
MIT 2.852

Manufacturing Systems Analysis

Lectures 19–21
Scheduling: Real-Time Control of Manufacturing Systems

Stanley B. Gershwin

Spring, 2007

Copyright c�2007 Stanley B. Gershwin.

Definitions

• Events may be controllable or not, and predictable
or not.

controllable uncontrollable
predictable loading a part lunch
unpredictable ??? machine failure

Copyright �2007 Stanley B. Gershwin. c 2

Definitions

• Scheduling is the selection of times for future
controllable events.

• Ideally, scheduling systems should deal with all

controllable events, and not just production.

� That is, they should select times for operations,

set-up changes, preventive maintenance, etc.

� They should at least be aware of set-up changes,
preventive maintenance, etc.when they select
times for operations.

Copyright �2007 Stanley B. Gershwin. c 3

Definitions

• Because of recurring random events, scheduling is
an on-going process, and not a one-time calculation.

• Scheduling, or shop floor control, is the bottom of the
scheduling/planning hierarchy. It translates plans
into events.

Copyright c 4�2007 Stanley B. Gershwin.

Issues in

Factory Control

• Problems are dynamic ; current decisions influence
future behavior and requirements.

• There are large numbers of parameters, time-varying
quantities, and possible decisions.

• Some time-varying quantities are stochastic .
• Some relevant information (MTTR, MTTF, amount of
inventory available, etc.) is not known.

• Some possible control policies are unstable .

Copyright c 5�2007 Stanley B. Gershwin.

Dynamic Example

Programming Problem

Discrete Time, Discrete State, Deterministic F

68

A

1

B
L

5

6

2
2

G
5

10

6

4M

9

2
D 7 72 4 N

5
9

4
E

5
I 8

6

13

6 2
C

H

J

1

4
Z

K 3 O

Problem: find the least expensive path from A to Z.
Copyright c 6�2007 Stanley B. Gershwin.

�

Dynamic Example

Programming Problem

Let g(i, j) be the cost of traversing the link from i to j. Let i(t)
be the tth node on a path from A to Z. Then the path cost is

T

g(i(t − 1), i(t))
t=1

where T is the number of nodes on the path, i(0) = A, and
i(T) = Z.

T is not specified; it is part of the solution.

Copyright c 7�2007 Stanley B. Gershwin.

Dynamic Example
Programming Solution

• A possible approach would be to enumerate all possible paths
(possible solutions). However, there can be a lot of possible
solutions.

• Dynamic programming reduces the number of possible
solutions that must be considered.
δ Good news: it often greatly reduces the number of possible solutions.

δ Bad news: it often does not reduce it enough to give an exact optimal
solution practically (ie, with limited time and memory). This is the curse of
dimensionality .

δ Good news: we can learn something by characterizing the optimal

solution, and that sometimes helps in getting an analytical optimal

solution or an approximation.

δ Good news: it tells us something about stochastic problems.

Copyright �2007 Stanley B. Gershwin. c 8

�

Dynamic Example

Programming Solution

Instead of solving the problem only for A as the initial point, we
solve it for all possible initial points.

For every node i, define J(i) to be the optimal cost to go from
Node i to Node Z (the cost of the optimal path from i to Z).
We can write

T

J(i) = g(i(t − 1), i(t))

t=1

where i(0) = i; i(T) =Z; (i(t − 1), i(t)) is a link for every t.

Copyright c 9�2007 Stanley B. Gershwin.

Dynamic Example

Programming Solution

Then J(i) satisfies

J(Z) = 0

and, if the optimal path from i to Z traverses link (i, j),

J(i) = g(i, j) + J(j).

i j

Z

Copyright �2007 Stanley B. Gershwin. c 10

Dynamic Example
Programming Solution
Suppose that several links go out of Node i.

4j
3j

2j

5j

1j

6j

i
Z

Suppose that for each node j for which a link exists from i to j,
the optimal path and optimal cost J(j) from j to Z is known.
Copyright �2007 Stanley B. Gershwin.c 11

Dynamic Example

Programming Solution

Then the optimal path from i to Z is the one that minimizes the
sum of the costs from i to j and from j to Z. That is,

J(i) = min [g(i, j) + J(j)]

j

where the minimization is performed over all j such that a link

from i to j exists. This is the Bellman equation .

This is a recursion or recursive equation because J() appears

on both sides, although with different arguments.

J(i) can be calculated from this if J(j) is known for every node j

such that (i, j) is a link.

Copyright c 12�2007 Stanley B. Gershwin.

Dynamic Example

Programming Solution

Bellman’s Principle of Optimality: if i and j are nodes
on an optimal path from A to Z, then the portion of that
path from A to Z between i and j is an optimal path
from i to j.

A

Z

j

i

Copyright �2007 Stanley B. Gershwin. c 13

� �

� �

Dynamic Example

Programming Solution

Example: Assume that we have determined that J(O) = 6 and
J(J) = 11.
To calculate J(K),

g(K, O) + J(O)
J(K) = min

g(K, J) + J(J)

3 + 6
= min = 9.

9 + 11

Copyright �2007 Stanley B. Gershwin.c 14

Dynamic Example

Programming Solution

Algorithm

1. Set J(Z) = 0.
2. Find some node i such that

• J(i) has not yet been found, and
• for each node j in which link (i, j) exists, J(j) is already
calculated.
Assign J(i) according to

J(i) = min [g(i, j) + J(j)]

j

3. Repeat Step 2 until all nodes, including A, have costs
calculated.

Copyright c 15�2007 Stanley B. Gershwin.

