
Today


•	 Interference 
–	 inadequacy of a single intensity measurement to determine the 

optical field 
–	 Michelson interferometer 

•	 measuring 
– distance 
– index of refraction 

–	 Mach-Zehnder interferometer 
•	 measuring 

– wavefront 
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A reminder: phase delay in wave propagation
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z = 2.875λ 
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phasor due 
In general, to propagation


(path delay)

real representation phasor representation
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Phase delay from a plane wave propagating at angle θ

towards a vertical screen


path delay increases linearly with x
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Phasor representation:
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may also be written as: 



Phase delay from a spherical wave propagating from distance z0


towards a vertical screen
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path delay increases quadratically with x 

Phasor representation: 

may also be written as: 
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The significance of phase delays


•	 The intensity of plane and spherical waves, observed on a screen, is 
very similar so they cannot be reliably discriminated 
–	 note that the 1/(x2+y2+z2) intensity variation in the case of the 

spherical wave is too weak in the paraxial case z>>|x|, |y| 
so in practice it cannot be measured reliably 

•	 In many other cases, the phase of the field carries important 

information, for example


–	 the “history” of where the field has been through 
•	 distance traveled 
•	 materials in the path 
•	 generally, the “optical path length” is inscribed in the phase 

–	 the evolution of the field beyond its present position (“diffraction”) 
•	 However, phase cannot be measured directly (e.g., with an oscillo-

scope, because the optical field varies too rapidly, f~1014-1015 Hz 
•	 Interferometry measures the phase by comparing two fields: the 

unknown, or “signal” field with a known “reference” field 
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Michelson interferometer
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where Ar, As are the amplitudes and φr, φs the phase delays

introduced after one round trip 


in the reference and signal arms, respectively


The photo-detector receives the field sum of the waves 
arriving from the reference and signal arms: 
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signal arm
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reference and signal waves in phase: 
constructive interference 
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Example: measuring distance 
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The relative length of the unknown signal path compared to 
the reference path can be established (mod 2π). 
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where Ar, As are the amplitudes and φr, φs the phase delays

introduced after one round trip 


in the reference and signal arms, respectively
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Example: measuring optical density
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where Ar, As are the amplitudes and φr, φs the phase delays

introduced after one round trip 


in the reference and signal arms, respectively
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Contrast (fringe visibility) in interferometry


Ar=As 

Highest contrast / Intensity perfect contrast 

fringe visibility is obtained m=1 

by interfering beams of 
equal amplitudes Ι0 

Intensity 
0<m<1 Δφ 

2m×Ι0 A <<As rIntensity 
no interferenceΙ0 m≈0 

Δφ Ι0 
Ar≠As 

imperfect contrast Δφ 
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Mach-Zehnder interferometer

x 

Interference pattern 
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in this case the 
“interference pattern” Ιd 
is function of position x 

so it is digitized by a 
pixelated sensor array 

(digital camera) 
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signal

Interference pattern: mapping the 

incident field ⇔ incident wavefront


θ
plane wave 

observation plane

(digital camera)
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Today


•	 Huygens principle 
•	 Young’s interferometer 
•	 Generalizing Young’s interferometer: 

Huygens principle and thin transparencies ⇒ 

⇒	 Fresnel diffraction integral 

•	 Diffraction 
–	 Fresnel regime 

Next week 

–	 Fraunhofer regime 
•	 Spatial frequencies and Fourier transforms 
•	 Fraunhofer patterns of typical apertures 
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Huygens principle


optical 
wavefront 

Each point on the wavefront 
acts as a secondary light source 
emitting a spherical wave 

The wavefront after a short 
propagation distance is the 
result of superimposing all 
these spherical waves, i.e. 
adding the corresponding phasors 
including the phase delay 
incurred due to propagation 
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Example: hole in an opaque screen


x=x0 

spherical

wave


incoming 
z =lplane wave opaque 

(on-axis) screen 
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Example: two holes in an opaque screen


incoming 
plane wave opaque z =l 

x=x0 

spherical 
wave 

spherical 
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Young interferometer


x=x0


x=−x0 

incoming 
plane wave opaque 
(on-axis) screen 

z =l 

The light intensity depends on the optical path 
length difference (OPLD) between the two 

sources x=±x0 and the observation point x’: 

if the OPLD is an even multiple of λ/2 
(constructive interference, phase difference 

equal to even multiple of π) then the intensity 
is maximum; 

if the OPLD is an odd multiple of λ/2 
(destructive interference, phase difference 

equal to an odd multiple of π), then the 
intensity is zero.

