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Assembly-Disassembly Systems 
Assembly System 
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Assembly-Disassembly Systems 
Assembly-Disassembly System with a Loop 
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Assembly-Disassembly Systems 
A-D System without Loops 
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Assembly-Disassembly Systems 
Disruption Propagation in an A-D System without Loops 
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Assembly-Disassembly Systems 
Models and Analysis 

An assembly/disassembly system is a generalization of a transfer line: 

◮ Each machine may have 0, 1, or more than one buffer upstream. 

◮ Each machine may have 0, 1, or more than one buffer downstream. 

◮ Each buffer has exactly one machine upstream and one machine 
downstream. 

◮ Discrete material systems: when a machine does an operation, it 
removes one part from each upstream buffer and inserts one part into 
each downstream buffer. 

◮ Continuous material systems: when machine Mi operates during 
[t, t + δt], it removes µi δt from each upstream buffer and inserts 
µi δt into each downstream buffer. 

◮ A machine is starved if any of its upstream buffers is empty. It is 
blocked if any of its downstream buffers is full. 
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Assembly-Disassembly Systems 
Models and Analysis 

◮ A/D systems can be modeled similarly to lines: 
◮ discrete material, discrete time, deterministic processing time, 

geometric repair and failure times; 
◮ discrete material, continuous time, exponential processing, repair, and 

failure times; 
◮ continuous continuous time, deterministic processing rate, exponential 

repair and failure times; 
◮ other models not yet discussed in class. 

◮ A/D systems without loops can be analyzed similarly to lines by 
decomposition. 

◮ A/D systems with loops can be analyzed by decomposition, but there 
are additional complexities. 
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Assembly-Disassembly Systems 
Models and Analysis 

◮ Systems with loops are not ergodic. That is, the steady-state 
distribution is a function of the initial conditions. 

◮ Example: if the system below has K pallets at time 0, it will have K 
pallets for all t ≥ 0. Therefore, the probability distribution is a 
function of K . 

Empty Pallet Buffer 

Raw Part Input 

Finished Part Output 

◮ This applies to more general systems with loops, such the example on 
Slide 3. 
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Assembly-Disassembly Systems 
Models and Analysis 

◮ In general, 

p(s|s(0)) = lim 
t→∞ 

prob { state of the system at time t = s| 

state of the system at time 0 = s(0)}. 

◮ Consequently, the performance measures depend on the initial state 
of the system: 

◮ The production rate of Machine Mi , in parts per time unit, is 

Ei (s(0)) = prob 

� 

αi = 1 and (nb > 0 ∀ b ∈ U(i)) and 

(nb < Nb ∀ b ∈ D(i)) 

� 

� 

� 

� 

s(0) 

� 

. 

◮ The average level of Buffer b is 

n̄b(s(0)) = 
� 

s 

nb prob (s|s(0)). 
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Assembly-Disassembly Systems 
Decomposition 
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Assembly-Disassembly Systems 
Decomposition 
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Numerical examples 
Eight-Machine Systems 

Deterministic 
processing 
time model 
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Numerical examples 
Eight-Machine Systems 
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2.6449 

7.3351 

7.3351 

Case 1: 

ri = .1, pi = 
.1, i = 1, ..., 8; 

Ni = 10, i = 
1, ..., 7. 
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Numerical examples 
Eight-Machine Systems 
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Case 2: 

Same as Case 
1 except 
p7 = .2 
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Numerical examples 
Eight-Machine Systems 
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Case 3: 

Same as Case 
1 except 
p1 = .2 
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Numerical examples 
Eight-Machine Systems 
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Case 4: 

Same as Case 
1 except 
p3 = .2 
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Numerical Examples

Alternate Assembly Line Designs


A product is made of three

subassemblies (blue, yellow,

and red). Each subassembly

can be assembled

independently of the others.

We consider four possible

production system

structures.


Machine 6 (the first machine

of the yellow process) is the

bottleneck — the slowest

operation of all.
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Numerical Examples 
Alternate Assembly Line Designs 
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Numerical Examples 
Alternate Assembly Line Designs 

Now the bottleneck is 
Machine 5, the last 
operation of the blue 
process. 
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Numerical Examples 
Alternate Assembly Line Designs 
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Equivalence 
Simple models 

Consider a three-machine transfer line and a three-machine assembly 
system. Both are perfectly reliable (pi = 0) exponentially processing time 
systems. 
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Equivalence 
Assembly System State Space 
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Equivalence 
Transfer Line State Space 
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Equivalence 
Unlabeled State Space 

◮	 The transition graphs of the two systems

are the same except for the labels of the

states.


