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Definitions


• Events may be controllable or not, and predictable 
or not. 

controllable uncontrollable 
predictable loading a part lunch 
unpredictable ??? machine failure 
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Definitions


• Scheduling is the selection of times for future 
controllable events. 

• Ideally, scheduling systems should deal with all

controllable events, and not just production.

� That is, they should select times for operations,

set-up changes, preventive maintenance, etc.


� They should at least be aware of set-up changes, 
preventive maintenance, etc.when they select 
times for operations. 
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Definitions


• Because of recurring random events, scheduling is 
an on-going process, and not a one-time calculation. 

• Scheduling, or shop floor control, is the bottom of the 
scheduling/planning hierarchy. It translates plans 
into events. 
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Issues in

Factory Control


• Problems are dynamic ; current decisions influence 
future behavior and requirements. 

• There are large numbers of parameters, time-varying 
quantities, and possible decisions. 

• Some time-varying quantities are stochastic . 
• Some relevant information (MTTR, MTTF, amount of 
inventory available, etc.) is not known. 

• Some possible control policies are unstable . 
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Dynamic Example

Programming Problem

Discrete Time, Discrete State, Deterministic F 
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Problem: find the least expensive path from A to Z. 
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Dynamic Example

Programming Problem


Let g(i, j) be the cost of traversing the link from i to j. Let i(t) 
be the tth node on a path from A to Z. Then the path cost is 

T 

g(i(t − 1), i(t)) 
t=1 

where T is the number of nodes on the path, i(0) = A, and 
i(T ) = Z. 

T is not specified; it is part of the solution. 
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Dynamic Example 
Programming Solution 

• A possible approach would be to enumerate all possible paths 
(possible solutions). However, there can be a lot of possible 
solutions. 

• Dynamic programming reduces the number of possible
solutions that must be considered. 
δ Good news: it often greatly reduces the number of possible solutions.

δ Bad news: it often does not reduce it enough to give an exact optimal
solution practically (ie, with limited time and memory). This is the curse of 
dimensionality . 

δ Good news: we can learn something by characterizing the optimal

solution, and that sometimes helps in getting an analytical optimal

solution or an approximation.


δ Good news: it tells us something about stochastic problems. 
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Dynamic Example

Programming Solution


Instead of solving the problem only for A as the initial point, we 
solve it for all possible initial points. 

For every node i, define J(i) to be the optimal cost to go from 
Node i to Node Z (the cost of the optimal path from i to Z). 
We can write 

T 

J(i) = g(i(t − 1), i(t))

t=1 

where i(0) = i; i(T ) =Z; (i(t − 1), i(t)) is a link for every t. 
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Dynamic Example

Programming Solution


Then J(i) satisfies 

J(Z) = 0 

and, if the optimal path from i to Z traverses link (i, j), 

J(i) = g(i, j) + J(j). 

i j 

Z 
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Dynamic Example 
Programming Solution 
Suppose that several links go out of Node i. 
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Z 

Suppose that for each node j for which a link exists from i to j, 
the optimal path and optimal cost J(j) from j to Z is known. 
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Dynamic Example

Programming Solution


Then the optimal path from i to Z is the one that minimizes the 
sum of the costs from i to j and from j to Z. That is, 

J(i) = min [g(i, j) + J(j)]

j 

where the minimization is performed over all j such that a link

from i to j exists. This is the Bellman equation .

This is a recursion or recursive equation because J() appears

on both sides, although with different arguments.

J(i) can be calculated from this if J(j) is known for every node j

such that (i, j) is a link.
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Dynamic Example

Programming Solution


Bellman’s Principle of Optimality: if i and j are nodes 
on an optimal path from A to Z, then the portion of that 
path from A to Z between i and j is an optimal path 
from i to j. 

A 

Z 

j 

i 
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Dynamic Example

Programming Solution


Example: Assume that we have determined that J(O) = 6 and 
J(J) = 11. 
To calculate J(K), 

g(K, O) + J(O)
J(K) = min 

g(K, J) + J(J) 

3 + 6 
= min = 9. 

9 + 11 
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Dynamic Example

Programming Solution


Algorithm 

1. Set J(Z) = 0. 
2. Find some node i such that 

• J(i) has not yet been found, and 
• for each node j in which link (i, j) exists, J(j) is already 
calculated. 
Assign J(i) according to


J(i) = min [g(i, j) + J(j)]

j 

3. Repeat Step 2 until all nodes, including A, have costs 
calculated. 
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Dynamic Example

Programming Solution
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Dynamic Example

Programming Solution


The important features of a dynamic programming problem are 
•	the state (i) ; 
•	the decision (to go to j after i); 

�	 ⎝ 
•	the objective function 

�T
t=1 g(i(t − 1), i(t)) 

•	the cost-to-go function (J(i)) ; 
• the one-step recursion equation that determines J(i)

(J(i) = minj [g(i, j) + J(j)]);


•	 that the solution is determined for every i, not just A and not just nodes on 
the optimal path; 

•	 that J(i) depends on the nodes to be visited after i, not those between A 
and i. The only thing that matters is the present state and the future; 

•	that J(i) is obtained by working backwards. 

