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Reading: 

Proakis and Manolakis: Secs. 14.1 – 14.2 • 

•	 Oppenheim, Schafer, and Buck: 10.6 – 10.8


Stearns and Hush: 15.4, 15.6
• 

1 Non-Parametric Power Spectral Density Estimation 

In Lecture 22 we defined the power-density spectrum Φff (j Ω) of an infinite duration, real 
function f(t) as the Fourier transform of its autocorrelation function φff (τ) 

� 
1 

� T/2 
� 

Φff (j Ω) = F lim f(t)f(t + τ ) dt . 
T →∞ T −T/2 

with units of (physical-units)2.s or (physical-units)2/Hz, where physical-units are the units 
of f(t), for example volts. The waveform power contained in the spectral region between 
Ω1 < Ω < Ω2 is| | 

1 
�� −Ω1	

� Ω2 
�

P = Φff (j Ω) dΩ + Φff (j Ω) dΩ
2π	 Ω1 � Ω2 

−Ω2 

1 
= Φff (j Ω) dΩ 

π	 Ω1 

since Φff (j Ω) is a real, even function. 
Similarly, we defined the energy-density spectrum Rff (j Ω) of a real finite duration wave­

form f(t) of duration T as the Fourier transform of its energy based autocorrelation function 
ρff (τ) �� T �

Rff (j Ω) = F f(t)f(t + τ) dt . 
0 

with units of (physical-units)2.s2 or (physical-units)2.s/Hz, again where physical-units are 
the units of f(t). 

In this lecture we address the issue of estimating the PSD (power spectral density) 
Φff (j Ω) of an infinite process using a finite length sample of the process. PSD analysis is an 
important tool in engineering analysis. The practical problem is to form reliable estimates of 
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the PSD from finite records of an infinite random process. For example, the following figure 
shows a stationary random process with three possible finite records. An estimator Φ̂ff (j Ω) 
of Φff (j Ω) is to made from one of the finite-length records. 

� � � � 

� � � � � 	 
 � � � � � � 	 
 � � � � � � 	 
 
 

We ask ourselves about the statistics of estimators derived from the different records, in 
particular, 

(1) the bias in the estimator 

B Φ̂ff (j Ω) = Φff (j Ω) − E  Φ̂ff (j Ω) 

(2) the variance of the estimator 

� � � �2 
V Φ̂ff (j Ω) = E Φff (j Ω) − Φ̂ff (j Ω) 

1.1 The Periodogram 

1.1.1 The Continuous Periodogram 

If f(t) is a stationary, real, random process, its autocorrelation function is defined by the 
ensemble statistics 

φff (τ) =  E {f(t)f(t + τ)} . 

For an ergodic process, if we have a single record of duration T we can compute an estimator, 
φ̂ff (τ) based on the time average: 

1 T/2 

φ̂ff (τ) =  f(t)f(t + τ) dt,
T −T/2 

and 
φff (τ) = lim φ̂ff (τ). 

T→∞ 

23–2 



� 

Furthermore, the Fourier transform of φ̂ff (τ) provides an estimator Φ̂ff (j Ω) of the PSD 

Φ̂ff (j Ω) 
� T/2 

= φ̂ff (τ) e−j Ωτ dτ 
−T/2 

= 
1 

� T/2 � T/2 

f(t)f(t + τ) dt e −j Ωτ dτ 
T −T/2 −T/2 

1 
= F (j Ω)F (−j Ω)  

T 

= 
1 |F (j Ω)|2 . 
T 

where F (j Ω) is the Fourier transform of the finite data record. The periodogram estimator 
IT (j Ω) is then defined as 

IT (j Ω) = Φ̂ff (j Ω) = 
1 |F (j Ω)|2 . 
T 

1.1.2 The Discrete-Time Periodogram 

For an infinite sampled data record {fn}, the autocorrelation function is defined by the 
expectation 

φff (m) =  E {fnfn+m} , 

and, invoking ergodicity, a time-average definition is 

N−1
1 

φff (m) = lim fnfn+m. 
N→∞ N 

n=0 

As in the continuous case, we can use a single finite length record, of length N , to form 
an estimator of Φff (j Ω). The equivalent periodogram definition (through the DFT) is 

IN (k) =  Φ̂ff  (k) =  
1 

FkF−k =
1 |Fk|2 . 

N N 

where {Fk} is the DFT of {fn}. 

1.1.3 The Relationship between IT (j Ω) and IN(k) 

We frequently want to used discrete-time analysis to estimate the PSD of a continuous 
waveform. Consider a finite sample set {fn}, of length N , derived from sampling a continuous 
waveform f(t) with sampling interval Δ, so that 

fn = f(nΔ), n = 0, . . . , N  − 1. 

