# 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

# HW 7 Solution 2008

Problem 1 (12-10)

#### (a)

| Factorial Fit: Color ve | Factorial Fit: Color versus Solv/React, Cat/React, |  |  |  |  |
|-------------------------|----------------------------------------------------|--|--|--|--|
| Estimated Effects and   | Coefficients for Color (coded units)               |  |  |  |  |
| Term                    | Effect Coef                                        |  |  |  |  |
| Constant                | 2.7700                                             |  |  |  |  |
| Solv/React              | 1.4350 0.7175                                      |  |  |  |  |
| Cat/React               | -1.4650 -0.7325                                    |  |  |  |  |
| Temp                    | -0.2725 -0.1363                                    |  |  |  |  |
| React Purity            | 4.5450 2.2725                                      |  |  |  |  |
| React pH                | -0.7025 -0.3513                                    |  |  |  |  |
| Solv/React*Cat/React    | 1.1500 0.5750                                      |  |  |  |  |
| Solv/React*Temp         | -0.9125 -0.4562                                    |  |  |  |  |
| Solv/React*React Puri   | ty -1.2300 -0.6150                                 |  |  |  |  |
| Solv/React*React pH     | 0.4275 0.2138                                      |  |  |  |  |
| Cat/React*Temp          | 0.2925 0.1462                                      |  |  |  |  |
| Cat/React*React Purit   | у 0.1200 0.0600                                    |  |  |  |  |
| Cat/React*React pH      | 0.1625 0.0812                                      |  |  |  |  |
| Temp*React Purity       | -0.8375 -0.4187                                    |  |  |  |  |
| Temp*React pH           | -0.3650 -0.1825                                    |  |  |  |  |
| React Purity*React pH   | 0.2125 0.1062                                      |  |  |  |  |



From visual examination of the normal probability plot of effects, only factor D (reactant purity) is significant. Re-fit and analyze the reduced model.

Factorial Fit: Color versus React Purity Estimated Effects and Coefficients for Color (coded units) Term Effect Coef SE Coef Т Ρ Constant 2.770 0.4147 6.68 0.000 React Purity 4.545 2.272 0.4147 5.48 0.000 S = 1.65876 R-Sq = 68.20% R-Sq(adj) = 65.93% Analysis of Variance for Color (coded units) Source DF Seq SS Adj SS Adj MS F Ρ 1 82.63 82.63 82.628 30.03 0.000 Main Effects Residual Error 14 38.52 38.52 2.751 Pure Error 14 38.52 38.52 2.751 Total 15 121.15

(b)



Residual plots indicate that there may be problems with both the normality and constant variance assumptions.

(c)

There is only one significant factor, D (reactant purity), so this design collapses to a one-factor experiment, or simply a 2-sample t-test.

Looking at the original normal probability plot of effects and effect estimates, the  $2^{nd}$  and  $3^{rd}$  largest effects in absolute magnitude are A (solvent/reactant) and B (catalyst/reactant). A cube plot in these factors shows how the design can be collapsed into a replicated  $2^3$  design. The highest color scores are at high reactant purity; the lowest at low reactant purity.



Problem 2 (12-15)