Copyright �2007 Stanley B. Gershwin.c	 17 



Dynamic Example

Programming Solution


This problem was 
• discrete time, discrete state, deterministic. 
Other versions: 
• discrete time, discrete state, stochastic 
• continuous time, discrete state, deterministic 
• continuous time, discrete state, stochastic 
• continuous time, mixed state, deterministic 
• continuous time, mixed state, stochastic 

in stochastic systems, we optimize the expected cost. 
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� � 
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Programming 
Discrete time, discrete state 

Stochastic 
Dynamic


Suppose 
• g(i, j) is a random variable; or 
• if you are at i and you choose j, you actually go to k with 
probability p(i, j, k). 

Then the cost of a sequence of choices is random. The objective 
function is 

T 

E g(i(t − 1), i(t))

t=1

and we can define 
J(i) = E min [g(i, j) + J(j)]


j 
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Programming 
Continuous Time, Mixed State 

Stochastic Example 
Dynamic


Context: The planning/scheduling hierarchy 
• Long term: factory design, capital expansion, etc. 
• Medium term: demand planning, staffing, etc. 
• Short term: 

δ response to short term events 
δ part release and dispatch 
In this problem, we deal with the response to short term events. 
The factory and the demand are given to us; we must calculate 
short term production rates; these rates are the targets that 
release and dispatch must achieve. 
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Dynamic
Programming 

Continuous Time, Mixed State 

Stochastic Example 

x1 

x2 

d1 

d2 

u (t)1 

u (t)2 Type 2 

Type 1 

r, p 
• Perfectly flexible machine, two part types. λi time units required 
to make Type i parts, i = 1, 2. 

• Exponential failures and repairs with rates p and r. 
• Constant demand rates d1, d2. 
• Instantaneous production rates ui(t), i = 1, 2 — control 
variables . 

• Downstream surpluses xi(t). 
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Programming 
Continuous Time, Mixed State 

Stochastic Example 
Dynamic


Objective: Minimize 
the difference 
between cumulative 
production and 
cumulative demand. 

The surplus satisfies 
xi(t) = Pi(t) − Di(t) 

t 

Cumulative 
Production 
and Demand production P (t) 

surplus x (t) 

i 

i 

idemand D (t) = d ti 
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Programming 
Continuous Time, Mixed State 

Stochastic Example 
Dynamic


Feasibility: 
• For the problem to be feasible, it must be possible to make 
approximately diT Type i parts in a long time period of length 
T, i = 1, 2. (Why “approximately”?) 

• The time required to make diT parts is λidiT . 
• During this period, the total up time of the machine — ie, the 
time available for production — is approximately r/(r + p)T . 

• Therefore, we must have λ1d1T + λ2d2T � r/(r + p)T , or 
2 
� r 

λidi � 
r + p

i=1 
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Programming 
Continuous Time, Mixed State 

Stochastic Example 
Dynamic


If this condition is not satisfied, the demand cannot be met. What 
will happen to the surplus? 
The feasibility condition is also written


2 
� di r 

� 
i=1 

µi r + p 

where µi = 1/λi. 
If there were only one part type, this would be


r

d � µ


r + p

Look familiar?
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Programming 
Continuous Time, Mixed State 

Stochastic Example 
Dynamic


The surplus satisfies 
xi(t) = Pi(t) − Di(t) 

where 
� t 

Pi(t) = ui(s)ds; Di(t) = dit 
0 

Therefore 
dxi(t) 

= ui(t) − di 
dt
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Programming 
Continuous Time, Mixed State 

Stochastic Example 
Dynamic


To define the objective more precisely, let there be a 
function g(x1, x2) such that 

• g is convex 
• g(0, 0) = 0 

• lim g(x1, x2) = �; lim g(x1, x2) = �. 
x1�→ x1�−→ 

• lim g(x1, x2) = �; lim g(x1, x2) = �. 
x2�→ x2�−→ 
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Programming 
Continuous Time, Mixed State 

Stochastic Example 
Dynamic


Examples: 

• g(x1, x2) = A1x1
2 + A2x2

2 

• g(x1, x2) = A1|x1| + A2|x2| 
• g(x1, x2) = g1(x1) + g2(x2) where 

+ −δ gi(xi) = g(i+)xi + g(i−)xi , 
−δ xi 

+ = max(xi, 0), xi = − min(xi, 0),

δ g(i+) > 0, g(i−) > 0.
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Dynamic