K

Dynamic Example

Programming Solution

F

A

B 11 L

5

6
H

C

14

D

E

I

O

J

9

G

M

N
4

8

14

13

11

17

12

13

6

11

Z

Copyright �2007 Stanley B. Gershwin. c 16

Dynamic Example

Programming Solution

The important features of a dynamic programming problem are
•	the state (i) ;
•	the decision (to go to j after i);

�	 ⎝
•	the objective function

�T
t=1 g(i(t − 1), i(t))

•	the cost-to-go function (J(i)) ;
• the one-step recursion equation that determines J(i)

(J(i) = minj [g(i, j) + J(j)]);

•	 that the solution is determined for every i, not just A and not just nodes on
the optimal path;

•	 that J(i) depends on the nodes to be visited after i, not those between A
and i. The only thing that matters is the present state and the future;

•	that J(i) is obtained by working backwards.

Copyright �2007 Stanley B. Gershwin.c	 17

Dynamic Example

Programming Solution

This problem was
• discrete time, discrete state, deterministic.
Other versions:
• discrete time, discrete state, stochastic
• continuous time, discrete state, deterministic
• continuous time, discrete state, stochastic
• continuous time, mixed state, deterministic
• continuous time, mixed state, stochastic

in stochastic systems, we optimize the expected cost.
Copyright c 18�2007 Stanley B. Gershwin.

� �
�

Programming
Discrete time, discrete state

Stochastic
Dynamic

Suppose
• g(i, j) is a random variable; or
• if you are at i and you choose j, you actually go to k with
probability p(i, j, k).

Then the cost of a sequence of choices is random. The objective
function is

T

E g(i(t − 1), i(t))

t=1

and we can define
J(i) = E min [g(i, j) + J(j)]

j

Copyright �2007 Stanley B. Gershwin. c 19

Programming
Continuous Time, Mixed State

Stochastic Example
Dynamic

Context: The planning/scheduling hierarchy
• Long term: factory design, capital expansion, etc.
• Medium term: demand planning, staffing, etc.
• Short term:

δ response to short term events
δ part release and dispatch
In this problem, we deal with the response to short term events.
The factory and the demand are given to us; we must calculate
short term production rates; these rates are the targets that
release and dispatch must achieve.

Copyright c 20�2007 Stanley B. Gershwin.

Dynamic
Programming

Continuous Time, Mixed State

Stochastic Example

x1

x2

d1

d2

u (t)1

u (t)2 Type 2

Type 1

r, p
• Perfectly flexible machine, two part types. λi time units required
to make Type i parts, i = 1, 2.

• Exponential failures and repairs with rates p and r.
• Constant demand rates d1, d2.
• Instantaneous production rates ui(t), i = 1, 2 — control
variables .

• Downstream surpluses xi(t).

Copyright c 21�2007 Stanley B. Gershwin.

Programming
Continuous Time, Mixed State

Stochastic Example
Dynamic

Objective: Minimize
the difference
between cumulative
production and
cumulative demand.

The surplus satisfies
xi(t) = Pi(t) − Di(t)

t

Cumulative
Production
and Demand production P (t)

surplus x (t)

i

i

idemand D (t) = d ti

Copyright c�2007 Stanley B. Gershwin. 22

Programming
Continuous Time, Mixed State

Stochastic Example
Dynamic

Feasibility:
• For the problem to be feasible, it must be possible to make
approximately diT Type i parts in a long time period of length
T, i = 1, 2. (Why “approximately”?)

• The time required to make diT parts is λidiT .
• During this period, the total up time of the machine — ie, the
time available for production — is approximately r/(r + p)T .

• Therefore, we must have λ1d1T + λ2d2T � r/(r + p)T , or
2
� r

λidi �
r + p

i=1

Copyright �2007 Stanley B. Gershwin. c 23

Programming
Continuous Time, Mixed State

Stochastic Example
Dynamic

If this condition is not satisfied, the demand cannot be met. What
will happen to the surplus?
The feasibility condition is also written

2
� di r

�
i=1

µi r + p

where µi = 1/λi.
If there were only one part type, this would be

r

d � µ

r + p

Look familiar?

Copyright �2007 Stanley B. Gershwin. c 24

Programming
Continuous Time, Mixed State

Stochastic Example
Dynamic

The surplus satisfies
xi(t) = Pi(t) − Di(t)

where
� t

Pi(t) = ui(s)ds; Di(t) = dit
0

Therefore
dxi(t)

= ui(t) − di
dt

Copyright �2007 Stanley B. Gershwin. c 25

Programming
Continuous Time, Mixed State

Stochastic Example
Dynamic

To define the objective more precisely, let there be a
function g(x1, x2) such that

• g is convex
• g(0, 0) = 0

• lim g(x1, x2) = �; lim g(x1, x2) = �.
x1�→ x1�−→

• lim g(x1, x2) = �; lim g(x1, x2) = �.
x2�→ x2�−→

Copyright �2007 Stanley B. Gershwin. c 26

Programming
Continuous Time, Mixed State

Stochastic Example
Dynamic

Examples:

• g(x1, x2) = A1x1
2 + A2x2

2

• g(x1, x2) = A1|x1| + A2|x2|
• g(x1, x2) = g1(x1) + g2(x2) where

+ −δ gi(xi) = g(i+)xi + g(i−)xi ,
−δ xi

+ = max(xi, 0), xi = − min(xi, 0),

δ g(i+) > 0, g(i−) > 0.

Copyright c 27�2007 Stanley B. Gershwin.