## (a)

|          |            |           |           |         |          |           |       | <br> |
|----------|------------|-----------|-----------|---------|----------|-----------|-------|------|
| Factoria | al Fit: Re | sist vers | sus A, B, | C, D    |          |           |       |      |
| Estimate | ed Effect  | ts and C  | oefficier | nts for | Resist   | (coded un | its)  |      |
| Term     | Effect     | Coef      | SE Coef   | Т       | P        |           |       |      |
| Constant | t          | 60.433    | 0.6223    | 97.12   | 0.000    |           |       |      |
| A        | 47.700     | 23.850    | 0.7621    | 31.29   | 0.000 *  |           |       |      |
| В        | -0.500     | -0.250    | 0.7621    | -0.33   | 0.759    |           |       |      |
| С        | 80.600     | 40.300    | 0.7621    | 52.88   | 0.000 *  |           |       |      |
| D        | -2.400     | -1.200    | 0.7621    | -1.57   | 0.190    |           |       |      |
| A*B      | 1.100      | 0.550     | 0.7621    | 0.72    | 0.510    |           |       |      |
| A*C      | 72.800     | 36.400    | 0.7621    | 47.76   | 0.000 *  |           |       |      |
| A*D      | -2.000     | -1.000    | 0.7621    | -1.31   | 0.260    |           |       |      |
|          |            |           |           |         |          |           |       |      |
| Analysi  | s of Var:  | iance fo  | r Resist  | (coded  | units)   |           |       |      |
| Source   |            | DF S      | eq SS A   | dj SS.  | Adj MS   | F         | Ρ     |      |
| Main Ef: | fects      | 4 1       | 7555.3 1  | 7555.3  | 4388.83  | 944.51    | 0.000 |      |
| 2-Way In | nteractio  | ons 3     | 10610.1   | 10610.3 | 1 3536.7 | 0 761.13  | 0.000 |      |
| Residua  | l Error    | 4         | 18.6      | 18.6    | 4.65     |           |       |      |
| Curvat   | ture       | 1         | 5.6       | 5.6     | 5.61     | 1.30 0.   | 338   |      |
| Pure E   | Error      | 3         | 13.0      | 13.0    | 4.33     |           |       |      |
| Total    |            | 11 28     | 184.0     |         |          |           |       |      |



Examining the normal probability plot of effects, the main effects A and C and their two-factor interaction (AC) are significant. Re-fit and analyze a reduced model containing A, C, and AC.

| (b)       |           |          |           |          |          |        |            |
|-----------|-----------|----------|-----------|----------|----------|--------|------------|
| Factorial | l Fit: Re | sist ver | sus A, C  |          |          |        |            |
| Estimate  | d Effect  | ts and ( | Coefficie | ents for | r Resist | (coded | units)     |
| Term      | Effect    | Coef     | SE Coef   | Т        | Р        |        |            |
| Constant  |           | 60.43    | 0.6537    | 92.44    | 0.000    |        |            |
| A         | 47.70     | 23.85    | 0.8007    | 29.79    | 0.000 *  |        |            |
| С         | 80.60     | 40.30    | 0.8007    | 50.33    | 0.000 *  |        |            |
| A*C       | 72.80     | 36.40    | 0.8007    | 45.46    | 0.000 *  |        |            |
|           |           |          |           |          |          |        |            |
| Analysis  | of Var    | iance f  | or Resist | c (codeo | d units) |        |            |
| Source    |           | DF       | Seq SS    | Adj SS   | Adj MS   | F      | Р          |
| Main Effe | ects      | 2        | 17543.3   | 17543.3  | 8 8771.6 | 1710.  | 43 0.000   |
| 2-Way In  | teractio  | ons 1    | 10599.7   | 10599.   | 7 10599. | 7 2066 | 5.89 0.000 |
| Residual  | Error     | 8        | 41.0      | 41.0     | 5.1      |        |            |
| Curvatu   | ıre       | 1        | 5.6       | 5.6      | 5.6      | 1.11   | 0.327      |
| Pure Er   | rror      | 7        | 35.4      | 35.4     | 5.1      |        |            |
| Total     |           | 11 2     | 8184.0    |          |          |        |            |

Curvature is not significant (P-value = 0.327), so continue with analysis.



(c)

A funnel pattern at the low value and an overall lack of consistent width suggest a problem with equal variance across the prediction range.



The normal probability plot of residuals is satisfactory.

The concern with variance in the predicted resistivity indicates that a data transformation may be needed.