◮	 Therefore, the steady-state probability 3 

distributions of the two systems are the 
same, except for the labels of the states. 

◮	 The relationship between the labels of the 3 

states is: 

(n1 
A , n2 

A) ⇐⇒ (n1 
T ,N2 − n2 

T ) 
3 

◮	 Therefore, in steady state, 
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T ,N2 − n2 
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Equivalence 
Assembly System Production Rate 

Production rate = rate of flow of material into M1 

1 3 

= µ1 p(n1, n2) 
n1=0 n2=0 
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Equivalence 
Assembly System Production RateTransfer Line Production Rate 

Production rate = rate of flow of material into M1 
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Equivalence 
Assembly Systtem Production RatEqual Produc ion Rates 

Therefore 

PA PT = 

c2.852 Manufacturing Systems Analysis 27/41 Copyright �2010 Stanley B. Gershwin. 



 

 

� � � � 

� � 

Equivalence 
Assembly System n̄1 

2 3 2 3 

n̄1 = n1p(n1, n2) = n1 p(n1, n2) 
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Equivalence 
Assembly System n̄1Transfer Line n̄1 
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Equivalence 
Assembly System Production RateEqual n̄1 

Therefore 

n̄1 
A = n̄1 

T 
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Equivalence 
Assembly System n̄2 
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Equivalence 
Assembly System n̄2Transfer Line n̄2 
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Equivalence 
Assembly System Production RateComplementary n̄1 

Therefore 

n̄2 
A = N2 − n̄2 

T 
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Equivalence 
Theorem 

◮	 Notation: Let j be a buffer. Then the machine upstream of the 
buffer is u(j) and the machine downstream of the buffer is d(j). 

◮ Theorem:

◮ Assume


′ 
◮	 Z and Z are two exponential A/D networks with the same number of 

machines and buffers. Corresponding machines and buffers have the 
′ same parameters; that is, µi = µi , i = 1, ..., kM and 

′ Nb = Nb , b = 1, ..., kB . 
′ 

◮	 There is a subset of buffers Ω such that for j 6∈ Ω, u (j) = u(j) and 
′	 ′ ′ d (j) = d(j); and for j ∈ Ω, u (j) = d(j) and d (j) = u(j). That is, 

there is a set of buffers such that the direction of flow is reversed in the 
two networks. 

′

◮	 Then, the transition equations for network Z are the same as those of 

Z , except that the buffer levels in Ω are replaced by the amounts of 
space in those buffers. 
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Equivalence 
Theorem 

′ 
◮	 That is, the transition (or balance) equations of Z can be written by 

transforming those of Z . 

◮	 In the Z equations, replace nj by Nj − nj for all j ∈ Ω. 
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Equivalence 
Theorem 

Corollary: 
◮ Assume: 

◮ The initial states s(0) and s ′(0) are related as follows: nj 
′(0) = nj (0) 

′
for j 6∈ Ω, and nj (0) = Nj − nj (0) for j ∈ Ω. 

◮ Then 

P ′ (n ′ (0)) = P(n(0)) 

n̄b
′ (n ′ (0)) = n̄b(n(0)), for j 6∈ Ω 

n̄b
′ (n ′ (0)) = Nb − n̄b(n(0)), for j ∈ Ω 
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Equivalence 
Theorem 

Corollary: That is, 

◮	 the production rates of the two systems are the same, 

◮	 the average levels of all the buffers in the systems whose direction of 
flow has not been changed are the same, 

◮	 the average levels of all the buffers in the systems whose direction of 
flow has been changed are complementary; the average number of 
parts in one is equal to the average amount of space in the other. 
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Equivalence 
Equivalence class of three-machine systems 
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Equivalence 
Equivalence classes of four-machine systems 

Representative members 
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Equivalence 
Example of equivalent loops 
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(a) A Fork/ Join Network (b) A Closed Network 
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Equivalence 
To come 

◮ Loops and invariants 

◮ Two-machine loops 

◮ Instability of A/D systems with infinite buffers 
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