Dynamic

Programming

Objective:

Continuous Time, Mixed State

Stochastic Example

� T

min E g(x1(t), x2(t))dt
0

x1

g(x ,x)1 2

x2

Copyright �2007 Stanley B. Gershwin.c 28

Programming
Continuous Time, Mixed State

Stochastic Example
Dynamic

Constraints:
u1(t) ≈ 0; u2(t) ≈ 0

Short-term capacity:

• If the machine is down at time t,
u1(t) = u2(t) = 0

Copyright �2007 Stanley B. Gershwin. c 29

u1

�

�

Programming
Continuous Time, Mixed State

Stochastic Example
Assume the machine is up for a short period [t, t + �t]. Let �t

Dynamic

•
be small enough so that ui is constant; that is

ui(s) = ui(t), s ≤ [t, t + �t]

The machine makes ui(t)�t parts of type i. The time required
to make that number of Type i parts is λiui(t)�t.
Therefore

λiui(t)�t � �t 1/

i
or

λiui(t) � 1 1/ 1�

 2�

u2

0
i

Copyright �2007 Stanley B. Gershwin. c 30

�

Programming
Continuous Time, Mixed State

Stochastic Example
Dynamic

Machine state dynamics: Define �(t) to be the repair state of the
machine at time t. �(t) = 1 means the machine is up; �(t) = 0
means the machine is down.

prob(�(t + �t) = 0|�(t) = 1) = p�t + o(�t)

prob(�(t + �t) = 1|�(t) = 0) = r�t + o(�t)

The constraints may be written
λiui(t) � �(t); ui(t) ≈ 0

i

Copyright �2007 Stanley B. Gershwin. c 31

�

Programming
Continuous Time, Mixed State

Stochastic Example
Dynamic

Dynamic programming problem formulation:
� T

min E g(x1(t), x2(t))dt

subject to:
0

dxi(t)
= ui(t) − di

dt

prob(�(t + �t) = 0|�(t) = 1) = p�t + o(�t)

prob(�(t + �t) = 1|�(t) = 0) = r�t + o(�t)

λiui(t) � �(t); ui(t) � 0
i

x(0), �(0) specified

Copyright �2007 Stanley B. Gershwin. c 32

Dynamic Elements of a DP Problem

Programming
• state: x all the information that is available to determine the
future evolution of the system.

• control: u the actions taken by the decision-maker.
• objective function: J the quantity that must be minimized;
• dynamics: the evolution of the state as a function of the control
variables and random events.

• constraints: the limitations on the set of allowable controls
• initial conditions: the values of the state variables at the start
of the time interval over which the problem is described. There
are also sometimes terminal conditions such as in the network
example.

Copyright c 33�2007 Stanley B. Gershwin.

Dynamic Elements of a DP Solution

Programming

• control policy: u(x(t), t). A stationary or
time-invariant policy is of the form u(x(t)).

• value function: (also called the cost-to-go function)
the value J(x, t) of the objective function when the
optimal control policy is applied starting at time t,
when the initial state is x(t) = x.

Copyright c 34�2007 Stanley B. Gershwin.

Bellman’s Continuous x, t

Equation Deterministic

� T

Problem: min g(x(t), u(t))dt + F (x(T))

u(t),0�t�T 0

such that
dx(t)

= f(x(t), u(t), t)
dt

x(0) specified

h(x(t), u(t)) � 0

x ≤ Rn, u ≤ Rm, f ≤ Rn, h ≤ Rk, and g and F are scalars.
Data: T, x(0), and the functions f, g, h, and F .
Copyright c 35�2007 Stanley B. Gershwin.

Bellman’s Continuous x, t

Equation Deterministic

The cost-to-go function is
� T

J(x, t) = min g(x(s), u(s))ds + F (x(T))
t
� T

J(x(0), 0) = min g(x(s), u(s))ds + F (x(T))
0

⎭ ⎡
� t1

� T

= min g(x(t), u(t))dt + g(x(t), u(t))dt + F (x(T)) .
u(t), 0 t1

0�t�T

Copyright �2007 Stanley B. Gershwin. c 36

� �

Bellman’s Continuous x, t

Equation Deterministic

⎞ ⎩

⎨ ⎨

⎨ ⎨
⎨ � �⎨
⎨
⎠ t1 T

= min g(x(t), u(t))dt + min g(x(t), u(t))dt + F (x(T))

⎨

u(t), ⎨ 0 u(t), t1
⎨
⎨
⎧

0�t�t1 t1�t�T

�� t1
�

= min g(x(t), u(t))dt + J(x(t1), t1) .
u(t), 0

0�t�t1

⎨

⎦

⎨

⎨

⎨

⎨

⎫

Copyright �2007 Stanley B. Gershwin.c 37

Bellman’s Continuous x, t

Equation Deterministic

where
� T

J(x(t1), t1) = min g(x(t), u(t))dt + F (x(T))
u(t),t1�t�T t1

such that
dx(t)

= f(x(t), u(t), t)
dt

x(t1) specified

h(x(t), u(t)) � 0

Copyright �2007 Stanley B. Gershwin.c 38

� �

Bellman’s Continuous x, t

Equation Deterministic

Break up [t1, T] into [t1, t1 + �t] ↔ [t1 + �t, T] :
⎫
� t1+�t

J(x(t1), t1) = min g(x(t), u(t))dt
u(t1) t1

+J(x(t1 + �t), t1 + �t)}
where �t is small enough so that we can approximate x(t) and
u(t) with constant x(t1) and u(t1), during the interval. Then,
approximately,

J(x(t1), t1) = min g(x(t1), u(t1))�t + J(x(t1 + �t), t1 + �t)
u(t1)