(d)

Addendum to solution to Problem 2: manual test of curvature (courtesy R. Schwenke)

$$SS_{pure quadratic} = \frac{n_{F} \cdot n_{c} (\bar{q}_{F} - \bar{q}_{c})^{2}}{n_{F} + n_{c}} (d_{0}f = 1)$$

$$= \frac{8 \cdot 4(59.95 - 61.4)^{2}}{8 + 4}$$

$$= 5.6067$$

 $\Lambda^{2} = \frac{(63.4 - 61.4)^{2} + (62.6 - 61.4)^{2} + (58.7 - 61.4)^{2} + (60.3 - 61.4)^{2}}{3}$ 

$$= 4.3267$$

$$= 5.6067$$

$$= 1.2958$$

$$= P = F_{eff}(1.2958) = 0.3377$$
with  $v_1 = 1$ 

$$v_2 = 3$$

$$= 0.14 = 33.777$$

Carrature. - p no statistic

chidence.

## Problem 3: example solution (courtesy X. Su)

| a.  | •   |   |      |          |     |        |        |             |        |        |        |          |
|-----|-----|---|------|----------|-----|--------|--------|-------------|--------|--------|--------|----------|
|     |     | - | Desi | ign Fact | ors | _      |        |             |        |        |        | Effects  |
| Run |     | I | А    | В        | AB  |        | Re     | plicate Res | ults   |        | Totals | estimate |
| 1   | (1) | 1 | -1   | -1       | 1   | 0.1963 | 0.2185 | 0.1914      | 0.1814 | 0.2092 | 0.9968 |          |
| 2   | а   | 1 | 1    | -1       | -1  | 0.0914 | 0.0891 | 0.0925      | 0.0855 | 0.0913 | 0.4498 | -0.07724 |
| 3   | b   | 1 | -1   | 1        | -1  | 0.1107 | 0.1071 | 0.1109      | 0.1115 | 0.1145 | 0.5547 | -0.05626 |
| 4   | ab  | 1 | 1    | 1        | 1   | 0.065  | 0.065  | 0.0667      | 0.0662 | 0.0664 | 0.3293 | 0.03216  |

| Source of variation | Sum of squares | Degrees of<br>Freedom | Mean Square | F <sub>0</sub> | P-value     |
|---------------------|----------------|-----------------------|-------------|----------------|-------------|
| А                   | 0.02983        | 1                     | 0.02983     | 628            | 1.40194E-16 |
| В                   | 0.015826       | 1                     | 0.015826    | 333.1789       | 6.13524E-14 |
| AB                  | 0.005171       | 1                     | 0.005171    | 108.8632       | 1.54196E-09 |
| Curvature           | 0.000856       | 1                     | 0.000856    | 18.02105       | 0.000396599 |
| Residual Error      | 0.00095        | 20                    | 4.75234E-05 |                |             |
| Total               | 0.052634       | 24                    |             |                |             |

Since A, B, AB and curvature are significant (P < 0.05), they have to be included in the regression model. There is also evidence of pure quadratic curvature.

#### Using Minitab: Response Surface Regression: Replicates versus A, B

The following terms cannot be estimated, and were removed.

B\*B

The analysis was done using coded units.

Estimated Regression Coefficients for Replicates

| Term     | Coef     | SE Coef  | Т       | P     |
|----------|----------|----------|---------|-------|
| Constant | 0.10190  | 0.003083 | 33.053  | 0.000 |
| A        | -0.03862 | 0.001541 | -25.054 | 0.000 |
| В        | -0.02813 | 0.001541 | -18.249 | 0.000 |
| A*A      | 0.01463  | 0.003447 | 4.244   | 0.000 |
| A*B      | 0.01608  | 0.001541 | 10.432  | 0.000 |

S = 0.00689372 PRESS = 0.00148511 R-Sq = 98.19% R-Sq(pred) = 97.18% R-Sq(adj) = 97.83%

