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 MIT 2.830/6.780 Problem Set 3 (2008) — Solutions 
 
 
 
Part 1 
 

Histograms and normal probability plots for intermingled samples taken from two populations, x1 ~ 

N(0,1) and x2 ~ N(d,1), for values of d between 0 and 4: 
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Histogram for d = 0.5 Normal probability plot for d = 0.5 
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Histogram for d = 1.5 Normal probability plot for d = 1.5 
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Simply looking at these normal probability plots, one would probably conclude that the distributions 
underlying the samples for values of d up to and including 2 could be reasonably approximated by a 
normal distribution. Only for the case d=4 is the sample clearly from a non-normal distribution.  

We might use various tests of normality to probe further. For this particular set of samples, the 
Lilliefors test rejects the hypothesis of normality at the 5% level for the cases d=2 and d=4. However, 
repeating the random sampling operation a few times shows that this is not always the result: 
depending on the samples that happen to be generated, the hypothesis of normality is sometimes 
rejected for d = 1 and d = 1.5. 

So while normal probability plots and tests of normality are useful in deciding whether or not we can 
approximate a particular distribution as normal — in order, for example, to allow further hypothesis 
testing — they cannot be relied upon to alert us to features of the data that we had already inadvertently 
ignored. 

Part 2 

Montgomery problem 3-3 

x = 26.0 
s = 1.62 
μ0 = 25 
α = 0.05 
n = 10 

(a) 	 Test H0: μ = 25 vs H1: μ > 25 
Reject H0 if t0 > tα 

x − μ0 26.0 − 25t0 = = = 1.952

s / n 1.62 / 10


tα, n–1 = t0.05, 10–1 = 1.833 

Reject H0, and conclude that the mean life exceeds 25 h. 

(b) 	 α = 0.10 

x − tα / 2,n−1s / n ≤ μ ≤ x + tα / 2,n−1s / n 

26.0 −1.833(1.62 / 10) ≤ μ ≤ 26.0 +1.833(1.62 / 10) 
25.06 ≤ μ ≤ 26.94 



(c) Normal probability plot: 

Normal probability plot for battery life 
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The plotted points fall approximately along a straight line, so the assumption that battery life is 
normally distributed seems appropriate. 

Montgomery problem 3-6 

x = 12.015 
s = 0.030 
μ0 = 12 
α = 0.01 
n = 10 

(a) 	 Test H0: μ = 12 vs H1: μ > 12 
Reject H0 if t0 > tα 

t0 = 
x − μ0 = 

12.015 −12 
= 1.5655


s / n 0.0303/ 10


tα, n–1 = t0.005, 10–1 = 3.520 

Do not reject H0, and conclude that there is not enough evidence that the mean fill volume 
exceeds 12 oz. 



(b) α = 0.05 

tα, n–1 = t0.025, 9 = 2.262 


x − tα / 2,n−1s / n ≤ μ ≤ x + tα / 2,n−1s / n


12.015 − 2.262(0.0303/ 10) ≤ μ ≤ 12.015 + 2.262(0.0303/ 10) 
11.993 ≤ μ ≤ 12.037 

(c) Normal probability plot: 

Normal probability plot for fill volume 
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The plotted points fall approximately along a straight line, so the assumption that fill volume is 
normally distributed is appropriate. However the small sample size makes it difficult to be 
confident in this assumption. 

Montgomery problem 3-11 

(a) Let subscript 1 denote measurements by technician 1 and subscript 2 correspond to technician 2. 



11 

21 

21 
0 

+ 

− 
= 

nn 
s 

xxt 

p 

x1 =1.383 

x2 =1.376 
s1 = 0.115 
s2 = 0.125 
n1 = 7 
n2 = 8 
H0: mean surface measurements made by the two technicians are equal. 
H1: mean surface measurements are different 

We assume that the variances of populations 1 and 2 are equal, and calculate the pooled 
standard deviation for the samples as follows: 

2 2(n1 −1)s1 + (n2 −1)s2 = 0.1204s = p n1 + n2 − 2 

The test statistic is  

= 0.1061 

At the 5% level, for a 2-tailed test, the critical value of the t-statistic is t0.025, n1+n2–2 = 2.160. 

Since t0 < 2.160, we do not reject H0: there is insufficient evidence of a difference between 
mean measurements by the two technicians. 