Copyright �2007 Stanley B. Gershwin.c 39

�

�

Bellman’s Continuous x, t

Equation Deterministic

Or,

J(x(t1), t1) = min g(x(t1), u(t1))�t + J(x(t1), t1)+
u(t1)

αJ αJ
(x(t1), t1)(x(t1 + �t) − x(t1)) + (x(t1), t1)�t

αx αt

Note that
dx

x(t1 + �t) = x(t1) + �t = x(t1) + f(x(t1), u(t1), t1)�t
dt

Copyright �2007 Stanley B. Gershwin. c 40

� �

� �

Bellman’s Continuous x, t

Equation Deterministic

Therefore
J(x, t1) = J(x, t1)

αJ αJ
+ min g(x, u)�t + (x, t1)f(x, u, t1)�t + (x, t1)�t

u αx αt
where x = x(t1); u = u(t1) = u(x(t1), t1).
Then (dropping the t subscript)

αJ αJ
− (x, t) = min g(x, u) + (x, t)f(x, u, t)

αt u αx

Copyright �2007 Stanley B. Gershwin. c 41

� �

Bellman’s Continuous x, t

Equation Deterministic

This is the Bellman equation . It is the counterpart of the recursion equation for
the network example.

• If we had a guess of J(x, t) (for all x and t) we could confirm it by

performing the minimization.

• If we knew J(x, t) for all x and t, we could determine u by performing the

minimization. U could then be written

αJ
u = U x, , t .

αx

This would be a feedback law .

The Bellman equation is usually impossible to solve analytically or numerically.
There are some important special cases that can be solved analytically.

Copyright �2007 Stanley B. Gershwin. c 42

� �

Bellman’s Continuous x, t

Equation Example

Bang-Bang Control

min |x|dt
0

subject to

dx
= u

dt

x(0) specified

−1 � u � 1

Copyright �2007 Stanley B. Gershwin. c 43

� �

� �

Bellman’s Continuous x, t

Equation Example

The Bellman equation is
αJ αJ

− (x, t) = min |x| + (x, t)u .

αt αxu,

−1�u�1

J(x, t) = J(x) is a solution because the time horizon is infinite and t does not
appear explicitly in the problem data (ie, g(x) = |x| is not a function of t.
Therefore

dJ
0 = min |x| + (x)u .

dxu,

−1�u�1

J(0) = 0 because if x(0) = 0 we can choose u(t) = 0 for all t. Then
x(t) = 0 for all t and the integral is 0. There is no possible choice of u(t) that
will make the integral less than 0, so this is the minimum.

Copyright �2007 Stanley B. Gershwin. c 44

�

�

�

Bellman’s Continuous x, t

Equation Example

The minimum is achieved when

⎧

⎧
⎧
⎧
⎧
⎧
⎧
⎧
⎧
⎧
⎧

u =
⎧
⎧
⎧
⎧
⎧
⎧
⎧
⎧
⎧
⎧
⎧

Why?

−1 if
dJ

(x) > 0
dx

1 if
dJ

(x) < 0
dx

undetermined if
dJ

(x) = 0
dx

Copyright �2007 Stanley B. Gershwin. c 45

Bellman’s Continuous x, t

Equation Example

Consider the set of x where dJ/dx(x) < 0. For x in that set,
u = 1, so

dJ
0 = |x| + (x)

dxor
dJ

(x) = −|x|
dx

Similarly, if x is such that dJ/dx(x) > 0 and u = −1,

dJ

(x) = |x|
dx

Copyright �2007 Stanley B. Gershwin. c 46

Bellman’s Continuous x, t

Equation Example

To complete the solution, we must determine where dJ/dx > 0,
< 0, and = 0.
We already know that J(0) = 0. We must have J(x) > 0 for all

x ≥ 0 because |x| > 0 so the integral of |x(t)| must be positive.
=

Since J(x) > J(0) for all x ≥ 0, we must have =

dJ
(x) < 0 for x < 0

dx

dJ

(x) > 0 for x > 0

dx

Copyright �2007 Stanley B. Gershwin. c 47

Bellman’s Continuous x, t

Equation Example

Therefore
dJ

(x) >= x
dx

so
1

J = x 2

2
and	

�
⎧
� 1 if x < 0

u = 0 if x = 0
⎧

� −1 if x > 0

Copyright �2007 Stanley B. Gershwin. c	 48

Continuous x, t,Discrete �

Stochastic
⎫
� T

⎭

Bellman’s

Equation

J(x(0), �(0), 0) = min E g(x(t), u(t))dt + F (x(T))

u 0

such that
dx(t)

= f(x, �, u, t)
dt

prob [�(t + �t) = = = �ij�t for all i, j, i ≥i | �(t) j] = j

x(0), �(0) specified

h(x(t), �(t), u(t)) � 0

Copyright �2007 Stanley B. Gershwin.c 49

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

Getting the Bellman equation in this case is more complicated
because � changes by large amounts when it changes.
Let H(�) be some function of �. We need to calculate

ẼH(�(t + �t)) = E {H(�(t + �t)) | �(t)}

=
�

H(j)prob {�(t + �t) = j | �(t)}

j

Copyright �2007 Stanley B. Gershwin. c 50

� �

�
� �

�

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

⎪ �

= H(j)�j�(t)�t + H(�(t)) ⎬1 − �j�(t)�t � + o(�t)
j � j=�(t)=�(t) �

= H(j)�j�(t)�t + H(�(t)) 1 + ��(t)�(t)�t + o(�t)
j �=�(t)

⎛ ⎣

E {H(�(t + �t)) | �(t)} = H(�(t)) + � H(j)�j�(t)
⎤ �t + o(�t)

j

We use this in the derivation of the Bellman equation.