Analysis of Variance for Replicates

| Source         | DF | Seq SS   | Adj SS   | Adj MS   | F      | Р     |
|----------------|----|----------|----------|----------|--------|-------|
| Regression     | 4  | 0.051684 | 0.051684 | 0.012921 | 271.88 | 0.000 |
| Linear         | 2  | 0.045656 | 0.045656 | 0.022828 | 480.35 | 0.000 |
| Square         | 1  | 0.000856 | 0.000856 | 0.000856 | 18.02  | 0.000 |
| Interaction    | 1  | 0.005171 | 0.005171 | 0.005171 | 108.82 | 0.000 |
| Residual Error | 20 | 0.000950 | 0.000950 | 0.000048 |        |       |
| Pure Error     | 20 | 0.000950 | 0.000950 | 0.000048 |        |       |
| Total          | 24 | 0.052634 |          |          |        |       |

Unusual Observations for Replicates

 Obs
 StdOrder
 Replicates
 Fit
 SE
 Fit
 Residual
 St
 Resid

 6
 6
 0.219
 0.199
 0.003
 0.019
 3.10 R

 16
 16
 0.181
 0.199
 0.003
 -0.018
 -2.91 R

R denotes an observation with a large standardized residual.

Estimated Regression Coefficients for Replicates using data in uncoded units

| Term     | Coef       |
|----------|------------|
| Constant | 0.101900   |
| A        | -0.0386200 |
| В        | -0.0281300 |
| A*A      | 0.0146300  |
| A*B      | 0.0160800  |

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{12} x_1 x_2$ = 0.101900 - 0.0386200x<sub>1</sub> - 0.0281300x<sub>2</sub> + 0.0146300x<sub>1</sub><sup>2</sup> + 0.0160800 x\_1 x\_2



The normal probability plot looks skewed, with very little data lying on the blue line. The residuals do not seem to be following a normal distribution.



Variances of the residuals is shown to grow with increasing fitted values. However, the residuals are equally distributed above and below the center line.

Ρ

**b.** Using transformed data sets exp(y):

Linear

```
From Minitab:
Response Surface Regression: Replicates versus A, B
```

```
The following terms cannot be estimated, and were removed.
B*B
The analysis was done using coded units.
Estimated Regression Coefficients for Replicates
             Coef
                   SE Coef
                                  Т
                                         Ρ
Term
Constant 1.10728 0.003733 296.581 0.000
         -0.04396 0.001867 -23.550 0.000
А
         -0.03236 0.001867 -17.337 0.000
В
         0.01779 0.004174
A*A
                             4.262 0.000
A*B
          0.01933 0.001867
                             10.357 0.000
S = 0.00834830 PRESS = 0.00217794
R-Sq = 98.00% R-Sq(pred) = 96.88% R-Sq(adj) = 97.60%
Analysis of Variance for Replicates
                            Adj SS
               DF
                    Seq SS
                                        Adj MS
Source
                                                    F
              4 0.068342 0.068342 0.017086 245.15 0.000
Regression
```

2 0.059599 0.059599 0.029800 427.58 0.000

| Square         | 1  | 0.001266 | 0.001266 | 0.001266 | 18.17  | 0.000 |
|----------------|----|----------|----------|----------|--------|-------|
| Interaction    | 1  | 0.007477 | 0.007477 | 0.007477 | 107.28 | 0.000 |
| Residual Error | 20 | 0.001394 | 0.001394 | 0.000070 |        |       |
| Pure Error     | 20 | 0.001394 | 0.001394 | 0.000070 |        |       |
| Total          | 24 | 0.069736 |          |          |        |       |

Unusual Observations for Replicates

| Obs | Std0rder | Replicates | Fit   | SE Fit | Residual | St Resid |
|-----|----------|------------|-------|--------|----------|----------|
| 6   | 6        | 1.244      | 1.221 | 0.004  | 0.023    | 3.14 R   |
| 16  | 16       | 1.199      | 1.221 | 0.004  | -0.022   | -2.92 R  |

R denotes an observation with a large standardized residual.