Programming


Objective: 

Continuous Time, Mixed State 

Stochastic Example 

� T 

min E g(x1(t), x2(t))dt 
0 

x1 

g(x ,x )1 2 

x2 
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Programming 
Continuous Time, Mixed State 

Stochastic Example 
Dynamic


Constraints: 
u1(t) ≈ 0; u2(t) ≈ 0 

Short-term capacity: 

• If the machine is down at time t, 
u1(t) = u2(t) = 0 
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u1

� 

� 

Programming 
Continuous Time, Mixed State 

Stochastic Example 
Assume the machine is up for a short period [t, t + �t]. Let �t 

Dynamic


• 
be small enough so that ui is constant; that is 

ui(s) = ui(t), s ≤ [t, t + �t] 

The machine makes ui(t)�t parts of type i. The time required 
to make that number of Type i parts is λiui(t)�t. 
Therefore 

λiui(t)�t � �t 1/ 

i 
or 

λiui(t) � 1 1/ 1�

 2�

u2 

0 
i
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Programming 
Continuous Time, Mixed State 

Stochastic Example 
Dynamic


Machine state dynamics: Define �(t) to be the repair state of the 
machine at time t. �(t) = 1 means the machine is up; �(t) = 0 
means the machine is down. 

prob(�(t + �t) = 0|�(t) = 1) = p�t + o(�t)


prob(�(t + �t) = 1|�(t) = 0) = r�t + o(�t)


The constraints may be written 
λiui(t) � �(t); ui(t) ≈ 0 

i 
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Programming 
Continuous Time, Mixed State 

Stochastic Example 
Dynamic


Dynamic programming problem formulation: 
� T 

min E g(x1(t), x2(t))dt 

subject to: 
0 

dxi(t) 
= ui(t) − di 

dt 

prob(�(t + �t) = 0|�(t) = 1) = p�t + o(�t) 

prob(�(t + �t) = 1|�(t) = 0) = r�t + o(�t) 

λiui(t) � �(t); ui(t) � 0 
i 

x(0), �(0) specified 
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Dynamic Elements of a DP Problem 

Programming 
• state: x all the information that is available to determine the 
future evolution of the system. 

• control: u the actions taken by the decision-maker. 
• objective function: J the quantity that must be minimized; 
• dynamics: the evolution of the state as a function of the control 
variables and random events. 

• constraints: the limitations on the set of allowable controls 
• initial conditions: the values of the state variables at the start 
of the time interval over which the problem is described. There 
are also sometimes terminal conditions such as in the network 
example. 

Copyright c 33�2007 Stanley B. Gershwin.



Dynamic Elements of a DP Solution 

Programming 

• control policy: u(x(t), t). A stationary or 
time-invariant policy is of the form u(x(t)). 

• value function: (also called the cost-to-go function) 
the value J(x, t) of the objective function when the 
optimal control policy is applied starting at time t, 
when the initial state is x(t) = x. 
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Bellman’s Continuous x, t


Equation Deterministic

� T 

Problem: min g(x(t), u(t))dt + F (x(T ))

u(t),0�t�T 0 

such that 
dx(t) 

= f(x(t), u(t), t)
dt 

x(0) specified 

h(x(t), u(t)) � 0 

x ≤ Rn, u ≤ Rm, f ≤ Rn, h ≤ Rk, and g and F are scalars. 
Data: T, x(0), and the functions f, g, h, and F . 
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Bellman’s Continuous x, t 

Equation Deterministic 

The cost-to-go function is 
� T 

J(x, t) = min g(x(s), u(s))ds + F (x(T )) 
t 
� T 

J(x(0), 0) = min g(x(s), u(s))ds + F (x(T )) 
0 

⎭ ⎡ 
� t1 

� T 

= min g(x(t), u(t))dt + g(x(t), u(t))dt + F (x(T )) . 
u(t), 0 t1


0�t�T
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� � 

Bellman’s Continuous x, t


Equation Deterministic


⎞ ⎩

⎨ ⎨

⎨ ⎨ 
⎨ � �⎨ 
⎨ 
⎠ t1 T 

= min g(x(t), u(t))dt + min g(x(t), u(t))dt + F (x(T ))

⎨ 

u(t), ⎨ 0 u(t), t1 
⎨ 
⎨ 
⎧

0�t�t1 t1�t�T


�� t1 
�


= min g(x(t), u(t))dt + J(x(t1), t1) . 
u(t), 0 

0�t�t1 

⎨

⎦


⎨

⎨

⎨

⎨

⎫
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Bellman’s Continuous x, t


Equation Deterministic


where 
� T 

J(x(t1), t1) = min g(x(t), u(t))dt + F (x(T )) 
u(t),t1�t�T t1 

such that 
dx(t) 