Copyright �2007 Stanley B. Gershwin.c 51

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

⎫ ⎭
� T

J(x(t), �(t), t) = min E g(x(s), u(s))ds + F (x(T))
u(s), t

t�s<T

Copyright �2007 Stanley B. Gershwin. c 52

�

�

Bellman’s

Equation

⎧

⎧
⎧
� t+�t

= min E g(x(s), u(s))ds

Continuous x, t,Discrete �

Stochastic

u(s),
⎧
⎧
⎧ t
�

0�s�t+�t

� �
� T

+ min E g(x(s), u(s))ds + F (x(T))

u(s), t+�t

t+�t�s�T

⎨

⎧

⎧

⎧

⎧

⎩

⎧

⎧

⎧

⎧

⎪

Copyright �2007 Stanley B. Gershwin. c 53

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

= min
u(s),

Ẽ

⎫
� t+�t

t
g(x(s), u(s))ds

t�s�t+�t

⎨

⎩

+J(x(t + �t), �(t + �t), t + �t)

⎪

Next, we expand the second term in a Taylor series about x(t).
We leave �(t + �t) alone, for now.

Copyright �2007 Stanley B. Gershwin.c 54

�

�

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

J(x(t), �(t), t) =

min Ẽ g(x(t), u(t))�t + J(x(t), �(t + �t), t) +

u(t)

αJ αJ
(x(t), �(t + �t), t)�x(t) + (x(t), �(t + �t), t)�t + o(�t).

αx αt
where

�x(t) = x(t + �t) − x(t) = f(x(t), �(t), u(t), t)�t + o(�t)

Copyright c 55�2007 Stanley B. Gershwin.

�

�

�

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

Using the expansion of ẼH(�(t + �t)),

J(x(t), �(t), t) = min g(x(t), u(t))�t
u(t) �

+ J(x(t), �(t), t) + J(x(t), j, t)�j�(t)�t
j

⎨

⎩
αJ αJ

+ (x(t), �(t), t)�x(t) + (x(t), �(t), t)�t + o(�t)
αx αt ⎪

We can clean up notation by replacing x(t) with x, �(t) with �,
and u(t) with u.
Copyright �2007 Stanley B. Gershwin. c 56

�

�

�

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

J(x, �, t) =

min
u �

g(x, u)�t + J(x, �, t) +
j

J(x, j, t)�j��t

⎨
αJ αJ ⎩

+ (x, �, t)�x + (x, �, t)�t + o(�t)

αx αt ⎪

We can subtract J(x, �, t) from both sides and use the
expression for �x to get ...

Copyright �2007 Stanley B. Gershwin. c 57

�

�

�

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

0 = min g(x, u)�t + J(x, j, t)�j��t
u �

j
⎨

αJ αJ ⎩
+

αx
(x, �, t)f(x, �, u, t)�t +

αt
(x, �, t)�t

⎪
+ o(�t)

or,

Copyright �2007 Stanley B. Gershwin. c 58

� �

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

αJ �
− (x, �, t) = J(x, j, t)�j�+

αt
j

αJ
min g(x, u) + (x, �, t)f(x, �, u, t)

u αx

• Bad news: usually impossible to solve;
• Good news: insight.

Copyright c 59�2007 Stanley B. Gershwin.

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

An approximation: when T is large and f is not a function of t,
typical trajectories look like this:

x

t

Copyright �2007 Stanley B. Gershwin. c 60

� �

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

That is, in the long run, x approaches a steady-state probability
distribution. Let J � be the expected value of g(x, u), where u is
the optimal control.
Suppose we started the problem with x(0) a random variable
whose probability distribution is the steady-state distribution.
Then, for large T ,

� T
EJ = minu E

0 g(x(t), u(t))dt + F (x(T))

� J�T

Copyright �2007 Stanley B. Gershwin. c 61

Bellman’s

Equation

Continuous x, t,Discrete �

Stochastic

For x(0) and �(0) specified

J(x(0), �(0), 0) � J�T + W (x(0), �(0))

or, more generally, for x(t) = x and �(t) = � specified,
J(x, �, t) � J�(T − t) + W (x, �)

Copyright �2007 Stanley B. Gershwin. c 62

�

Flexible

Manufacturing

System Control

Single machine, multiple part types. x, u, d are N -dimensional vectors.

� T

min E g(x(t))dt

subject to:
0

dxi(t)
= ui(t) − di, i = 1, ..., N

dt

prob(�(t + �t) = 0|�(t) = 1) = p�t + o(�t)

prob(�(t + �t) = 1|�(t) = 0) = r�t + o(�t)

λiui(t) � �(t); ui(t) � 0
i

x(0), �(0) specified

Copyright �2007 Stanley B. Gershwin. c 63

�

� �

Flexible

Manufacturing

System Control

Define �(�) = {u| i λiui � �}. Then, for � = 0, 1,

αJ �
− (x, �, t) = J(x, j, t)�j�+

αt
j

αJ
min g(x) + (x, �, t)(u − d)

u∗�(�) αx

Copyright �2007 Stanley B. Gershwin. c 64

�

� �

�

Flexible

Manufacturing

System Control

Approximating J with J�(T − t) + W (x, �) gives:

J� = (J�(T − t) + W (x, j))�j�+
j

αW
min g(x) + (x, �, t)(u − d)

u∗�(�) αx
Recall that

�j� = 0...
j

Copyright �2007 Stanley B. Gershwin. c 65

�

� �

Flexible

Manufacturing

System Control

so

J� = W (x, j)�j�+
j

αW
min g(x) + (x, �, t)(u − d)

u∗�(�) αx

for � = 0, 1

Copyright �2007 Stanley B. Gershwin. c 66

,

� �

Flexible

Manufacturing

System Control

This is actually two equations, one for � = 0, one for � = 1.