Estimated Regression Coefficients for Replicates using data in uncoded units

| Term     | Coef       |
|----------|------------|
| Constant | 1.10728    |
| A        | -0.0439614 |
| В        | -0.0323629 |
| A*A      | 0.0177910  |
| A*B      | 0.0193347  |

### Regression model:

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{11} x_1^2 + \beta_{12} x_1 x_2$ = 1.10728 -0.0439614x<sub>1</sub> -0.0323629x<sub>2</sub> + 0.0177910x<sub>1</sub><sup>2</sup> + 0.0193347x\_1 x\_2





Both plots do not show much improvement from the previous plots.

### Using transformation 1/y: From Minitab: Response Surface Regression: Replicates versus A, B

The following terms cannot be estimated, and were removed. B\*B The analysis was done using coded units. Estimated Regression Coefficients for Replicates Coef SE Coef Т Term Ρ 76.551 0.000 Constant 9.81930 0.12827 А 3.06367 0.06414 47.769 0.000 В 2.01027 0.06414 31.344 0.000 A\*A 0.27219 0.14341 1.898 0.072 A\*B 0.02012 0.06414 0.314 0.757 S = 0.286823PRESS = 2.57085R-Sq = 99.39% R-Sq(pred) = 99.05% R-Sq(adj) = 99.27% Analysis of Variance for Replicates DF Adj MS F Source Seq SS Adj SS Ρ Regression 4 268.849 268.849 67.212 817.00 0.000 Linear 2 268.545 268.545 134.272 1632.15 0.000 1 0.296 0.296 0.296 Square 3.60 0.072 Interaction 1 0.008 0.008 0.008 0.10 0.757 Residual Error 20 1.645 1.645 0.082

Pure Error 20 1.645 1.645 0.082 Total 24 270.495

Unusual Observations for Replicates

 Obs
 StdOrder
 Replicates
 Fit
 SE Fit
 Residual
 St Resid

 17
 17
 11.696
 11.125
 0.128
 0.571
 2.23 R

R denotes an observation with a large standardized residual.

Estimated Regression Coefficients for Replicates using data in uncoded units

| Term     | Coef      |
|----------|-----------|
| Constant | 9.81930   |
| A        | 3.06367   |
| В        | 2.01027   |
| A*A      | 0.272187  |
| A*B      | 0.0201165 |

### Regression model:







Comparing these two new plots, there is much improvements in the sense that the residual VS fitted value plots do not show a growth in variance. Also, the normal probability plot shows a more well fitted data to line, hence randomly distributed data. Thus, the last transformation 1/y seems more appropriate for fitting the current regression model.

Problem 4 (13-12) 13-12.

