp(0), and  [psr(T)] < df5(0)
and we note that

psr(0) = /Z f3(d)dt
is the “energy” of the waveform. Similarly
5s0) = Jim - [ (0
is the mean “power” of f(t).
(3) pyss(7) contains no phase information, and is independent of the time origin.
(4) If f(¢) is periodic with period T, ¢¢(7) is also periodic with period T'.
(5) If (1) f(t) has zero mean (u = 0), and (2) f(¢) is non-periodic,

lim pff<7') =0.

T—00
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1.1.2 The Fourier Transform of the Auto-Correlation Function

Consider the transient case

Rs(i9) = / prr(T)e 19T dr

e e}

:/ (/ f(®) (t+7)dt>eJQTd7—
_ / f(t eJﬂtdt/ Fv) e dy

= Q)F(jQ)
= !F(JQ)\

or

pis(T) <o Rps(19) = [F(G Q)|

where Ryp(€2) is known as the energy density spectrum of the transient waveform f(t).
Similarly, the Fourier transform of the power-based autocorrelation function, ¢ (7)

Dp(iQ) = Flop(n)}= / " gy (1) eI dr

0o 1 T/2 )
— / <1im = fOft+7) dt> e dr

—o0 \ L0 T -T/2

is known as the power density spectrum of an infinite duration waveform.

From the properties of the Fourier transform, because the auto-correlation function
is a real, even function of 7, the energy/power density spectrum is a real, even
function of €2, and contains no phase information.

1.1.3 Parseval’s Theorem

From the inverse Fourier transform

prr0) = [P =g [ Rys0)do

| rwa=g [ rGor

which equates the total waveform energy in the time and frequency domains, and which is
known as Parseval’s theorem. Similarly, for infinite duration waveforms

or

T/2 00

im [ ()t

O(3Q)dQ
equates the signal power in the two domains.
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1.1.4 Note on the relative “widths” of the Autocorrelation and Power/Energy
Spectra

As in the case of Fourier analysis of waveforms, there is a general reciprocal relationship
between the width of a signals spectrum and the width of its autocorrelation function.

e A narrow autocorrelation function generally implies a “broad” spectrum

A G (7) A Dp(€2)
broad autocorrelation narrow spectrum
>1 >0

e and a “broad” autocorrelation function generally implies a narrow-band waveform.
A ¢ (1) A (i)

narrow autocorrelation broad spectrum

>1 >Q

In the limit, if ¢;¢(7) = §(7), then ®;;(j Q) = 1, and the spectrum is defined to be “white”.

dg(T) A Dp(jQ2)

"white" spectrum

impulse autocorrelation 1

1.2 The Cross-correlation Function

The cross-correlation function is a measure of self-similarity between two waveforms f(¢)
and ¢g(t). As in the case of the auto-correlation functions we need two definitions:

T/2
Grg(T) = lim — ft)g(t+7)dr

in the case of infinite duration waveforms, and
[e.e]
prr) = [ (0ot +7)dr
for finite duration waveforms.
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B Example 3

Find the cross-correlation function between the following two functions

A AQ(t)

)
KTﬁ\ KT»\

0T 0 T

In this case ¢(t) is a delayed version of f(t). The cross-correlation is

where the peak occurs at 7 = T — T} (the delay between the two signals).

1.2.1 Properties of the Cross-Correlation Function
(1) ¢py(T) = ¢gr(—7), and the cross-correlation function is not necessarily an even function.

(2) If ¢4(7) = 0 for all 7, then f(t) and ¢(t) are said to be uncorrelated.

(3) If g(t) = af(t —T), where a is a constant, that is g(¢) is a scaled and delayed version of
f(t), then ¢;,(7) will have its maximum value at 7 =T

Cross-correlation is often used in optimal estimation of delay, such as in echolocation (radar,
sonar), and in GPS receivers.
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B Example 4

In an echolocation system, a transmitted waveform s(t) is reflected off an object
at a distance R and is received a time 7' = 2R/c sec. later. The received signal
r(t) = as(t—T)+n(t) is attenuated by a factor « and is contaminated by additive
noise n(t).

| R

transmitted s(t) .
waveform ’ < ST T ‘;;/CO reflecting object

. os(t- - velocity of propagation: ¢
received nt) . ( T)< <« _2R
waveform + delay T= -

bulr) = [ sir+m)a

o0

= /OO st)n(t+71)+as(t—T +7))dt

e}

Psn(T) + ass(T = T)
and if the transmitted waveform s(¢) and the noise n(t) are uncorrelated, that is
Gsn(T) =0, then
Gsr(T) = adpss(T7 = T)
that is, a scaled and shifted version of the auto-correlation function of the trans-

mitted waveform — which will have its peak value at 7 = T', which may be used
to form an estimator of the range R.