αW
J� = g(x) + W (x, 1)r − W (x, 0)r − (x, 0)d,

αx
for � = 0,

αW
J� = g(x) + W (x, 0)p − W (x, 1)p + min (x, 1)(u − d)

u∗�(1) αx
for � = 1.

Copyright �2007 Stanley B. Gershwin.c 67

,

� �

Flexible Single-part-type case

Manufacturing

System Control Technically, not flexible!

Now, x and u are scalars, and
�(1) = [0, 1/λ] = [0, µ]

dW
J� = g(x) + W (x, 1)r − W (x, 0)r − (x, 0)d,

dx
for � = 0,

dW
J� = g(x) + W (x, 0)p − W (x, 1)p + min (x, 1)(u − d)

0�u�µ dx
for � = 1.

Copyright �2007 Stanley B. Gershwin. c 68

Flexible Single-part-type case

Manufacturing

System Control

See book, Sections 2.6.2 and 9.3; see Probability slides #

91–120.

When � = 0, u = 0.

When � = 1,

• if dW < 0, u = µ,
dx

• if dW = 0, u unspecified,
dx

• if dW > 0, u = 0.
dx

Copyright c 69�2007 Stanley B. Gershwin.

Flexible Single-part-type case

Manufacturing

System Control

W (x, �) has been shown to be convex in x. If the minimum of
W (x, 1) occurs at x = Z and W (x, 1) is differentiable for all x,
then
• dW < 0 � x < Z

dx

• dW = 0 � x = Z
dx

• dW > 0 � x > Z
dx

Therefore,
• if x < Z, u = µ,

• if x = Z, u unspecified,
• if x > Z, u = 0.

Copyright c 70�2007 Stanley B. Gershwin.

Flexible Single-part-type case
Manufacturing
System Control
Surplus, or inventory/backlog:

Production policy: Choose Z
(the hedging point) Then,
• if � = 1,

δ if x < Z, u = µ,

δ if x = Z, u = d,

δ if x > Z, u = 0;

• if � = 0,

δ u = 0.

How do we choose Z?

dx(t)
= u(t) − d

dt
Cumulative

Production and Demand production

d t + Z

hedging point Z

surplus x(t)

demand dt

t

Copyright �2007 Stanley B. Gershwin. c 71

Flexible Single-part-type case

Manufacturing

System Control Determination of Z

� Z

J� = Eg(x) = g(Z)P (Z, 1)+ g(x) [f(x, 0) + f(x, 1)] dx
−�

in which P and f form the steady-state probability distribution of

x. We choose Z to minimize J �. P and f are given by

f(x, 0) = Aebx

f(x, 1) = A d ebx
µ−d

P (Z, 1) = A
p
d ebZ

Copyright �2007 Stanley B. Gershwin. c 72

� �

Flexible Single-part-type case
Manufacturing
System Control Determination of Z

where
r p

b = −

d µ − d

and A is chosen so that
� Z

[f(x, 0) + f(x, 1)] dx + P (Z, 1) = 1
−�

After some manipulation,
A =

bp(µ − d)
e −bZ

db(µ − d) + µp
and

db(µ − d)
P (Z, 1) =

db(µ − d) + µp

Copyright �2007 Stanley B. Gershwin. c 73

Flexible Single-part-type case

Manufacturing

System Control Determination of Z

−Since g(x) = g+x+ + g−x ,
• if	Z � 0, then

� Z

J� = −g−ZP (Z, 1) − g−x [f(x, 0) + f(x, 1)] dx;
−�

• if	Z > 0,
� 0

J� = g+ZP (Z, 1) − g−x [f(x, 0) + f(x, 1)] dx
−�

� Z

+	 g+x [f(x, 0) + f(x, 1)] dx.
0

Copyright �2007 Stanley B. Gershwin. c	 74

� �

Flexible Single-part-type case

Manufacturing

System Control Determination of Z

To minimize J�:
� ⎬

ln Kb(1 + g−)
• if g+ − Kb(g+ + g−) < 0, Z =

g+
.

b

• if g+ − Kb(g+ + g−) ≈ 0, Z = 0

where K =

µp µp 1 µp
= =

b(µbd − d2b + µp) b(r + p)(µ − d) b db(µ − d) + µp

Z is a function of d, µ, r, p, g+, g−.

Copyright �2007 Stanley B. Gershwin. c 75

� � ��

� � ��

Flexible Single-part-type case
Manufacturing
System Control Determination of Z

That is, we choose Z such that

e bZ = min 1, Kb
g+ + g−

g+
or

−bZ 1 g+
e = max 1,

Kb g+ + g−

Copyright �2007 Stanley B. Gershwin. c 76

� �

� �

� �

Flexible Single-part-type case
Manufacturing
System Control Determination of Z

� 0

prob(x � 0) = (f(x, 0) + f(x, 1))dx
−�

� �� 0d
= A 1 + e bxdx

µ − d −�

d 1 µ
= A 1 + = A

µ − d b b(µ − d)
bp(µ − d) −bZ µ

= e
db(µ − d) + µp b(µ − d)

