2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

Department of Mechanical Engineering Department of Electrical Engineering and Computer Science

2.830J/6.780J Control of Manufacturing Processes

Spring 2008

Assignment 7 Out 4/4/2008; due Thursday 4/10/2008

Problem 1

Montgomery 12–10

Problem 2

Montgomery 12-15

Problem 3

Suppose that the following results were obtained from a 2-factor experiment with center point. Five replicate measurements were made for each input combination:

x_1	x_2	y (5 replicates)				
0	0	0.1014	0.1056	0.0996	0.0991	0.1038
1	1	0.0650	0.0650	0.0667	0.0662	0.0664
1	-1	0.0914	0.0891	0.0925	0.0855	0.0913
-1	1	0.1107	0.1071	0.1109	0.1115	0.1145
-1	-1	0.1963	0.2185	0.1914	0.1814	0.2092

- (a) Attempt to fit a model to these results. Examine the residuals using a normal probability plot and a plot of residuals against fitted values. Do the residuals appear to have equal variance across the prediction range?
- (b) Now try fitting models, in turn, to the transformed data sets exp(y) and 1/y. In each case examine the residuals and draw conclusions about which, if either, transformation is appropriate.

(These data are also provided in an Excel file on the course website, `7-3.xls'.)

Problem 4

Montgomery 13-12