From sampling theory F ∗(j Ω), the Fourier transform of the sampled waveform f∗(t) is  

F ∗ (j Ω) = ΔF (j Ω), 
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and through the DTFT 
N−1 

F ∗ (j Ω) = fn e −j nΩΔ . 
n=0 

Then the continuous periodogram, with record length T = NΔ, evaluated at Ω = 2πk/N is 
� � � � ��2

j 2πk 1 � j 2πk � 
IT = F 

T T NΔ �	 � ��2 

=
1	 �� ΔF ∗ j 2πk �� 

NΔ N 

and since � � N−1 

F ∗	 j 2πk 
= fn e −j 2πkn/N = Fk

NΔ 
n=0 

j 2πk Δ 2IT = |Fk| = ΔIN (k)
T	 N 

The discrete-time periodogram is therefore a scaled version of the continuous periodogram. 

1.1.4	 Properties of the Periodogram: 

(1) The periodogram is a real, even function.	 Because it is defined by the Fourier 
transform of the autocorrelation function (which is a real, even function), the peri­
odogram is also a real, even function. 

(2) The periodogram is a biased estimator.	 Consider the definition of the estimate 
of the autocorrelation implicitly used above 

N−1 

φ̂ff  (m) =  
1 

fnfn+m. 
N 

n=0 

With a finite length record the overlapping region of the two records {fn} and {fn+m}
in the summation only includes N − |m| terms: 

� 

� 

� � � � � 

� 
� � � 

� 

� � � 
� � � � � 
 � � � � � 

� � � � � � � 
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The estimated autocorrelation function used to compute the priodogram is therefore 
biased. For the mth lag, the unbiased time-average estimator of the autocorrelation 
function should therefore be 

N−1 

φ̂′ (m) =  
1 

fnfn+m, m = −(N − 1), . . . , N  − 1ff N − |m| 
n=0 

which is sometimes known as the mean-lagged-product. Then

N−1 � � 

E {IN(k)} = 
N − |m| 

φ̂ff (m) e−j 2πkm/N 

N 
m=−(N−1) 

The periodogram is therefore a biased estimator of Φff (j Ω). We note, however, that 

lim IT (j Ω) = Φff (j Ω) 
T→∞ 

and that IT (j Ω) is therefore asymptotically unbiased. 

(3) Variance of the periodogram.	 A somewhat surprising result is that the variance of 
the of IN(k) (and IT (j Ω)) does not decrease significantly as N increases. For large 
values of the lag m, particularly when m ≈ N , because there are few values in the 

φ′	 Φ′ j 2πksum the variance of the estimate ˆ
ff (m) becomes large, and although ˆ

ff  

� 
N 

� 
is 

asymptotically unbiased, the variance does not decay to zero as N → ∞. In fact 

lim var[Φ̂ff (j Ω)] ≈ Φ2 (j Ω) ff
N→∞ 

that is the variance is approximately equal to the square of the true value (see OS&B 
10.6, P&M 14.1.2), and is not reduced by taking a longer data record. 

As more points are taken into the computation of the periodogram, the apparent 
spectral resolution is increased, but the reliability of the extra points is marred by 
the residual variance. The following figure shows periodograms of a 200 Hz sinusoid 
in noise, sampled with Δ = 0.001 s, and computed with N = 128, 512, and 2048 
samples. (Only one side of the periodogram is shown). Notice that the variance does 
not decrease. 

! " � � #
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! " � � �
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(4) Implicit windowing in the periodogram. We noted above that


N−1

E {IN (j Ω)} = 
� �

N − |m|� 

φff (m) e−mjΩT 

N 
m=−(N −1) 

The periodogram is therefore the Fourier transform of the true autocorrelation function 
multiplied by the Bartlett window function 

m
wN (m) = 

N − | |
, m = 0, . . . , N − 1. 

N 

The periodogram is therefore the convolution of the true spectral density and the 
Fourier transform of the Bartlett window, resulting in a smoothing operation, and the 
introduction of Gibbs effect ripple adjacent to transitions in the spectrum. 
Aside: It is interesting to note that for the Barlett window, F {wN (m)} ≥ 0 and as 
a result the convolution maintains the requirement that IN (j Ω) ≥ 0. 

1.2 Variance Reduction in Periodogram PSD Estimation 

There are two common methods of reducing the variance in the periodogram method of PSD 
estimation (1) the averaging of periodograms, and (2) the smoothing of a single periodogram 
by windowing the autocorrelation function. 