= f(x(t), u(t), t)
dt 

x(t1) specified 

h(x(t), u(t)) � 0 
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� � 

Bellman’s Continuous x, t 

Equation Deterministic 

Break up [t1, T ] into [t1, t1 + �t] ↔ [t1 + �t, T ] : 
⎫ 
� t1+�t 

J(x(t1), t1) = min g(x(t), u(t))dt 
u(t1) t1 

+J(x(t1 + �t), t1 + �t)} 
where �t is small enough so that we can approximate x(t) and 
u(t) with constant x(t1) and u(t1), during the interval. Then, 
approximately, 

J(x(t1), t1) = min g(x(t1), u(t1))�t + J(x(t1 + �t), t1 + �t) 
u(t1) 
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� 

� 

Bellman’s Continuous x, t


Equation Deterministic


Or, 

J(x(t1), t1) = min g(x(t1), u(t1))�t + J(x(t1), t1)+ 
u(t1) 

αJ αJ 
(x(t1), t1)(x(t1 + �t) − x(t1)) + (x(t1), t1)�t 

αx αt 

Note that 
dx 

x(t1 + �t) = x(t1) + �t = x(t1) + f(x(t1), u(t1), t1)�t 
dt 
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� � 

� � 

Bellman’s Continuous x, t


Equation Deterministic


Therefore 
J(x, t1) = J(x, t1) 

αJ αJ 
+ min g(x, u)�t + (x, t1)f(x, u, t1)�t + (x, t1)�t 

u αx αt 
where x = x(t1); u = u(t1) = u(x(t1), t1). 
Then (dropping the t subscript) 

αJ αJ 
− (x, t) = min g(x, u) + (x, t)f(x, u, t)

αt u αx
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� � 

Bellman’s Continuous x, t


Equation Deterministic


This is the Bellman equation . It is the counterpart of the recursion equation for 
the network example. 

• If we had a guess of J(x, t) (for all x and t) we could confirm it by

performing the minimization.


• If we knew J(x, t) for all x and t, we could determine u by performing the

minimization. U could then be written


αJ 
u = U x, , t . 

αx 

This would be a feedback law . 

The Bellman equation is usually impossible to solve analytically or numerically. 
There are some important special cases that can be solved analytically. 
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� � 

Bellman’s Continuous x, t


Equation Example


Bang-Bang Control 

min |x|dt 
0

subject to 

dx 
= u 

dt 

x(0) specified 

−1 � u � 1 
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� � 

� � 

Bellman’s Continuous x, t


Equation Example


The Bellman equation is 
αJ αJ 

− (x, t) = min |x| + (x, t)u .

αt αxu, 

−1�u�1 

J(x, t) = J(x) is a solution because the time horizon is infinite and t does not 
appear explicitly in the problem data (ie, g(x) = |x| is not a function of t. 
Therefore 

dJ 
0 = min |x| + (x)u .


dxu, 

−1�u�1 

J(0) = 0 because if x(0) = 0 we can choose u(t) = 0 for all t. Then 
x(t) = 0 for all t and the integral is 0. There is no possible choice of u(t) that 
will make the integral less than 0, so this is the minimum. 
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� 

� 

Bellman’s Continuous x, t


Equation Example


The minimum is achieved when 

⎧

⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 

u = 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ 

Why? 

−1 if 
dJ 

(x) > 0 
dx

1 if 
dJ 

(x) < 0 
dx

undetermined if 
dJ 

(x) = 0 
dx
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Bellman’s Continuous x, t


Equation Example


Consider the set of x where dJ/dx(x) < 0. For x in that set, 
u = 1, so 

dJ 
0 = |x| + (x)

dxor 
dJ 

(x) = −|x|
dx

Similarly, if x is such that dJ/dx(x) > 0 and u = −1,

dJ


(x) = |x|
dx
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Bellman’s Continuous x, t


Equation Example


To complete the solution, we must determine where dJ/dx > 0, 
< 0, and = 0. 
We already know that J(0) = 0. We must have J(x) > 0 for all

x ≥ 0 because |x| > 0 so the integral of |x(t)| must be positive.
= 

Since J(x) > J(0) for all x ≥ 0, we must have = 

dJ 
(x) < 0 for x < 0 

dx


dJ

(x) > 0 for x > 0 

dx
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Bellman’s Continuous x, t


Equation Example


Therefore 
dJ


(x) >= x 
dx


so 
1 

J = x 2 

2 
and	

� 
⎧ 
� 1 if x < 0 

u = 0 if x = 0 
⎧

� −1 if x > 0 
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Continuous x, t,Discrete � 