(b)	 The practical implication of this test is that the mean outcome of the measurement process is not 
dependent upon which of the two operators is carrying out the measurements. It does not, 
however, rule out the possibility of a substantial, consistent, and operator-independent error in 
any measurements taken. If the null hypothesis had been rejected, the validity of the 
measurements would have been cast into doubt. We would have needed to investigate the 
source of the difference — for example, whether the measurement procedure was not precisely 
enough defined, or whether one or both of the operators was not following the procedure 
properly. 

(c)	 Using the values of sp and critical t found above, the confidence interval is 

(x1 − x2 ) − tα / 2,n +n −2 sp 1/ n1 +1/ n2 ≤ μ1 − μ2 ≤ (x1 − x2 ) + tα / 2,n +n −2sp 1/ n1 +1/ n21 2 1 2 

(1.383 −1.376) − 2.1604(0.12) (1/ 7) + (1/ 8) ≤ μ1 − μ2 ≤ (1.383 −1.376) + 2.1604(0.12) (1/ 7) + (1/ 8) 
− 0.127 ≤ μ1 − μ2 ≤ 0.141 

(d) α =0.05 

Test H0: σ1

2= σ2
2 versus H1: σ1

2 ≠ σ2
2. 




 Reject H0 if F0 > Fα/2,n1–1,n2–1 or F0 < F1–α/2,n1–1,n2–1. 

F0 = s1
2/s2

2 = 0.1152/0.1252 = 0.8464. 

Fα/2,n1–1,n2–1 = F0.05/2,7–1,8–1 = 5.119. 

F1–α/2,n1–1,n2–1 = F0.975,7–1,8–1 = 0.176. 


Do not reject H0 and conclude that there is insufficient evidence of a difference in variability of 
measurements obtained by the two technicians. Had the null hypothesis been rejected, we 
would have needed to investigate the source of any difference, such as one operator’s being less 
careful than the other. 

(e) 	 α =0.05 
Fα/2,n2–1,n1–1 = 5.6955; F1–α/2,n2–1,n1–1 = 0.1954. 

95% confidence interval estimate of the ratio of variances of technician measurements: 

s


s
s1

2

2

2 F1−α / 2,n2 −1,n1−1 ≤ 
σ
σ1

2
2

2 

≤ 1

2

2

2 Fα / 2,n2 −1,n1−1
s 

0.1152 

(0.1954) ≤ σ1
2 

≤ 
0.1152 

(5.6955)
0.1252 σ 2

2 0.1252


σ 2


0.165 ≤ 1 ≤ 4.821
σ 2


2


(f) 	 α =0.05 
χ2 

α/2,n2–1 = 16.0128; χ2
1–α/2,n2–1 = 1.6899 

95% confidence interval estimate of the variance of measurements by technician 2: 

(n2 −1)s2
2 

≤σ 2 ≤ 
(n2 −1)s2

2 

χα 
2

/ 2,n2 −1
2 χ1

2 
−α / 2,n2 −1 

(8 −1)0.1252 

≤σ 2
2 ≤ 

(8 −1)0.1252


16.0128 1.6899


0.007 ≤σ 2
2 ≤ 0.065 



(g) 

Normal probability plot for Technician 1 measurements Normal probability plot for Technician 2 measurements 
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The normality assumption seems reasonable for these readings. 

Montgomery problem 3-21 

x = 752.6 mL 
n = 20 
s = 1.5 mL 
α = 0.05 

(a) Test H0: σ2 = 1 versus H1: σ2 < 1. Reject H0 if χ2
0< χ2

1–α,n–1. 

χ2
1–α,n–1 = χ2

0.95,19 = 10.1170. 

χ0
2 = 

(n −1
2

)s 2 

= 
(20 −1)1.52 

= 42.75

σ 0 1


χ2
0 = 42.75 > 10.12, so do not reject H0. There is no significant evidence that the standard 

deviation of the fill volume is less than 1 mL. 

(b) 95% two-sided confidence interval on the standard deviation of fill volume: 



χα 
2

/ 2,n−1 = χ0
2
.025,19 = 32.85 

χ1
2 
−α / 2,n−1 = χ0

2
.975,19 = 8.91 

(n −1)s 2 

≤σ 2 ≤ 
(n −1)s 2


χ 2 χ 2

α / 2,n−1 1−α / 2,n−1


(20 −1)1.52 

≤σ 2 ≤ 
(20 −1)1.52 

32.85 8.91 
1.30 ≤σ 2 ≤ 4.80 
1.14 ≤σ ≤ 2.19


Units of σ: mL. 