observation
point x’
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Young interferometer
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intensity 
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Derivation of Young’s interference pattern
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Thin transparency

incident transmitted


wavefront wavefront


>~λ 

<~50λ


Assumptions: 
➡ features on the transparency are larger than ~λ 
➡ thickness of the transparency may be neglected 

The transparency has two effects on the incoming wavefront: 
‣ attenuation, which is determined by the opacity of the 
transparency at a given location, and typically is 

‣ binary (more common; transmission is either completely 
clear or completely opaque) or 
‣ grayscale (at greater expense) 

‣ phase delay, which is dependent on the optical path length 
(OPL) at the transmissive (or grayscale) locations, and is 

‣ binary (more common; phase delay is one of two values); 
‣ multi-level (at greater expense; phase delay is one of M 
values); or 
‣ continuous (also known as surface relief) 

The attenuation and phase delay imposed by the thin 
transparency are described together as a 
complex transmission function, whose 
‣ modulus is the attenuation; and 
‣ phase is the phase delay 
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Thin transparency: generalized Young interferometer

incident 

wavefront,
decomposed

into
Huygens

point sources

transmitted The thin transparency may also be thought of as a

wavefront,
 generalized Young’s interferometer in the following sense: 

decomposed 
We decompose the incident wavefront into Huygens point into 

sources; Huygens principle says that the transmittedHuygens 
wavefront may also be decomposed into point sources.point sources 

If the transparency is sufficiently thin, the each Huygens 
point source in the incident wavefront is directly transmitted 

to a Huygens point source in the outgoing wavefront, 
possibly with an attenuation and phase delay given by the 

transparency’s complex transmission function. 

The overall transmitted wavefront is the superposition of the 
Huygens point sources obtained by point-by-point 

multiplication of the incident wavefront times the complex 
transmission function. Therefore, the overall transmitted 

wavefront is obtained as a generalized Young’s 
interferometer with not just two, but a continuum of (infinite) 

point sources. 

Using the sifting property of delta functions we can 

express the incident and transmitted wavefronts as
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The Fresnel diffraction integral

incident 

wavefront, 
decomposed 

into 
Huygens 

point sources 

transmitted 
wavefront, 
decomposed 

into 
Huygens 

point sources 
Each Huygens point source is a divergent 
spherical wave; therefore, after propagating 
by distance z in free space, it can be 
expressed as 

The entire propagated wavefront is the 
superposition of the propagated Huygens 
point sources at the wavefront transmitted by 
the transparency, so it may be expressed as 

This result is known as

Fresnel diffraction integral


(or simply Fresnel integral)
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Fresnel integral is a convolution


Fresnel convolution integral 

Free space propagation is expressed as a Fresnel diffraction integral, which is mathematically 
identical to convolution of the incoming wavefront with (the paraxial approximation expression for) 
a spherical wave. 

In systems language, we can express free space propagation in a block diagram as 

The spherical wave is the system’s impulse response; in Optics, we refer to it as the

Point Spread Function (PSF).
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Example: circular aperture
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Example: circular aperture


➡ The ripples that arise near the edges of the aperture after a very short propagation distance and are 
noticeable in the large aperture case are characteristic of diffraction with coherent illumination and are 
referred to as “Fresnel ripples” or “diffraction ripples.” 
➡ The alternating peaks (bright) and nulls (dark) that are noticeable in the small aperture case are 
referred to as “Poisson spot” or “blinking spot.” 
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Example: rectangular aperture


➡ Fresnel ripples are again noticeable in the large aperture case but produce a different ripple structure 
because of the rectangular geometry. 
➡ The diffraction pattern from the small aperture changes qualitatively after some propagation distance; 
it begins to look like a sinc function, the Fourier transform of the boxcar function. We will explain this 
phenomenon quantitatively very soon; we refer to it as the Fraunhofer diffraction regime. 
➡ Fraunhofer diffraction occurs in the case of the large aperture as well, but after a longer propagation 
distance (we will quantify that as well.) 
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