Stochastic 
⎫ 
� T 

⎭ 

Bellman’s

Equation


J(x(0), �(0), 0) = min E g(x(t), u(t))dt + F (x(T ))

u 0 

such that 
dx(t) 

= f(x, �, u, t)
dt 

prob [�(t + �t) = = = �ij�t for all i, j, i ≥i | �(t) j] = j 

x(0), �(0) specified 

h(x(t), �(t), u(t)) � 0 
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Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

Getting the Bellman equation in this case is more complicated 
because � changes by large amounts when it changes. 
Let H(�) be some function of �. We need to calculate 

ẼH(�(t + �t)) = E {H(�(t + �t)) | �(t)}


= 
� 

H(j)prob {�(t + �t) = j | �(t)}

j 
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� � 

� 
� � 

� 

Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

⎪ � 

= H(j)�j�(t)�t + H(�(t)) ⎬1 − �j�(t)�t � + o(�t) 
j � j=�(t)=�(t) �

= H(j)�j�(t)�t + H(�(t)) 1 + ��(t)�(t)�t + o(�t) 
j �=�(t) 

⎛ ⎣ 

E {H(�(t + �t)) | �(t)} = H(�(t)) + � H(j)�j�(t)
⎤ �t + o(�t) 

j 

We use this in the derivation of the Bellman equation. 
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Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

⎫ ⎭ 
� T 

J(x(t), �(t), t) = min E g(x(s), u(s))ds + F (x(T )) 
u(s), t 

t�s<T 
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�


� 

Bellman’s

Equation


⎧

⎧ 
⎧ 
� t+�t 

= min E g(x(s), u(s))ds 

Continuous x, t,Discrete � 

Stochastic 

u(s), 
⎧ 
⎧ 
⎧ t 
� 

0�s�t+�t 

� � 
� T 

+ min E g(x(s), u(s))ds + F (x(T ))

u(s), t+�t


t+�t�s�T


⎨

⎧

⎧

⎧

⎧

⎩


⎧

⎧

⎧

⎧

⎪
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Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

= min 
u(s), 

Ẽ 

⎫ 
� t+�t 

t 
g(x(s), u(s))ds 

t�s�t+�t 

⎨

⎩


+J(x(t + �t), �(t + �t), t + �t)

⎪


Next, we expand the second term in a Taylor series about x(t). 
We leave �(t + �t) alone, for now. 
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� 

� 

Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

J(x(t), �(t), t) =


min Ẽ g(x(t), u(t))�t + J(x(t), �(t + �t), t) +

u(t) 

αJ αJ 
(x(t), �(t + �t), t)�x(t) + (x(t), �(t + �t), t)�t + o(�t). 

αx αt 
where 

�x(t) = x(t + �t) − x(t) = f(x(t), �(t), u(t), t)�t + o(�t) 
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�

�


� 

Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

Using the expansion of ẼH(�(t + �t)),


J(x(t), �(t), t) = min g(x(t), u(t))�t 
u(t) � 

+ J(x(t), �(t), t) + J(x(t), j, t)�j�(t)�t 
j 

⎨

⎩
αJ αJ 

+ (x(t), �(t), t)�x(t) + (x(t), �(t), t)�t + o(�t)
αx αt ⎪ 

We can clean up notation by replacing x(t) with x, �(t) with �, 
and u(t) with u. 
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�

�


�


Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

J(x, �, t) = 

min 
u � 

g(x, u)�t + J(x, �, t) + 
j 

J(x, j, t)�j��t 

⎨ 
αJ αJ ⎩ 

+ (x, �, t)�x + (x, �, t)�t + o(�t)

αx αt ⎪


We can subtract J(x, �, t) from both sides and use the 
expression for �x to get ... 
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�

�


�


Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

0 = min g(x, u)�t + J(x, j, t)�j��t 
u � 

j 
⎨ 

αJ αJ ⎩ 
+ 

αx
(x, �, t)f(x, �, u, t)�t + 

αt 
(x, �, t)�t 

⎪ 
+ o(�t) 

or,
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� � 

Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

αJ � 
− (x, �, t) = J(x, j, t)�j�+ 

αt 
j 

αJ 
min g(x, u) + (x, �, t)f(x, �, u, t) 

u αx

• Bad news: usually impossible to solve; 
• Good news: insight. 
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Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

An approximation: when T is large and f is not a function of t, 
typical trajectories look like this: 

x 

t 
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� � 

Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

That is, in the long run, x approaches a steady-state probability 
distribution. Let J � be the expected value of g(x, u), where u is 
the optimal control. 
Suppose we started the problem with x(0) a random variable 
whose probability distribution is the steady-state distribution. 
Then, for large T , 

� T
EJ = minu E 

0 g(x(t), u(t))dt + F (x(T )) 

� J�T 
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Bellman’s

Equation


Continuous x, t,Discrete � 

Stochastic 

For x(0) and �(0) specified 

J(x(0), �(0), 0) � J�T + W (x(0), �(0)) 

or, more generally, for x(t) = x and �(t) = � specified, 
J(x, �, t) � J�(T − t) + W (x, �) 
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� 

Flexible

Manufacturing

System Control

Single machine, multiple part types. x, u, d are N -dimensional vectors.


