
MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

F I R f i l t e r
H (z)

" d e s i r e d " o u t p u t

{ g }n{ f } { e }
e r r o r

 l e a s t - s q u a r e s
d e s i g n a l g o r i t h m

nn

{ d }n
+

-
i n p u t

o u t p u t
{ g }n

f i l t e r
c o e f f i c i e n t sb k

{ e }n{ f }n

�

Massachusetts Institute of Technology
Department of Mechanical Engineering

2.161 Signal Processing - Continuous and Discrete
Fall Term 2008

Lecture 241

Reading:

•	 Class Handout: MATLAB Examples of Least-Squares FIR Filter Design

Proakis and Manolakis: Sec. 12.3 – 12.5 •

Stearns and Hush: Ch. 14 •

1 Least-Squares Filter Design

We now look at a FIR filter design technique that is based on “experimental” data

Given an input sequence {fn}, and a “desired” filtered output sequence {dn} , the task is to
design a FIR filter

M−1

H(z) =
�

bkz
−k

k=0

that will minimize the error {en} = {dn}−{gn} in some sense, where {gn} is the filter output.
In particular, we will look at a filter design method that minimizes the mean-squared-error
(MSE), where

2MSE = E
�
en

�

=	 E
�
(dn − gn)2

�

2 = E
�
d2

n

�
+ E

�
gn

� − 2E {dngn}

1copyright c D.Rowell 2008

24–1

∑

{ } { } { } { }

1

Massachusetts Institute of Technology
Department of Mechanical Engineering

2.161 Signal Processing - Continuous and Discrete
Fall Term 2008

Lecture 241

Reading:

• Class Handout: MATLAB Examples of Least-Squares FIR Filter Design

• Proakis and Manolakis: Sec. 12.3 – 12.5

• Stearns and Hush: Ch. 14

Least-Squares Filter Design

We now look at a FIR filter design technique that is based on “experimental” data

� �
	 � � �
 � � � � � 	 � � 	
� � � � � �

� � � � 	 � � � � � � � 	
 � � � � � � �
�
 � � � �� � � � � � � � �
 �	 �
 � � � �

� � 	 � � 	
� � � � � �

� � � � � 	
 �
� �
 � � � � �
 � 	 �

� � � � �� � � � �
 � � 	 � � � � � �
 � �
 � � � �
�
	 � � � � � � � � � � � 	 � �

Given an input sequence {fn}, and a “desired” filtered output sequence {dn} , the task is to
design a FIR filter

M −1

H(z) = bkz −k

k=0

that will minimize the error {en} = {dn}−{gn} in some sense, where {gn} is the filter output.
In particular, we will look at a filter design method that minimizes the mean-squared-error
(MSE), where

MSE = E e 2
n

= E (dn − gn)2

= E d2 + E g 2 − 2E {dngn}n n

1copyright ©c D.Rowell 2008

24–1

{() }

∑ ∑

{ } ∑

∑

∑

∑

∑ ∑ ∑

∑

∑

and in terms of correlation functions

MSE = φdd(0) + φgg(0) − 2φdg(0) .

For the FIR filter with coefficients bk, the output is

{gn} = {fn} ⊗ {bn}

and from the input/output properties of linear systems (Lec. 22)

φgg(n) = Z−1 H(z)H(z −1) ⊗ φff (n)
M−1 M−1

= bmbnφff (m − n).
m=0 n=0

Similarly,

φdg(n) = E {dmgn+m}
M−1

= E dm bkfn+m−k

k=0

M−1

= bkE {dmfn+m−k}
k=0

M−1

= bkφfd(k − n)
k=0

and
M−1

φdg(0) = bkφfd(k)
k=0

The MSE is therefore

M−1 M−1 M−1

MSE = φdd(0) + bmbnφff (m − n) − 2 bkφfd(k).
m=0 n=0 k=0

We now seek the optimum coefficients.

M−1
∂MSE

= 2 bmφff (m − n) − 2φfd(n)
∂bn m=0

and setting ∂MSE/∂bn = 0 for n = 0, 1, . . . , M − 1, we have

M−1

bmφff (m − n) = φfd(n)
m=0

24–2

which is a set of linear equations in the coefficients bk:

b0φff (0) + b1φff (1) + . . . + bM−1φff (M − 1) = φfd(0)
b0φff (−1) + b1φff (0) + . . . + bM−1φff (M − 2) = φfd(1)
b0φff (−2) + b1φff (−1) + . . . + bM−1φff (M − 3) = φfd(2) .
.	
b0φff (−(M − 1)) + b1φff (−(M − 2)) + . . . + bM−1φff (0) = φfd(M − 1)

Recognizing that the auto-correlation function is an even function (φff (−n) = φff (n)), we
can write the equations in matrix form ⎡	 ⎤⎡ ⎤ ⎡ ⎤