(c) Histogram and normal probability plot for fill-volume data 

Histogram of fill−volume data Normal probability plot for fill−volume data 
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The kurtosis is 2.86 (normal: 3), and the skewness 0.26, suggesting that the data are reasonably 
represented by a normal distribution. However, the normal probability plot shows the data 
deviating substantially from a straight line, as well as highlighting the substantial quantization 
of the data – whether this is real or from measurement we cannot say. An assumption of 
normality is therefore rather dubious. 
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Part 3 

May and Spanos, problem 6.1 


What is the probability of 4 out of 5 consecutive points plotting outside the ±1σ limits? 


[The question said ‘2σ’ limits; answers interpreting this as ±2σ will be dealt with leniently.]


We interpret the question as asking for the probability of obtaining this warning when the process is in 

control. Note that the four points have to be on the same side of the center-line to cause a warning to be 

triggered.  


So the probability is: 


(2 sides) × 5C4 × [1–Φ(1)]4[Φ(1)] = 2 × 5 × (1–0.8413)4(0.8413) = 5.34 × 10–3. 


We also assume that the triggering of a warning does not cause the process to be suspended; if it did, 

the above calculation would no longer hold. 


I suppose the rule should strictly be ‘at least’ 4 out of the last 5 points, since a continuous run of 5 

points on one side of the 1σ limits would be at least as suggestive of an out-of-control process as four 

out of five points. We might therefore justify adding  

2 × [1–Φ(1)]5 to the probability of a warning being triggered.


May and Spanos, problem 6.2 


The probability of observing a type I error (reject the hypothesis that the process is in control when it is

in control) is


2 [1–Φ(3)] = 0.0027. 




May and Spanos, problem 6.3 

(a)	 P(signal alarm on second sample after the shift) = β(1– β) 
(b)	 P(miss the alarm for K samples following the shift) = βK 

If this statement is interpreted as meaning ‘at least K samples’ the required probability is βK; if 
it is interpreted as meaning ‘exactly K samples’, the probability is βK(1–β): the alarm would be 
triggered on sample K+1. 

(c) 	 The expected number of samples needed after the shift to generate an alarm is 1/(1– β) (the out-
of-control average run length). 

Part 4 

Montgomery problem 7-3 

μ = =10.375; x xˆ x R = 6.25; σ̂ = R  d  = 6.25 2.059 = 3.042 

×	 5) × = −50USL x = [(350 + 5) −350] 10 = 50; LSL x = [(350 − −  350] 10 
xi = (obs i −350)×10 

Ĉ = 
USL x −LSL x = 

50 ( 50) 
= 5.48− −  

p 6σ̂ x 6(3.04) 

The process produces product that uses approximately 18% of the total specification band. 

Ĉ = 
USL − μ̂ 

= 
50 −10.375 

= 4.34x

pu
 3σ̂ x 3(3.04) 

ˆ −LSL 10.375 ( 50) μ	 − −  xĈ 
pl = 

3σ̂ x 

= 
3(3.04) 

= 6.62 

Ĉ 
pk = min( Ĉ 

pu ,Ĉ 
pl ) = 4.34 

This is an extremely capable process, with an estimated percent defective much less than 1 ppb.  Note 
that the Cpk is less than Cp, indicating that the process is not centered and is not achieving potential 
capability. However, this PCR does not tell where the mean is located within the specification band. 

− 0 −10.375T xV = = = −3.4128
S 3.04 

ˆ Ĉ 
p 5.48C = =	 =1.54 

Since Cpm is greater than 4/3, the mean μ lies within approximately the middle fourth of the 
specification band. 

2 21 1 ( 3.4128) 
pm 

V+  + −  



ξ̂  = μ̂ −T 
= 

10.375 − 0 
= 3.41

σ̂ 3.04 

ˆ Ĉ 
pk 4.34Cpkm = 

2 
= 

2 
=1.22 

1+ ξ̂ 1+ 3.4128 

Montgomery problem 7-6 
[numbers in the 4th Edition are different; solutions using them were accepted] 

n 4; ˆ = =  R σ 
USL = 200 + 8 = 208; LSL = 200 – 8 = 192 
= μ x 199; = 3.5; ˆ x = R d2 = 3.5 2.059 =1.70 

(a) 
USL −LSL 208 −192 

= =Potential: Ĉ 
p 6σ̂ 

= 
6(1.70) 

1.57


The process produces product that uses approximately 64% of the total specification band. 