| Response Surface Regression: y versus x1, x2, z                     |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|
| The analysis was done using coded units.                            |  |  |  |  |
| Estimated Regression Coefficients for y                             |  |  |  |  |
| Term Coef SE Coef T P                                               |  |  |  |  |
| Constant 87.3333 1.681 51.968 0.000                                 |  |  |  |  |
| x1 9.8013 1.873 5.232 0.001                                         |  |  |  |  |
| x2 2.2894 1.873 1.222 0.256                                         |  |  |  |  |
| z -6.1250 1.455 -4.209 0.003                                        |  |  |  |  |
| x1*x1 -13.8333 3.361 -4.116 0.003                                   |  |  |  |  |
| x2*x2 -21.8333 3.361 -6.496 0.000                                   |  |  |  |  |
| z*z 0.1517 2.116 0.072 0.945                                        |  |  |  |  |
| x1*x2 8.1317 4.116 1.975 0.084                                      |  |  |  |  |
| x1*z -4.4147 2.448 -1.804 0.109                                     |  |  |  |  |
| x2*z -7.7783 2.448 -3.178 0.013                                     |  |  |  |  |
|                                                                     |  |  |  |  |
| Analysis of Variance for y                                          |  |  |  |  |
| Source DF Seq SS Adj SS Adj MS F P                                  |  |  |  |  |
| Regression 9 2034.94 2034.94 226.105 13.34 0.001                    |  |  |  |  |
| Linear 3 789.28 789.28 263.092 15.53 0.001                          |  |  |  |  |
| Square 3 953.29 953.29 317.764 18.75 0.001                          |  |  |  |  |
| Interaction 3 292.38 292.38 97.458 5.75 0.021                       |  |  |  |  |
| Residual Error 8 135.56 135.56 16.945                               |  |  |  |  |
| Lack-of-Fit 3 90.22 90.22 30.074 3.32 0.115                         |  |  |  |  |
| Pure Error 5 45.33 45.33 9.067                                      |  |  |  |  |
| Total 17 2170.50                                                    |  |  |  |  |
|                                                                     |  |  |  |  |
| Estimated Regression Coefficients for y using data in uncoded units |  |  |  |  |
| Term Coef                                                           |  |  |  |  |
| Constant 87.3333                                                    |  |  |  |  |
| x1 5.8279                                                           |  |  |  |  |
| x2 1.3613                                                           |  |  |  |  |
| z -6.1250                                                           |  |  |  |  |
| x1*x1 -4.8908                                                       |  |  |  |  |

| x2*x2 | -7.7192 |
|-------|---------|
| Z*Z   | 0.1517  |
| x1*x2 | 2.8750  |
| x1*z  | -2.6250 |
| x2*z  | -4.6250 |

The coefficients for  $x_1z$  and  $x_2z$  (the two interactions involving the noise variable) are significant (*P*-values  $\leq 0.10$ ), so there is a robust design problem. Reduced model:

| Response Surface Regression: y versus x1, x2, z |       |
|-------------------------------------------------|-------|
| The analysis was done using coded units.        |       |
| Estimated Regression Coefficients for y         |       |
| Term Coef SE Coef T P                           |       |
| Constant 87.361 1.541 56.675 0.000              |       |
| x1 9.801 1.767 5.548 0.000                      |       |
| x2 2.289 1.767 1.296 0.227                      |       |
| z -6.125 1.373 -4.462 0.002                     |       |
| x1*x1 -13.760 3.019 -4.558 0.001                |       |
| x2*x2 -21.760 3.019 -7.208 0.000                |       |
| x1*x2 8.132 3.882 2.095 0.066                   |       |
| x1*z -4.415 2.308 -1.912 0.088                  |       |
| x2*z -7.778 2.308 -3.370 0.008                  |       |
|                                                 |       |
| Analysis of Variance for y                      |       |
| Source DF Seq SS Adj SS Adj MS F                | Ρ     |
| Regression 8 2034.86 2034.86 254.357 16.88 0    | 0.000 |
| Linear 3 789.28 789.28 263.092 17.46 0.         | .000  |
| Square 2 953.20 953.20 476.602 31.62 0.         | .000  |
| Interaction 3 292.38 292.38 97.458 6.47 0.      | .013  |
| Residual Error 9 135.64 135.64 15.072           |       |
| Lack-of-Fit 4 90.31 90.31 22.578 2.49 0.        | .172  |
| Pure Error 5 45.33 45.33 9.067                  |       |
| Total 17 2170.50                                |       |
|                                                 |       |
|                                                 |       |



 $y_{\text{Pred}} = 87.36 + 5.83x_1 + 1.36x_2 - 4.86x_1^2 - 7.69x_2^2 + (-6.13 - 2.63x_1 - 4.63x_2)z$ 

For the mean yield model, set z = 0: Mean Yield =  $87.36 + 5.83x_1 + 1.36x_2 - 4.86x_1^2 - 7.69x_2^2$ 

For the variance model, assume  $\sigma_z^2 = 1$ : Variance of Yield =  $\sigma_z^2 (-6.13 - 2.63x_1 - 4.63x_2)^2 + \hat{\sigma}^2$ =  $(-6.13 - 2.63x_1 - 4.63x_2)^2 + 15.072$ 

This equation can be added to the worksheet and used in a contour plot with  $x_1$  and  $x_2$ .