µp −bZ = e
db(µ − d) + µp

Copyright �2007 Stanley B. Gershwin. c 77

� � ��

� �

Flexible Single-part-type case

Manufacturing

System Control Determination of Z

Or,
� � � � ��

prob(x � 0) =
µp

max 1,
1 g+

db(µ − d) + µp Kb g+ + g−

It can be shown that
µp

Kb =
µp + bd(µ − d)

Therefore
prob(x � 0) = Kb max 1,

1 g+

Kb g+ + g−

µp g+
= max ,

µp + bd(µ − d) g+ + g−

Copyright �2007 Stanley B. Gershwin. c 78

Flexible Single-part-type case
Manufacturing
System Control Determination of Z

That is,
• if

µp
>

g+ , then Z = 0 and
µp + bd(µ − d) g+ + g−

prob(x � 0) =
µp

;

µp + bd(µ − d)

• if
µp

<
g+ , then Z > 0 and

µp + bd(µ − d) g+ + g−

prob(x � 0) =
g+

.
g+ + g−

This looks a lot like the solution of the “newsboy problem.”
Copyright �2007 Stanley B. Gershwin. c 79

Flexible Single-part-type case
Manufacturing

Z vs. dSystem Control
Base values: g+ = 1, g− = 10 d = .7, µ = 1., r = .09,
p = .01.

100

90

80

70

60

Z	 50

40

30

20

10

0

d
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Copyright �2007 Stanley B. Gershwin. c	 80

Flexible Single-part-type case

System Control
Manufacturing

Z vs. g+

Base values: g+ = 1, g− = 10 d = .7, µ = 1., r = .09,
p = .01.

70

60

50

40

0 0.5 1 1.5 2 2.5 3
g+

Z

30

20

10

0

3.5

Copyright �2007 Stanley B. Gershwin. c 81

Flexible Single-part-type case

System Control
Manufacturing

Z vs. g−

Base values: g+ = 1, g− = 10 d = .7, µ = 1., r = .09,
p = .01.

14

12

10

8
Z

6

4

2

0
0 1 2 3 4 5 6 7 8 9 10 11

g−

Copyright �2007 Stanley B. Gershwin. c 82

Flexible Single-part-type case

System Control
Manufacturing

Z vs. p

Base values: g+ = 1, g− = 10 d = .7, µ = 1., r = .09,
p = .01.

1400

1200

1000

800

Z

600

400

200

0

0.005 0.01 0.015 0.02 0.025 0.03 0.035

p
0 0.04

Copyright �2007 Stanley B. Gershwin.c 83

Flexible Two-part-type case

System Control
Manufacturing

x1

x2

d1

d2

u (t)1

u (t)2 Type 2

Type 1

r, p

u11/ 1�

1/ 2�

u2

0

Capacity set �(1) when machine is up.

Copyright �2007 Stanley B. Gershwin. c 84

� �

Flexible Two-part-type case

Manufacturing

System Control

We must find u(x, �) to satisfy

αW
min (x, �, t) u

u∗�(�) αx
Partial solution of LP:

• If αW/αx1 > 0 and αW/αx2 > 0, u1 = u2 = 0.
• If αW/αx1 < αW/αx2 < 0, u1 = µ1, u2 = 0.
• If αW/αx2 < αW/αx1 < 0, u2 = µ2, u1 = 0.

Problem: no complete analytical solution available.

Copyright c 85�2007 Stanley B. Gershwin.

 1�

0

 2�

Flexible Two-part-type case
Manufacturing
System Control
Case: Exact solution if Z = (Z1, Z2) = 0

x2

x1

1 2u = u = 0

dx
dt

µ2

2u = 0

u = 01

1u = 1

2

µ

u =

u11/

1/ 2�

u2

0

u11/ 1�

1/ 2�

u2

1/ 1�

1/

u2

0 u1

Copyright �2007 Stanley B. Gershwin. c 86

 1�

 2�

0

Flexible Two-part-type case
Manufacturing
System Control
Case: Approximate solution if Z > 0

x2

1 2u = u = 0

dx
dt

µ2

2u = 0

u = 01

1u = 1

2

µ

u =

u11/

1/ 2�

u2

0

1/ 1�

1/

u2

0

u11/ 1�

1/ 2�

u2

x1

u1

Copyright �2007 Stanley B. Gershwin. c 87

45

Flexible Two-part-type case

System Control
Manufacturing

Two parts, multiple machines without buffers:
e 12

4

61e

e

34e

23e

3

12

x2

Z

6
x1

5

56e

6

1 2

3

4

5

u 2

e34

12
e

u1

I

e23

�
e45

e56

¥

d
61
e

Copyright �2007 Stanley B. Gershwin.c 88

Flexible Two-part-type case

Manufacturing

System Control

• Proposed approximate solution for multiple-part,
single machine system:
� Rank order the part types, and bring them to their
hedging points in that order.

Copyright �2007 Stanley B. Gershwin. c 89

Flexible Single-part-type case

System Control
Manufacturing

Surplus and tokens

• Operating Machine M
according to the hedging
point policy is equivalent to
operating this assembly
system according to a finite

B buffer policy.
D

M

S

FG

Copyright �2007 Stanley B. Gershwin.c 90

Flexible Single-part-type case

System Control
Manufacturing

Surplus and tokens

•	D is a demand generator .
δ Whenever a demand arrives, D

sends a token to B.

•	S is a synchronization machine.
δ S	 is perfectly reliable and in­

finitely fast.

M

D

S

FG

B

•	FG is a finite finished goods buffer.
•	B is an infinite backlog buffer.

Copyright c	 91�2007 Stanley B. Gershwin.