φff (0) φff (1) φff (2) · · · φff (M − 1) b0 φfd(0) ⎢ φff (1) φff (0) φff (1) · · · φff (M − 2) ⎥⎢ b0
⎥ ⎢ φfd(1) ⎥ ⎢	 ⎥⎢ ⎥ ⎢ ⎥ ⎢ .	 . ⎥⎢ . ⎥ = ⎢ . ⎥ ⎣ . . ⎦⎣ . ⎦ ⎣ . ⎦

φff (M − 1) φff (M − 2) φff (M − 3) · · · φff (0) b0 φfd(0)

or
Rb = P

where ⎡ ⎤
φff (0) φff (1) φff (2) · · · φff (M − 1) ⎢ φff (1) φff (0) φff (1) · · · φff (M − 2) ⎥

R = ⎢⎢
. . ⎥⎥
.	 . ⎣ . . ⎦

φff (M − 1) φff (M − 2) φff (M − 3) · · · φff (0)

is the correlation matrix, []T
b = b0 b1 b2 · · · bM−1

are the filter coefficients, and

[]T
P = φfd(0) φfd(1) φfd(2) · · · φfd(M − 1)

is the cross-correlation matrix.
The MSE FIR filter coefficients are

b = R−1P.

Stearns and Hush show that with these coefficients

(MSE)min = φdd(0) − PTb = φdd(0) − PTR−1P.

•	 R is a Toeplitz matrix, and efficient algorithms (Levinson-Durbin – see Proakis and
Manolakis Sec. 12.4.1) exist for its inversion (O(n2).

•	 The development above requires that the processes {fn and dn are stationary.

24–3

1.1	 A Simple MATLAB Tutorial Least-Squares Filter Design Func­
tion

%---­

function [B,MSE] = LSQFilt(f,d,M)
%LSQFilt - Demonstration routine for Least-Squares FIR filter design
%[B,MSE] = LSQFilt(f,d,M)
% f - rowvector of data samples - length N
% d - row vector of desired values - length N
% M - filter order
% Returns:
% B - vector of optimal filter coefficients
% MSE - minimized value of the mean-square-error
%
% Note: This routine is for tutorial purposes only. The Levinson method for
% toeplitz matrix inversion would be used in practical methods.
%
% Author: D. Rowell
% Revised: 10/29/07
%---­

N = length(f);
% Compute the correlation coefficients.
% Note that matlab defines the cross-correlaton backwards!! and
% we need to reverse the order of the subscripts.
%

phiff=xcorr(f);
phifd=xcorr(d,f);

%
% Extract out the central regions (low-lag values) and form
% the autocorrelation matrix.
%

rff=phiff(N:N+M-1);

R = toeplitz(rff);

P=phifd(N:N+M-1);

%
% Compute the optimal filter coefficients
%

B=inv(R)*P’;
%
% and the residual mean-square-error
%

phidd=xcorr(d);
MSE=phidd(N) - P*B;

%
%---­

24–4

� � � �

()

1.2 Application Examples of Least-Squares Filters

1.2.1 The Linear Predictor

Suppose that we want a filter that will predict the value of a process {fn} Δ steps in the
future,

� � �
 � � � � �
 � � � 	 � �

The structure of least-squares filter design is

� � ! � � �

� � �
� � �� � 	 	
 	 �� � 	 � 	 �

� � �
� � ��
� � �
 � � � � �
 � � � 	 � �

 �

�
�

��
�

�

�

�

where dn = fn+Δ. This system is not realizable however (because the advance block in the
forward path is itself a predictor), and a practical design structure uses a delay of Δ steps
in the forward path so that the filter design algorithm uses the input history to predict the
current value.

 � �
� � �

� � � � 	
 � � � � �
 � � � � �
 � � � 	 � � � � �
� � �
 � �

�
 � � "

Once the filter is designed it may be used without the delay to predict the future. The most
common form is the one-step (Δ = 1 predictor.

Example 1

Stearns and Hush (p. 346) solve the problem of a one-step linear predictor for
an sinusoidal input function

2πn
sn = sin , n = 0, 1, 2, . . .

12

[]T√
and show that b = (3) 1 .

The following MATLAB code de4signs the filter using the function LSQFilt()
described above:

24–5

[]

� � �

% One-step linear predictor for a sinusoidal input.

% Define a time vector, and the input vector:

t = 0:199;

s = sin(2*pi*t/12);

% In this case the desired output is the input

d = s;

% To make it causal we must delay the input to the filter

f = zeros(1,200);

f(2:200) = s(1:199);

% Compute the filter coefficients for a first-order filter

[B1,MSE] = LSQFilt(f,d,2)

% Repeat with a second-order model

[B2,MSE] = LSQFilt(f,d,3)

and produces the results

1.73205080756888e + 000
B1 = −1.00000000000000e + 000

⎡	 ⎤
1.73205080756897e + 000 ⎣	 ⎦B2 = −1.00000000000016e + 000
112.354570092066e − 015

which agree with the closed-form solutions in Stearns and Hush.

1.2.2 System Identification

Suppose we have an “unknown” FIR system and the task is to determine its impulse response.
We can construct an experiment, using white noise to excite the system and record the input
and output series. The least-squares filter design method is then used to determine the
coefficients of a FIR are used as estimates of the plant impulse response.