Examination of contour plots for Free Height show that heights greater than 90 are achieved with z = -1. Comparison with the contour plot for variability shows that growth greater than 90 with minimum variability is achieved at approximately  $x_1 = -0.11$  and  $x_2 = -0.31$  (mean yield of about 90 with a standard deviation between 6 and 8). There are other combinations that would work.

Note: the question was unclear as to whether the noise input z was controllable. If so, selecting z = -1 may give minimal sensitivity of the output to variation in z. If, however, we assume that z cannot be controlled, we must assume it to have zero mean and constant variance. The alternative solution following (courtesy H. Hu) shows a solution based on the assumption that z cannot be controlled.

### Problem 4

#### Montgomery 13-12

Reconsider the crystal growth experiment from Exercise 13-10. Suppose that  $x_3 = z$  is now a noise variable, and that the modified experimental design shown here has been conducted. The experimenters want the growth rate to be as large as possible but they also want the variability transmitted from z to be small. Under what set of conditions is growth greater than 90 with minimum variability achieved?

| x <sub>1</sub> | x <sub>2</sub> | Z  | у   |
|----------------|----------------|----|-----|
| -1             | -1             | -1 | 66  |
| -1             | -1             | 1  | 70  |
| -1             | 1              | -1 | 78  |
| -1             | 1              | 1  | 60  |
| 1              | -1             | -1 | 80  |
| 1              | -1             | 1  | 70  |
| 1              | 1              | -1 | 100 |
| 1              | 1              | 1  | 75  |
| -1.682         | 0              | 0  | 100 |
| 1.682          | 0              | 0  | 80  |
| 0              | -1.682         | 0  | 68  |
| 0              | 1.682          | 0  | 63  |
| 0              | 0              | 0  | 113 |

| 0 | 0 | 0 | 100 |
|---|---|---|-----|
| 0 | 0 | 0 | 118 |
| 0 | 0 | 0 | 88  |
| 0 | 0 | 0 | 100 |
| 0 | 0 | 0 | 85  |
|   |   |   |     |

We use Minitab to do the robustness study. The experimental design is a "modified" central composite design in which the axial runs in the z direction have been eliminated.

#### Response Surface Regression: response versus x1, x2, x3

The analysis was done using coded units.

Estimated Regression Coefficients for response

| Term     | Coef    | SE Coef | Т      | Р     |
|----------|---------|---------|--------|-------|
| Constant | 98.896  | 5.607   | 17.639 | 0.000 |
| x1       | 1.271   | 3.821   | 0.333  | 0.747 |
| x2       | 1.361   | 3.821   | 0.356  | 0.730 |
| x3       | -6.125  | 4.992   | -1.227 | 0.251 |
| x1*x1    | -5.412  | 3.882   | -1.394 | 0.197 |
| x2*x2    | -14.074 | 3.882   | -3.625 | 0.006 |
| x1*x2    | 2.875   | 4.992   | 0.576  | 0.579 |
| x1*x3    | -2.625  | 4.992   | -0.526 | 0.612 |
| x2*x3    | -4.625  | 4.992   | -0.926 | 0.378 |

$$\begin{split} S &= 14.1209 \qquad \text{PRESS} = 9196.84 \\ \text{R-Sq} &= 65.33\% \quad \text{R-Sq}(\text{pred}) = 0.00\% \quad \text{R-Sq}(\text{adj}) = 34.51\% \end{split}$$