1.2.1 The Bartlett Method: The Averaging of Periodograms 

Bartlett proposed the ensemble averaging of basic periodograms as a means of reducing the 
variance in the estimate - at the expense of spectral resolution, and increased bias. Suppose 
we have a record {fn} of length N , and we divide the total record into Q smaller blocks, each 

(q)
of length K. Then if we compute the periodogram of each block and designate it IK (k), 
q = 1, . . . , Q, the averaged periodogram may be defined as 

Q
1 (q)

IK (k) = 
� 

IK (k)
Q 

q=1 

Because each of the smaller blocks contains fewer samples, the spectrum computed through 
the DFT will have decreased spectral resolution. However, provided each of the Q peri­
odograms are statistically independent, the variance will be reduced by a factor of Q 

1	 (q) 1
Φ2V 

�
IK (j Ω)

� 
= 

Q
V 

�
IK (j Ω)

� 
≈ 

Q ff (k). 

1.2.2 The Welch Method: The Averaging of Modified Periodograms 

Welch proposed two enhancements to Bartlett’s method: 

(1)	 Welch showed that instead of dividing the data sequence into contiguous smaller blocks, 
it is possible to overlap adjacent blocks by as much as 50% and still maintain statistical 
independence. The effect is to increase Q, the number of data blocks in the ensemble 
average and thus effect a further reduction in the variance of IK (k). 
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(2)	 Welch’s method also applies a window function w(n) to each of the data records before 
the DFT is computed. A modified periodogram based on the windowed record is then 
computed 

(q) 1 
K−1

fnw(n) e−j 2πnk/Q ÎK (k) = 
�	

q = 1, . . . , Q 
KU 

n=0 

where 
1 

K−1

U = 
� 

w 2(n)
K 

n=0 

is a factor to compensate for the fact that the windowing operation has reduced the 
power of the waveform, and allows the estimator to be asymptotically unbiased. 

As before, the spectral estimator is taken as the ensemble average of the windowed and 
overlapped blocks 

Q

ˆ 1 (̂q)
IK (k) = 

� 
IK (k)

Q 
q=1 

1.2.3 The Blackman-Tukey Method: Smoothing the Periodogram 

Blackman and Tukey proposed that an effective method of variance reduction would be to 
“smooth” the periodogram estimate with a low-pass filter, and that the smoothing operation 
could be implemented by applying a suitable windowing function in the delay domain of the 
autocorrelation function, to achieve the desired frequency domain convolution. 

An alternative rationale is based on the reliability (variance) of the samples in the au­
tocorrelation function for large lags. As was demonstrated at the start of this lecture, for 
a fixed length data record, the overlap in the product for computing φff (m) is N − |m|, 
and as m N the variance becomes large. The windowing operation serves to reduce the | | →
contribution of these unreliable estimates in the computation of the PSD. 

The Blackman-Tukey estimator is 

M−1

˜ φff (m)w(m) e−j 2πkm/(2M−1)IN (k) = 
� 

m=−(M−1) 

where the window function is real and symmetric about its mid-point (to ensure that ĨN (k) 
is real). The window length parameter M may be shorter than the data record length N . 
The Blackman-Tukey estimate is therefore 

ĨN (k) = IN (k) ⊗ W (k) 

where {W (k)} = DFT {w(n)}. 
The choice of window function should be made to ensure that ĨN (j Ω) > 0. Many com­

monly used windows, such as the Hamming and Hann windows, do not have this property, 
and may result in negative values for the spectral estimates. The triangular Bartlett window 
does maintain the sign of the estimates. 
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1.2.4 MATLAB Examples 

MATLAB has built-in functions for spectral estimation, in particular the function spectrum() 
is a powerful general function for non-parametric estimation, and the function pwelch() can 
be used for Welch’s method. 

Notes: 

(1)	 The MATLAB functions can represent a continuous periodogram IT (j Ω) by specifying 
a sampling rate. 

(2)	 The MATLAB default convention is that if the sample set is real the PSD is computed 
as a one-sided spectrum, that is it is assumed the the power is contained in positive 
frequencies only. Because of the real, even nature of the periodogram, the one-sided 
spectrum has values twice those of the two-sided spectra. For complex data sets the 
convention is to compute the two-sided spectra. The defaults can be overuled by 
optional arguments in the function calls. 

The following script was used to display a periodogram and a Welch estimate of a 200 
Hz sinusoid in noise. A 1.024 sec. data record, with a sampling rate of 1000 samples/sec. is 
simulated. 

% Create the data record.

Fs = 1000;

t = 0:1/Fs:1.024;

f = cos(2*pi*t*200) + randn(size(t)); % A cosine of 200Hz plus noise

% Periodogram

figure(1);

h = spectrum.periodogram;

psd(h,f,’Fs’,Fs);

%

% Welch’s method.

% Use default of 8 sections, 50% overlap, Hamming window

figure(2);

pwelch(f,128,64,128,Fs);


The following two plots were generated. 
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