Flexible Single-part-type case

Manufacturing

System Control Material/token policies

Operator
• An operation cannot take Machine

place unless there is a
Part Part token available. Operation

Consumable Waste
• Tokens authorize

Token Token
production.

• These policies can often be implemented either with finite

buffer space, or a finite number of tokens. Mixtures are also

possible.

• Buffer space could be shelf space, or floor space indicated with
paint or tape.

Copyright c 92�2007 Stanley B. Gershwin.

Multi-stage Proposed policy
systems

To control
M B M B M1 1 2 2 3

add an information flow system:

B1 M B M2 2 3M1

S S2 3

D

S1

BB1

SB2

BB2

SB3

BB3

SB1

Copyright �2007 Stanley B. Gershwin. c 93

Multi-stage Proposed policy
systems

B1 M B M2 2 3M1

S S2 3

D

S1

BB1

SB2

BB2

SB3

BB3

SB1

• Bi are material buffers and are finite.
• SBi are surplus buffers and are finite.
• BBi are backlog buffers and are infinite.
• The sizes of Bi and SBi are control parameters.
• Problem: predicting the performance of this system.

Copyright c 94�2007 Stanley B. Gershwin.

Multi-stage

systems

Three Views of Scheduling

Three kinds of scheduling policies, which are
sometimes exactly the same.

• Surplus-based: make decisions based on how
much production exceed demand.

• Time-based: make decisions based on how early or
late a product is.

• Token-based: make decisions based on presence
or absence of tokens.

Copyright c 95�2007 Stanley B. Gershwin.

Multi-stage Objective of Scheduling

systems Surplus and time

and Demand

earliness

production P(t)

demand D(t)

surplus/backlog x(t)

• Objective is to keep
cumulative production
close to cumulative
demand.

Cumulative

Production

• Surplus-based policies
look at vertical
differences between the
graphs.

• Time-based policies look
at the horizontal t

differences.

Copyright �2007 Stanley B. Gershwin.c 96

Multi-stage Other policies
systems CONWIP, kanban, and hybrid

• CONWIP: finite population, infinite buffers
• kanban: infinite population, finite buffers
• hybrid: finite population, finite buffers

Copyright c 97�2007 Stanley B. Gershwin.

Multi-stage Other policies
systems CONWIP, kanban, and hybrid

CONWIP
Supply Demand

Token flow

Demand is less than capacity.
How does the number of tokens affect performance (production
rate, inventory)?

Copyright c 98�2007 Stanley B. Gershwin.

 0.85

 0.855

 0.86

P

Multi-stage Other policies
systems CONWIP, kanban, and hybrid

 0.835

 0.84

 0.845

 0.865

 0.87

 0.875

 0 20 40 60 80 100 120
0

 5

 10

 20

 25

 30

Av
er

ag
e

Bu
ffe

r L
ev

el

n1
n2
n3

15

 0 20 40 60

Population Population

80 100 120

cCopyright �2007 Stanley B. Gershwin. 99

Multi-stage Other policies

systems Basestock

Demand

Copyright �2007 Stanley B. Gershwin. c 100

Multi-stage Other policies
systems FIFO

• First-In, First Out.
• Simple conceptually, but you have to keep track of
arrival times.

• Leaves out much important information:
� due date, value of part, current surplus/backlog
state, etc.

Copyright �2007 Stanley B. Gershwin.c 101

Multi-stage Other policies
systems EDD

• Earliest due date.
• Easy to implement.
• Does not consider work remaining on the item, value
of the item, etc..

Copyright �2007 Stanley B. Gershwin. c 102

Multi-stage Other policies
systems SRPT

• Shortest Remaining Processing Time
• Whenever there is a choice of parts, load the one
with least remaining work before it is finished.

• Variations: include waiting time with the work time.
Use expected time if it is random.

Copyright �2007 Stanley B. Gershwin.c 103

Multi-stage Other policies
systems Critical ratio

• Widely used, but many variations. One version:
Processing time remaining until completion

δ Define CR =
Due date - Current time

δ Choose the job with the highest ratio (provided it is positive).
δ If a job is late, the ratio will be negative, or the denominator
will be zero, and that job should be given highest priority.

δ If there is more than one late job, schedule the late jobs in
SRPT order.

Copyright �2007 Stanley B. Gershwin.c 104

Multi-stage Other policies
systems Least Slack

• This policy considers a part’s due date.
• Define slack = due date - remaining work time
• When there is a choice, select the part with the least
slack.

• Variations involve different ways of estimating
remaining time.

Copyright c 105�2007 Stanley B. Gershwin.

Multi-stage Other policies
systems Drum-Buffer-Rope

• Due to Eli Goldratt.
• Based on the idea that every system has a bottleneck.
• Drum: the common production rate that the system operates
at, which is the rate of flow of the bottleneck.

• Buffer: DBR establishes a CONWIP policy between the
entrance of the system and the bottleneck. The buffer is the
CONWIP population.

• Rope: the limit on the difference in production between
different stages in the system.

• But: What if bottleneck is not well-defined?

Copyright c 106�2007 Stanley B. Gershwin.

Conclusions

• Many policies and approaches.
• No simple statement telling which is better.
• Policies are not all well-defined in the literature or in practice.
• My opinion:

δ This is because policies are not derived from first principles.
δ Instead, they are tested and compared.
δ Currently, we have little intuition to guide policy development
and choice.

Copyright �2007 Stanley B. Gershwin. c 107

MIT OpenCourseWare
http://ocw.mit.edu

2.852 Manufacturing Systems Analysis
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