� T 

min E g(x(t))dt 

subject to: 
0 

dxi(t) 
= ui(t) − di, i = 1, ..., N 

dt 

prob(�(t + �t) = 0|�(t) = 1) = p�t + o(�t) 

prob(�(t + �t) = 1|�(t) = 0) = r�t + o(�t) 

λiui(t) � �(t); ui(t) � 0 
i 

x(0), �(0) specified 
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� 

� � 

Flexible

Manufacturing

System Control

Define �(�) = {u| i λiui � �}. Then, for � = 0, 1, 

αJ � 
− (x, �, t) = J(x, j, t)�j�+ 

αt 
j 

αJ 
min g(x) + (x, �, t)(u − d) 

u∗�(�) αx
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� 

� � 

�


Flexible

Manufacturing

System Control

Approximating J with J�(T − t) + W (x, �) gives: 

J� = (J�(T − t) + W (x, j))�j�+ 
j 

αW 
min g(x) + (x, �, t)(u − d) 

u∗�(�) αx 
Recall that 

�j� = 0... 
j 
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� 

� � 

Flexible

Manufacturing

System Control

so 

J� = W (x, j)�j�+ 
j 

αW 
min g(x) + (x, �, t)(u − d) 

u∗�(�) αx 

for � = 0, 1 
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,

� � 

Flexible

Manufacturing

System Control

This is actually two equations, one for � = 0, one for � = 1. 

αW 
J� = g(x) + W (x, 1)r − W (x, 0)r − (x, 0)d, 

αx 
for � = 0, 

αW 
J� = g(x) + W (x, 0)p − W (x, 1)p + min (x, 1)(u − d) 

u∗�(1) αx 
for � = 1. 
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,

� � 

Flexible Single-part-type case

Manufacturing

System Control Technically, not flexible! 

Now, x and u are scalars, and 
�(1) = [0, 1/λ ] = [0, µ] 

dW 
J� = g(x) + W (x, 1)r − W (x, 0)r − (x, 0)d, 

dx
for � = 0, 

dW 
J� = g(x) + W (x, 0)p − W (x, 1)p + min (x, 1)(u − d) 

0�u�µ dx 
for � = 1. 
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Flexible Single-part-type case

Manufacturing

System Control

See book, Sections 2.6.2 and 9.3; see Probability slides #

91–120.

When � = 0, u = 0.

When � = 1,


• if dW < 0, u = µ,
dx 

• if dW = 0, u unspecified,
dx 

• if dW > 0, u = 0.
dx 
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Flexible Single-part-type case

Manufacturing

System Control


W (x, �) has been shown to be convex in x. If the minimum of 
W (x, 1) occurs at x = Z and W (x, 1) is differentiable for all x, 
then 
• dW < 0 � x < Z 

dx 

• dW = 0 � x = Z
dx 

• dW > 0 � x > Z 
dx 

Therefore, 
• if x < Z, u = µ, 

• if x = Z, u unspecified, 
• if x > Z, u = 0. 
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Flexible Single-part-type case 
Manufacturing
System Control 
Surplus, or inventory/backlog:

Production policy: Choose Z 
(the hedging point ) Then, 
• if � = 1,


δ if x < Z, u = µ,

δ if x = Z, u = d,

δ if x > Z, u = 0;


• if � = 0,


δ u = 0.


How do we choose Z? 

dx(t) 
= u(t) − d 

dt 
Cumulative

Production and Demand production


d t + Z 

hedging point Z


surplus x(t)


demand dt 

t 
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Flexible Single-part-type case

Manufacturing

System Control Determination of Z


� Z 

J� = Eg(x) = g(Z)P (Z, 1)+ g(x) [f(x, 0) + f(x, 1)] dx 
−� 

in which P and f form the steady-state probability distribution of

x. We choose Z to minimize J �. P and f are given by 

f(x, 0) = Aebx 

f(x, 1) = A d ebx 
µ−d

P (Z, 1) = A
p
d ebZ 
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� � 

Flexible Single-part-type case 
Manufacturing
System Control Determination of Z 

where 
r p

b = −

d µ − d 

and A is chosen so that 
� Z 

[f(x, 0) + f(x, 1)] dx + P (Z, 1) = 1 
−� 

After some manipulation, 
A = 

bp(µ − d) 
e −bZ 

db(µ − d) + µp
and 

db(µ − d)
P (Z, 1) = 

db(µ − d) + µp 
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Flexible Single-part-type case