� � � � 	
� � � � � � # � $ � � % � � � " � 	
 � �
 � � � � �

�

� � � � � � �
� � � � � � � 	
 � � � � � � �

� �	 � � � 	
 �
� �
 � � � � �
 � 	 �

� � � � �� � � � �
 � � 	 � � � � � �
 � �
 �� � �
�
 � � �	 � � � � � � � � 	 � �

24–6

Example 2

Use a least-squares filter to estimate the impulse response of an “unknown” FIR
system with impulse response

0 2 4 6 8 10 12
0

1

2

3

4

5

6
Unknown Impulse Response

% System ID Using LSQFilt

% Create a FIR filter as the "unknown" plant

h = [0 1 2 3 4 5 4 3 2 1 0 0 0];

figure(1); stem(0:length(h)-1,h);

title(’Unknown Impulse Response’);

%
f = randn(1,1000);
% create output data representing the exerimental
% measurements
y = filter(h,1,f);
%
% Estimate the impulse response from the data

[h_opt,MSE] = LSQFilt(f,y,15);

figure(2); stem(0:length(h)-1,h_opt(1:length(h)));

title(’Estimated Impulse Response’);

giving the following result:

24–7

Estimated Impulse Response

0 2 4 6 8 10 12
0

1

2

3

4

5

6

1.2.3 Channel Compensation

Suppose a waveform has been “corrupted” by passing through an unknown LTI filter H(z),
and it is desired to recover the original waveform by using a cascade compensating inverse
filter Hc(z) = 1/H(z) so that Hc(zH (z) = 1. The structure is shown below, and includes an
empirically chosen delay element z−Δ to ensure causality of the compensating filter.

� � � � �
 �� � � � 	 �
 � � � � �
� � � � � �
� � �
 � & � � � �
 � � �

�

� � � $ � � % � � �
� � � � � � �
 �

� � � � � �

� � � � � � � �
 � � � 	 � � � � � � � � � � � � � � � � � & � � � � � �
 � � � � �

� � � � � � � � � � � � � � 	
 �

� 	 � 	 � �
	 � � � �
 � � � 	
 � � � � 	 � � 	

� � � � 	
 �	 � � �
 � & � � � 	 � �
 � � �
 � � �

� � �
 � � � � �
 � 	 �

� � � � � �	 � � � �
 � � 	 � � � � � �
 � �
 �� � �
�
 � � � � � � � � � � � 	 � �

Example 3

Use LSQFilt(), with white noise as the input, to design a compensation filter
for an “unknown” recursive filter.

0.296
H(z) = 	 .

1 − 1.721z−1 + 0.8187Z−2

24–8

Plot the resulting impulse response of the compensated channel.

Solution: The following MATLAB scipt uses a filter length M = 10, and a
delay factor Δ = 1.

% Channel compensation using Least-Squares filter design.

% Input the numerator B(z), and denominator A(z) of the "unknown" plant

B_u = [0.2796 0];

A_u = [1 -1.7211 0.8187];

unknown = tf(B_u, A_u ,1);

h_unknown = impulse(unknown);

figure(1), stem(0:length(h_unknown)-1, h_unknown)

title(’Unknown system impulse response’);

%

% Use white noise as the input signal:

s = randn(1,200);

f = lsim(unknown,s);

% Create the desired output

$ (delay by one step so that resulting filter is causal)

d = zeros(1,200);

d(2:200) = s(1:199);

[B_noise,MSE] = LSQFilt(f,d,10);

figure(2), stem(B)

title(’Filter coefficients found by using white noise as the input’)

h_compensated = conv(h_unknown, B);

figure(3), stem(0:length(h_compensated)-1, h_compensated)

title(’Compensated system impulse response’)

The output is shown below.

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Unknown system impulse response

0 10 20 30 40 50 60

24–9

Filter coefficients found by using white noise as the input

1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

Compensated system impulse response

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Example 4

The following is another example of channel compensation, this time where the
channel is corrupted by an echo. For clarity we use a simple “strong” echo, so
that the waveform is yn = fn + 0.9fn−3. White noise is used as the excitation,
and a filter length M = 50, and a delay Δ = 4 are chosen. Notice that complete
echo suppression is not possible with a finite length FIR filter.

% Model the environment as a nonrecursive filter:

24–10

b = [1 0 0 0.9 0 0];

% Use white noise as the excitation

s = randn(1,200);

f = filter(b,1,s);

% The desired output is a delayed version of the input:

d = zeros(1,200); d(4:200) = s(1:197);

% Design the filter

[B,MSE] = LSQFilt(f,d,50);

figure(1), stem(0:length(B)-1, B)

title(’Reverberation cancelling impulse response’)

% Find the overall compensated system impulse response

h_comp = conv(B,b);

figure(2), stem(0:length(h_comp)-1, h_comp)

title(’Compensated reverberation impulse response’)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Reverberation cancelling impulse response

0 10 20 30 40 50

24–11

0 10 20 30 40 50 60
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Compensated reverberation impulse response

24–12

