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Assembly-Disassembly Systems
Assembly-Disassembly System with a Loop
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Assembly-Disassembly Systems
A-D System without Loops
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Assembly-Disassembly Systems
Disruption Propagation in an A-D System without Loops

| HOA FOA HeoA HeoA FoAL

- HeH

2.852 Manufacturing Systems Analysis 5/41 Copyright (©2010 Stanley B. Gershwin.



Assembly-Disassembly Systems
Models and Analysis

An assembly/disassembly system is a generalization of a transfer line:
» Each machine may have 0, 1, or more than one buffer upstream.
» Each machine may have 0, 1, or more than one buffer downstream.

» Each buffer has exactly one machine upstream and one machine
downstream.

» Discrete material systems: when a machine does an operation, it
removes one part from each upstream buffer and inserts one part into
each downstream buffer.

» Continuous material systems: when machine M; operates during
[t,t+ dt], it removes p;ot from each upstream buffer and inserts
10t into each downstream buffer.

» A machine is starved if any of its upstream buffers is empty. It is
blocked if any of its downstream buffers is full.
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Assembly-Disassembly Systems
Models and Analysis

» A/D systems can be modeled similarly to lines:

» discrete material, discrete time, deterministic processing time,
geometric repair and failure times;

» discrete material, continuous time, exponential processing, repair, and
failure times;

» continuous continuous time, deterministic processing rate, exponential
repair and failure times;

» other models not yet discussed in class.

» A/D systems without loops can be analyzed similarly to lines by
decomposition.

» A/D systems with loops can be analyzed by decomposition, but there
are additional complexities.
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Assembly-Disassembly Systems
Models and Analysis

» Systems with loops are not ergodic. That is, the steady-state
distribution is a function of the initial conditions.

» Example: if the system below has K pallets at time 0, it will have K
pallets for all t > 0. Therefore, the probability distribution is a
function of K.

Raw Part Input

Finished Part Output

» This applies to more general systems with loops, such the example on
Slide 3.
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Assembly-Disassembly Systems
Models and Analysis

» In general,
p(s|s(0)) = tlim prob { state of the system at time t = s|
— 00

state of the system at time 0 = s(0)}.

» Consequently, the performance measures depend on the initial state
of the system:
» The production rate of Machine M;, in parts per time unit, is

Ei(s(0)) = prob [a; =1land (n, >0V be U(i)) and

(ny < Np ¥ b € D(i)) 5(0)} .

» The average level of Buffer b is

nip(s(0)) = Z np prob (s|s(0)).
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Assembly-Disassembly Systems
Decomposition

Part of Original Network
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Assembly-Disassembly Systems

Decomposition
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Numerical examples
Eight-Machine Systems

Deterministic
processing
time model
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Numerical examples
Eight-Machine Systems
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Numerical examples
Eight-Machine Systems
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Numerical examples
Eight-Machine Systems
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Numerical examples
Eight-Machine Systems
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Numerical Examples
Alternate Assembly Line Designs

A product is made of three
subassemblies (blue, yellow,
and red). Each subassembly
can be assembled
independently of the others.
We consider four possible
production system
structures.

Machine 6 (the first machine
of the yellow process) is the
bottleneck — the slowest
operation of all.
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Numerical Examples
Alternate Assembly Line Designs
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Numerical Examples
Alternate Assembly Line Designs

Now the bottleneck is
Machine 5, the last
operation of the blue
process.
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Numerical Examples
Alternate Assembly Line Designs

2.852 Manufacturing Systems Analysis 20/41 Copyright (©2010 Stanley B. Gershwin.



Equivalence
Simple models

Consider a three-machine transfer line and a three-machine assembly

system. Both are perfectly reliable (p; = 0) exponentially processing time
systems.
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Equivalence
Assembly System State Space
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Equivalence
Transfer Line State Space
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Equivalence
Unlabeled State Space

» The transition graphs of the two systems
are the same except for the labels of the
states.

» Therefore, the steady-state probability
distributions of the two systems are the
same, except for the labels of the states.

» The relationship between the labels of the HJ

states is:
A A T T
(n1,n3) <= (ny , N2 —ny)
» Therefore, in steady state,

prob(nf', n3") = prob(n{ , Ny — nJ)
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Equivalence
Assembly System Production Rate

Production rate = rate of flow of material into My
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Equivalence
Transfer Line Production Rate

Production rate = rate of flow of material into My

—Mlz Z p(n1, n2)
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Equivalence
Equal Production Rates

Therefore

pA=pT
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Equivalence
Assembly System ny

e 1
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Equivalence
Transfer Line ny
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Equivalence
Equal n;
Therefore
At =n/
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Equivalence
Assembly System n»
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Equivalence
Transfer Line np
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Equivalence
Complementary n;

Therefore
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Equivalence
Theorem

» Notation: Let j be a buffer. Then the machine upstream of the
buffer is u(j) and the machine downstream of the buffer is d(j).

» Theorem:
> Assume
> Z and Z’ are two exponential A/D networks with the same number of
machines and buffers. Corresponding machines and buffers have the
same parameters; that is, u; = ui,i = 1, ..., ky and
N, = Np,b=1, ..., k.
> There is a subset of buffers Q such that for j & Q, v'(j) = u(j) and
d'(j) = d(j); and for j € Q,u'(j) = d(j) and d'(j) = u(j). That is,
there is a set of buffers such that the direction of flow is reversed in the
two networks.
» Then, the transition equations for network Z’ are the same as those of
Z, except that the buffer levels in Q are replaced by the amounts of
space in those buffers.
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Equivalence
Theorem

» That is, the transition (or balance) equations of Z’ can be written by
transforming those of Z.

> In the Z equations, replace n; by N; — n; for all j € €.
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Equivalence
Theorem

Corollary:
» Assume:

» The initial states s(0) and s(0) are related as follows: n(0) = n;(0)
for j ¢ Q, and n}(0) = N; — n;(0) for j € Q.

» Then
P'(n'(0)) = P(n(0))
Ap(n'(0)) = Ap(n(0)), for j & Q

(1 (0)) = Ny — Fn(n(0)), for j € Q
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Equivalence
Theorem

Corollary: That is,
» the production rates of the two systems are the same,

> the average levels of all the buffers in the systems whose direction of
flow has not been changed are the same,

> the average levels of all the buffers in the systems whose direction of
flow has been changed are complementary; the average number of
parts in one is equal to the average amount of space in the other.
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Equivalence

Equivalence class of three-machine systems
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Equivalence

Equivalence classes of four-machine systems

Representative members
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Equivalence

Example of equivalent loops

(a) A Fork/ Join Network (b) A Closed Network
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Equivalence
To come

» Loops and invariants
» Two-machine loops

» Instability of A/D systems with infinite buffers
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