
Lecture #12: Background 

 Underwater sound propagation occurs in a medium with inherently rough boundaries, as 
any seagoing oceanographer can attest. Yet all too often students work on projects which have 
strong scattering components, but have never seen scattering theory in a formal course.  And 
while one lecture is obviously inadequate to cover such a vast area, it is certainly good enough to 
give a student a feel for what the area looks like in general, as well as a few simple tools. 
 
 There is a list of topics in the instructor’s notes, but due to space/time limitations, the last 
three starred topics were not covered in this course.  Two references, Ogilvie and B&L are cited 
here, which cover much of the material (though not all). An older book by Tolstoy and Clay is 
also used.  
 
 The first topic, the Rayleigh parameter for roughness, is probably the most physical 
definition of roughness one can find.  This parameter gets used extensively in the theory.  Note, 
however, that it deals with the rough surface’s height, but not its slope.  There is a horizontal 
scale missing! 
 
 Huygens Principle, that each point on the rough surface acts as a radiator of scattered 
waves is another “Physics 101” concept, and can be implemented easily on a computer to get 
some idea of scattering from a surface. 
 
 The section on the “Statistics of Rough Surfaces” is elementary, but useful.  The mean, 
variance, Gaussian statistics, and the Central Limit Theorem should all be familiar to students at 
this level. 
 
 The surface correlation function for a rough surface is the next piece we need to 
characterize roughness – it is the horizontal scale of the roughness (that the Rayleigh parameter 
ignored).  Various useful parameterization of the surface roughness correlation are discussed 
here. 
 
 The” characteristic function” (Fourier transform of the surface height distribution) is 
shown next, and has some utility, as we’ll see.  Of far more utility in scattering theory is the 
power spectrum of the surface, the Fourier transform of the unnormalized correlation function.  
This descriptor has both the surface height description and the correlation scales folded into it, as 
shown.  The integral over the wave spectrum gives the variance of the surface height.  Examples 
of power spectra for anisotropic roughness and gaussian and exponential distributions are shown. 
 
 Means and variances are the most basic moments/statistics to consider, but as one digs 
deeper, there are higher moments and other descriptions to consider.  Two point height 
probability distributions, surface derivatives, and the radius of curvature are all discussed briefly. 
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 Three very important concepts for all random medium studies (not just our ocean 
surfaces) are isotropy, stationarity, and ergodicity.  These are explained decently by the notes, 
with examples.  As a “real life” note, I am working currently on some acoustic intensity 
fluctuation statistics due to combinations of ocean and seabed process “randomness.”  One 
interesting piece of this work is that the “stationary time” one needs to consider when making 
statistical averages is a mixture of the times characteristic of the processes and their relative 
strengths, and is not something one can “guesstimate” trivially.  
 
 Fractal surfaces are discussed next, and of note here is the “Goff-Jordan” spectrum for 
bottom roughness, devised by John Goff and Tom Jordan of MIT.  (John is now a geologist at U. 
Texas, my old haunt, and frequently collaborates with acousticians working on how sound 
interacts with the seabed.). 
 
 A small section on probability integrals concludes the “basic review” section.  These 
(Gaussian) moment integrals are simple to evaluate and useful. 
 
 We now come to where we can do some real scattering theory.  Following B&L, we first 
look at the “method of small perturbations” (MSP), in which the boundary conditions at the 
rough surface    ⃗  are transferred to the mean surface by expending them in a power series in 
small parameter  λ (thus the “small”).  This is done for both pressure release and rigid bottom 
B.C.’s.  Going through the math, we obtain simple form (s) for the scattered pressure       , Eqs. 
9.2.12 and 9.2.13 of B&L.  If we then express    ⃗   as a Fourier integral over wave numbers, we 
get a very neat form for       , where the rough surface gives rise to scattered plane waves that 
satisfy the Bragg law scattering condition.  (This condition pops up with frightening regularity in 
scattering theory!) 
 
 Though 〈       〉    for MSP, the scattered intensity, (the second moment of       ) 
should not be zero.  A simple “square and average” calculation using the previous results gives a 
surprisingly simple equation,           

   .  
 
 The next piece we treat is the near field versus far field, and a simple criterion is 
developed for the transition distance.  Basic stuff, but useful, as we generally look at far field 
scattering approximations first - the near field is messy. 
 