(b) 

Ĉ = 
USL − μ̂ 

= 
208 −199 

=1.76pu 3σ̂ 3(1.70) 

Actual: Ĉ 
pl =

μ̂ −LSL 
= 

199 −192 
=1.37 

3σ̂ 3(1.70) 

Ĉ 
pk = min( Ĉ 

pl ,Ĉ 
pu ) =1.37 

(c) 

The current fraction nonconforming is: 

p̂Actual = Pr{ x < LSL} + Pr{ x > USL} 

= Pr{ x < LSL} [1 Pr{ x ≤ ]+ −  USL}


⎧ LSL − μ̂ ⎫ ⎡ ⎧ USL − μ̂ ⎫⎤
= Pr ⎨z < ⎢1 Pr ⎨z ≤ ⎬⎥⎬+  − 

⎩ σ̂ ⎭ ⎣ ⎩ σ̂ ⎭⎦


= Pr ⎧⎨z < 192 −199 ⎫ ⎡
⎢1 Pr ⎧⎨z ≤ 208 −199 ⎫

⎬
⎤
⎥⎬+  −  

⎩ 1.70 ⎭ ⎣ ⎩ 1.70 ⎭⎦

= Φ( 4.1176) [1 Φ ]
−  + − (5.2941)


0.0000191 [ ]  1 1
=  + − 


= 0.0000191


If the process mean could be centered at the specification target, the fraction nonconforming would be: 

p̂Potential = ×2 Pr  ⎨
⎧ z < 192 − 200 

⎬
⎫ 

⎩ 1.70 ⎭

2 0.0000013
= × 


= 0.0000026




May and Spanos problem 6.8 - Solution partially removed due to copyright restrictions. 



Part 5 

(a)	 Control charts: 
For sample size 3: 

For sample size 5: 

(b)	 With a sample size of 3, there is a warning from rule 2 (2 out of 3 consecutive points outside 
±2σ) at samples 2 and 3, and alarms from points outside ±3σ at samples 11, 16, 17 and 21–27. 
With a sample size of 5, there are alarms from points outside ±3σ at samples 1, 9, 10 and 13–16. 



(c) Run chart for Cp = Cpk = 1: 

If applying the WECO rules strictly, with a sample size of 3, the process would be stopped at 
sample 2 to investigate the cause of the consecutive pair of samples below –2σ. Upon finding 
that the parts produced were not defective, the process would probably be restarted, and would 
continue until sample 11, when an out-of-control alarm is sounded. The out-of-specification 
part from run 31 would already have been produced. However, this out-of-spec part would 
probably be concluded to have been an ‘outlier’ and the process restarted. The next alarm is at 
sample 21, reacting to the 3 out-of-spec parts from runs 61–63. A clear mean shift would be 
discovered upon investigation, and the apparatus corrected. The defective run 47 would not 
have been detected. Thus, 5 out-of-spec parts are produced if a control chart with a sample size 
of 3 is used. 

With a sample size of 5, the first alarm following an out-of-spec part is at sample 9, after 45 
parts have been produced and only one defective part (the outlier at run 31) has been produced. 
The operator might look at the run chart, conclude that the process had been drifting during runs 
40–45, and take corrective action. If they did not take corrective action, they would get another 
alarm at sample 10, by which time the defective run 47 would have been produced. Most 
operators would probably accept by this stage that the process was drifting, and take corrective 
action. The most cavalier operators would, however, restart the process without correction, and 
not get another alarm until sample 13, after defective runs 61–65 had occurred. So even if the 
WECO rules are applied rigorously, the judgement of the operator after the process has been 
stopped determines whether 1, 2 or 7 defective parts are produced. 

(d) Average run length for detecting a mean shift of 0.25σ with sample size of 5, for example: 

0.9925 

133 



(e)	 If no SPC had been performed (i.e. the run of 80 parts had been produced without any 
measurements during production), 21 defective parts would be produced: runs 31, 47, 61–76 
and 78–80. 