Analysis of Variance for response

| Source      | DF | Seq SS | Adj SS | Adj MS  | F    | Р     |
|-------------|----|--------|--------|---------|------|-------|
| Regression  | 8  | 3381.2 | 3381.2 | 422.65  | 2.12 | 0.142 |
| Linear      | 3  | 347.5  | 347.5  | 115.84  | 0.58 | 0.642 |
| Square      | 2  | 2741.3 | 2741.3 | 1370.65 | 6.87 | 0.015 |
| Interaction | 3  | 292.4  | 292.4  | 97.46   | 0.49 | 0.699 |

| Residual Error | 9  | 1794.6 | 1794.6 | 199.40 |      |       |
|----------------|----|--------|--------|--------|------|-------|
| Lack-of-Fit    | 4  | 935.3  | 935.3  | 233.81 | 1.36 | 0.365 |
| Pure Error     | 5  | 859.3  | 859.3  | 171.87 |      |       |
| Total          | 17 | 5175.8 |        |        |      |       |

Unusual Observations for response

| 0bs | StdOrder | response | Fit    | SE Fit | Residual | St Resid |
|-----|----------|----------|--------|--------|----------|----------|
| 8   | 9        | 100.000  | 81.449 | 10.836 | 18.551   | 2.05 R   |

R denotes an observation with a large standardized residual.

Estimated Regression Coefficients for response using data in uncoded units

| Term     | Coef     |
|----------|----------|
| Constant | 98.8959  |
| x1       | 1.27146  |
| x2       | 1.36130  |
| x3       | -6.12500 |
| x1*x1    | -5.41231 |
| x2*x2    | -14.0744 |
| x1*x2    | 2.87500  |
| x1*x3    | -2.62500 |
| x2*x3    | -4.62500 |
|          |          |



The response model for the process robustness study is :

$$y(x,z)=f(x)+h(x,z)+\varepsilon$$

$$=\beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{11}x_{1}^{2} + \beta_{22}x_{2}^{2} + \beta_{12}x_{1}x_{2} + \gamma_{1}z + \delta_{11}x_{1}z + \delta_{21}x_{2}z + \varepsilon$$

 $\hat{y}(x,z) = 98.8959 + 1.27146x_1 + 1.36130x_2 - 5.41231x_1^2 - 14.0744x_2^2 + 2.875x_1x_2$ 

Therefore the mean model is

$$E_{z}[y(x,z)] = f(x) =$$
98.8959+1.27146x<sub>1</sub>+1.36130x<sub>2</sub>-5.41231x<sub>1</sub><sup>2</sup>-14.0744x<sub>2</sub><sup>2</sup>+2.875x<sub>1</sub>x<sub>2</sub>

The variance model is

$$Vz[y(x,z)] = \sigma_z^2 \left(\frac{\partial h(x,z)}{\partial z}\right)^2 + \sigma^2$$
  
=  $\sigma_z^2 (-6.125 - 2.625x_1 - 4.625x_2)^2 + \sigma^2$ 

Now we assume that the low and high levels of the noise variable z have been run at one standard deviation either side of its typical or average value, so that  $\sigma_z^2=1$  and since the residual mean square from fitting the response model is MS<sub>E</sub>=199.40will use  $\hat{\sigma}^2=MS_E=199.40$ 

Therefore the variance model

 $Vz[y(x,z)] = (-6.125 - 2.625x_1 - 4.625x_2)^2 + 199.40$ 

Following figures show response surface contour plots and three-dimensional surface plots of the mean model and the standard deviation respectively.





The objective of the robustness study is to find a set of operating conditions that would result in a mean response greater than 90 from the mean model with the minimum contour of standard deviation. The unshaded region of the following plot indicates operating conditions on  $x_1$  and  $x_2$ , where the requirements for the mean response larger than 90 are satisfied and the response standard deviation do not exceed 14.5.



Actually, if we use Excel Solver, we can get a optimal solution for minimizing the standard deviation with the constraint that the mean value is greater than 90.

The optimal solution is : mean=90

This solution conforms to the analysis we did above.