Manufacturing

System Control Determination of Z


−Since g(x) = g+x+ + g−x , 
• if	Z � 0, then 

� Z 

J� = −g−ZP (Z, 1) − g−x [f(x, 0) + f(x, 1)] dx; 
−� 

• if	Z > 0, 
� 0 

J� = g+ZP (Z, 1) − g−x [f(x, 0) + f(x, 1)] dx 
−� 

� Z 

+	 g+x [f(x, 0) + f(x, 1)] dx. 
0 
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� � 

Flexible Single-part-type case

Manufacturing

System Control Determination of Z


To minimize J�: 
� ⎬ 

ln Kb(1 + g− ) 
• if g+ − Kb(g+ + g−) < 0, Z = 

g+ 
. 

b 

• if g+ − Kb(g+ + g−) ≈ 0, Z = 0 

where K = 

µp µp 1 µp 
= = 

b(µbd − d2b + µp) b(r + p)(µ − d) b db(µ − d) + µp 

Z is a function of d, µ, r, p, g+, g−. 
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� � �� 

� � �� 

Flexible Single-part-type case 
Manufacturing
System Control Determination of Z 

That is, we choose Z such that 

e bZ = min 1, Kb 
g+ + g− 

g+ 
or 

−bZ 1 g+ 
e = max 1, 

Kb g+ + g− 
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� � 

� � 

� � 

Flexible Single-part-type case 
Manufacturing
System Control Determination of Z 

� 0 

prob(x � 0) = (f(x, 0) + f(x, 1))dx 
−� 

� �� 0d 
= A 1 + e bxdx 

µ − d −� 

d 1 µ 
= A 1 + = A 

µ − d b b(µ − d) 
bp(µ − d) −bZ µ 

= e 
db(µ − d) + µp b(µ − d) 

µp −bZ = e 
db(µ − d) + µp 
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� � �� 

� � 

Flexible Single-part-type case

Manufacturing

System Control Determination of Z


Or, 
� � � � �� 

prob(x � 0) = 
µp 

max 1, 
1 g+ 

db(µ − d) + µp Kb g+ + g− 

It can be shown that 
µp

Kb = 
µp + bd(µ − d)

Therefore 
prob(x � 0) = Kb max 1, 

1 g+ 

Kb g+ + g− 

µp g+ 
= max , 

µp + bd(µ − d) g+ + g− 
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Flexible Single-part-type case 
Manufacturing
System Control Determination of Z 

That is, 
• if 

µp 
>

g+ , then Z = 0 and 
µp + bd(µ − d) g+ + g− 

prob(x � 0) = 
µp 

;

µp + bd(µ − d) 

• if 
µp 

<
g+ , then Z > 0 and 

µp + bd(µ − d) g+ + g− 

prob(x � 0) = 
g+ 

. 
g+ + g− 

This looks a lot like the solution of the “newsboy problem.” 
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Flexible Single-part-type case 
Manufacturing

Z vs. dSystem Control 
Base values: g+ = 1, g− = 10 d = .7, µ = 1., r = .09, 
p = .01. 

100


90
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70


60


Z	 50


40


30


20
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0 

d 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
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Flexible Single-part-type case 

System Control 
Manufacturing

Z vs. g+ 

Base values: g+ = 1, g− = 10 d = .7, µ = 1., r = .09, 
p = .01. 

70


60


50


40


0 0.5 1 1.5 2 2.5 3 
g+ 

Z 

30


20


10


0

3.5 

Copyright �2007 Stanley B. Gershwin. c 81 



Flexible Single-part-type case 

System Control 
Manufacturing

Z vs. g− 

Base values: g+ = 1, g− = 10 d = .7, µ = 1., r = .09, 
p = .01. 

14


12


10


8 
Z 

6 

4 

2 

0 
0 1 2 3 4 5 6 7 8 9 10 11 

g− 
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Flexible Single-part-type case


System Control 
Manufacturing


Z vs. p 

Base values: g+ = 1, g− = 10 d = .7, µ = 1., r = .09, 
p = .01. 