1.2.2 The Cross-Power/Energy Spectrum

We define the cross-power/energy density spectra as the Fourier transforms of the cross-
correlation functions:

Then

Rp(jQ) = / prg(T)e 9T dr

Dry(j2) = /_ Grg(T) eI dr.

Ryg(jQ) = / pro(T) eI dr
_ /Oo /OO FOg(t + ) e de dr
- /00 f(t)ejmdt/oo g(v)e ™ dy
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or

Ryy(5Q2) = F(-J)G[Q)

Note that although R;(j(2) is real and even (because pss(7) is real and even, this is
not the case with the cross-power/energy spectra, ®,(j 2) and R,(j2), and they are
in general complex.

2 Linear System Input/Output Relationships with Random In-

puts:

Consider a linear system H (j2) with a random input f(¢). The output will also be random

f(t) ()

o H(iQ) S

Gre(t) by (1)

Then
Y(iQ) = FGQH(Q),
YGY(=iQ) = FGQHGUOF(-jQ)H(-jQ)
or
Py (j ) = Dy () [HGQ)P
Also
F(=jQY(Q) = F(-jQ)F(QH(jQ),

or

Dry(j€2) = Py (JQH(j Q).

Taking the inverse Fourier transforms

¢yy(7> = ¢ff(7—)®«7:_1{’H(jQ)‘2}
Gry(T) = @pp(T) @ h(T).

3 Discrete-Time Correlation

Define the correlation functions in terms of summations, for example for an infinite length
sequence

¢fg(n) = E{fmImin}

1 N
= li mYm+n,
leéozNﬂmZ S+

=—N

and for a finite length sequence
N
pfg(n) = Z JmGmin-
m=—N
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The following properties are analogous to the properties of the continuous correlation func-
tions:

(1) The auto-correlation functions ¢f f(n) and pss(n) are real, even functions.

(2) The cross-correlation functions are not necessarily even functions, and
Grg(n) = Ggs(—n)
(2) ¢f(n) has its maximum value at n = 0,

|5 r(n)| < ésr(0) for all n.

(3) If {fx} has no periodic component

lim ¢gs(n) = 5.

n—oo

(4) ¢;7(0) is the average power in an infinite sequence, and psr(n) is the total energy in a
finite sequence.

The discrete power /energy spectra are defined through the z-transform

Drp(2) = Z{dss(n)} = Z drp(n)z™"

n=—oo

and

dpr(n) = Z7H{Pps(2)}

1

= o Drp(2)2" dz
T w/T . -

= 2— (I>ff(eJ T)GJn TdQ
T J_x/T

Note on the MATLAB function xcorr(): In MATLAB the function call phi =
xcorr(f,g) computes the cross-correlation function, but reverses the definition of
the subscript order from that presented here, that is it computes

1 & 1 &
¢fg(n> = M an+mgm = M angn—m
N N

where M is a normalization constant specified by an optional argument. Care must
therefore be taken in interpreting results computed through xcorr().
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3.1 Summary of z-Domain Correlation Relationships

(The following table is based on Table 13.2 from Stearns and Hush)

Property Formula
Power spectrum of {f,} Drp(z) = Z Grr(n)z"
Cross-power Spectrum Dpy(2) = Z Grg(n)z™™ = D, (271)
nzl—oo
Autocorrelation brr(n) = ey Dr(2)2" dz
)
1
Cross-correlation brg(n) = o Dpy(2)2" 2
M)

Waveform power

Linear system properties

ELfY =050 = i.fcbfg(z)z—ldz
Y(z) = H(2)F(2)

(I)yy(z) = H(Z)H(Z_l)bef(z)

Ppy(2) = H(2)Pyss(2)
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