
2.58 Spring 2006 
Midterm 1 Solutions 

Question 1. 

The peak wavelength of the solar radiation is around 500 nm. For a particle with a 
diameter d less than 50 nm, Rayleigh scattering is a good approximation. The absorption 
efficiency of the small particle is given by 
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The solar irradiance that reaches the particle is 
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where Rs is the radius of the sun, dse the distance between the sun and the earth, and C1 

and C2 are constants. 

(a) The total solar energy absorbed by the particle is 
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Plug Eqs. (1) and (2) into Eq. (3) to yield 
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(b) The scattering efficiency of the small particle is 
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Similar to part (a), the scattered energy is given by 
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Question 2. 

(a) 
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The reflectivity at the interfaces is given by 
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(i) For λ ≤ 8µm , κ = 02 

ρ12 = 0.04 
The peak wavelength of the radiation from the oven is around 1.5 m, which is much less 
than the thickness of the glass. We can use ray tracing to calculate the reflectance of the 
glass slab. 
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(ii) For λ > 8µm , κ <<12 
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(b) 

The glass view port absorbs irradiance from the oven and loses heat by radiation from 
both surfaces as well as convection to the air. Since the area of the oven surface is much 
larger than that of the glass, the oven can be treated as a blackbody source. The radiation 
absorbed by the bottom surface of the glass is then given by: 
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where A is the area of the glass surface (one side), and α is the total hemispherical 
absorptance of the glass, which is given by 
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where f (λT ) can be found in the table of blackbody emissive power. 

Similarly, the total hemispherical emissivity of the glass is given by 
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Apply energy balance to the glass view port: 
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where we neglect the absorbed radiation from the low temperature environment. Plug in 
numbers and the above equation becomes 



41.633 ×104 = 1.39 1 − f (8µm Tglass )) Tglass + 10(T − 293)( ⋅ glass 

(c) Iteration with the table value for f, we get, Tglass ≈ 930K 