 The notes, “Back to the Far Zone” are from B&L, and look at scattering from a patch of 
rough surface in the far field using our MSP results.  Of note in this section are:  1) the definition 
of the surface scattering coefficient   , (eq. 9.3.7 B&L is worth remembering), 2) its evaluation 
in the MSP, 3) the fact that the scattering picks out the Bragg resonant components, 4) the simple 
expression for backscatter (needed in ocean acoustics for studying reverberation from active 
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sources!), and 5) the curious fact that specular reflection just depends on the mean surface!  The 
expressions derived also provide a way to measure the power spectrum of the rough surface. 
  
 
 Continuing in B&L section 9.7, we next discuss the so called “Kirchoff approximation” 
or “tangent plane  approximation,” which is good for large roughness, but small slopes.   (The 
complement of MSP!  All we’re lacking is large roughness and large slopes, which is much more 
difficult!).  To calculate the scattered field, this work starts from the Helmholtz Integral Formula 
(HIF) which is an exact solution!  (The derivation for the HIF can be found in Medwin and Clay 
and other ocean acoustics books.  It is a standard vector calculus result.) The first order of 
business is to explicitly evaluate the various terms in the HIF. We can then average over 
realizations. For an infinite surface and plane waves, one gets the old result 〈  〉       where    
is obtained from a simple Fourier transform of the surface height spectrum. The case for a finite 
patch of rough surface scattering plane waves and an observer in the farfield is treated next, and 
again one expends the effort evaluating individual terms, as well as making the farfield 
(simplifying) approximation.  
  
 

So far, our discussion of rough surface scattering has all been for “free space.”  But we’re 
interested in ocean wave guides, yes?  So, back to rays and modes! In the ray picture, we can 
pretty much use the theory derived before for each local surface interaction (“bounce”, in the 
jargon), so no real need to belabor things. The mode picture is different, and we will appeal to 
range dependent mode theory (adiabatic and coupled) to describe the roughness effects. 
 
 Our first look at the rough modal waveguide is from Tolstoy and Clay, an older text 
book, but one with many nice “basics” in it.  The beginning of section 6.9 of T&C is old stuff, up 
through Eq. 6.98.  In Eq. 6.100, the breakup of the       into an (average) background wave 
number and a range varying perturbation,        is where the phase part of the roughness 
scattering enters explicitly.  From this, one easily gets the roughness induced phase accumulation 
with range (the integral of      ).  This latter quantity gives the phase fluctuation one sees, 
mode by mode, at the receiver.  The amplitude fluctuation from the roughness comes primarily 
from the changes in the mode function at the source and receiver, Eq. 6.99.  Combining 6.99 and 
6.100, we get the adiabatic “rough surface” pressure field in mode theory, Eq. 6.104.  So, are we 
there yet?  Of course not! 
 
 The surface and bottom roughness are generally treated as random media (via power 
spectra), whereas our result above is deterministic, i.e., it uses a specific realization of the 
roughness.  We thus need to get the distribution of the surface roughness (gaussian for surface 
waves, and we can fake gaussianity for the bottom roughness for now), and relate it to the  
     . Simple estimates show that gaussian roughness produces “pretty durn close to” gaussian 
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      (try this for the hard bottom!), so we can buy off on T&C’s Eqs. 6.105 a, b.  We next 
assume spatial stationarity of the roughness to allow us to evaluate the correlation function 
easily.  Just the relative coordinate,       , enters here, not the absolute position coordinates.  
This gives Eq. 6.107.  As always, when in doubt, “buy a Gaussian”, and so a gaussian surface 
correlation function is invoked in Eq. 6.108.  This gives an extremely simple result in Eq. 6.109, 
that the variance of the (range integral) phase fluctuation is proportional to the range, the 
correlation length, and the variance of the eigenvalues.  Equations 6.110 to 6.112 show how the 
phase fluctuations decrease the coherence of the pressure field with range, due to the 
“attenuation” factor (ala Eq. 6.109) introduced.  The rest of the material from T&C past Eq. 
6.112 is about higher order correlations, and gets a bit more involved, so I will let the reader 
browse and decide if it is worth looking at in detail. 
 
 To conclude, there is a huge literature on rough surface scattering (e.g. the radar 
scattering literature just for starters), and again I must apologize for this very brief treatment of a 
vast and fascinating subject. 
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