1400
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0
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p 
0 0.04 
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Flexible Two-part-type case 

System Control 
Manufacturing

x1 

x2 

d1 

d2 

u (t)1 

u (t)2 Type 2 

Type 1 

r, p 

u11/ 1�

1/ 2�

u2 

0 

Capacity set �(1) when machine is up.
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� � 

Flexible Two-part-type case

Manufacturing

System Control

We must find u(x, �) to satisfy 

αW 
min (x, �, t) u


u∗�(�) αx 
Partial solution of LP: 

• If αW/αx1 > 0 and αW/αx2 > 0, u1 = u2 = 0. 
• If αW/αx1 < αW/αx2 < 0, u1 = µ1, u2 = 0. 
• If αW/αx2 < αW/αx1 < 0, u2 = µ2, u1 = 0. 

Problem: no complete analytical solution available. 
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    1�

0

    2�

Flexible Two-part-type case 
Manufacturing
System Control 
Case: Exact solution if Z = (Z1, Z2) = 0 

x2 

x1 

1 2u  =  u = 0 

dx 
dt 

µ2 

2u = 0 

u = 01 

1u = 1 

2 

µ 

u = 

u11/ 

1/ 2�

u2 

0 

u11/ 1�

1/ 2�

u2 

1/ 1�

1/ 

u2 

0 u1 
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    1�

    2�

0

Flexible Two-part-type case 
Manufacturing
System Control 
Case: Approximate solution if Z > 0 

x2 

1 2u  =  u = 0 

dx 
dt 

µ2 

2u = 0 

u = 01 

1u = 1 

2 

µ 

u = 

u11/ 

1/ 2�

u2 

0 

1/ 1�

1/ 

u2 

0 

u11/ 1�

1/ 2�

u2 

x1 

u1 
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45

Flexible Two-part-type case 

System Control 
Manufacturing

Two parts, multiple machines without buffers: 
e 12 

4 

61e 

e 

34e 

23e 

3 

12 

x2 

Z 

6 
x1 

5 

56e 
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1 2 
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u 2 

e34 

12
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u1 
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e23 

� 
e45 

e56 

¥ 

d 
61
e 
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Flexible Two-part-type case

Manufacturing

System Control

• Proposed approximate solution for multiple-part, 
single machine system: 
� Rank order the part types, and bring them to their 
hedging points in that order. 
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Flexible Single-part-type case 

System Control 
Manufacturing

Surplus and tokens 

• Operating Machine M 
according to the hedging 
point policy is equivalent to 
operating this assembly 
system according to a finite 

B buffer policy. 
D 

M 

S 

FG 
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Flexible Single-part-type case 

System Control 
Manufacturing

Surplus and tokens 

•	D is a demand generator . 
δ Whenever a demand arrives, D

sends a token to B.


•	S is a synchronization machine. 
δ S	 is perfectly reliable and in­

finitely fast.


M 

D 

S 

FG 

B 

•	FG is a finite finished goods buffer. 
•	B is an infinite backlog buffer. 
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Flexible Single-part-type case

Manufacturing

System Control Material/token policies 

Operator 
• An operation cannot take Machine 

place unless there is a 
Part Part token available. Operation

Consumable Waste 
• Tokens authorize 

Token Token 
production. 

• These policies can often be implemented either with finite

buffer space, or a finite number of tokens. Mixtures are also

possible.


• Buffer space could be shelf space, or floor space indicated with 
paint or tape. 
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Multi-stage Proposed policy 
systems 

To control 
M B M B M1 1 2 2 3 

add an information flow system:


B1 M B M2 2 3M1 

S S2 3 

D 

S1 

BB1 

SB2 

BB2 

SB3 

BB3 

SB1 
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Multi-stage Proposed policy 
systems 

B1 M B M2 2 3M1 

S S2 3 

D 

S1 

BB1 

SB2 

BB2 

SB3 

BB3 

SB1 

• Bi are material buffers and are finite. 
• SBi are surplus buffers and are finite. 
• BBi are backlog buffers and are infinite. 
• The sizes of Bi and SBi are control parameters. 
• Problem: predicting the performance of this system. 
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Multi-stage

systems


Three Views of Scheduling 

Three kinds of scheduling policies, which are 
sometimes exactly the same. 

• Surplus-based: make decisions based on how 
much production exceed demand. 

• Time-based: make decisions based on how early or 
late a product is. 

• Token-based: make decisions based on presence 
or absence of tokens. 
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Multi-stage Objective of Scheduling 

systems Surplus and time 

and Demand 

earliness 

production P(t) 

demand D(t) 

surplus/backlog x(t) 

• Objective is to keep 
cumulative production 
close to cumulative 
demand. 

Cumulative

Production


• Surplus-based policies 
look at vertical 
differences between the 
graphs. 

• Time-based policies look 
at the horizontal t 

differences. 
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Multi-stage Other policies 
systems CONWIP, kanban, and hybrid 

• CONWIP: finite population, infinite buffers 
• kanban: infinite population, finite buffers 
• hybrid: finite population, finite buffers 
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Multi-stage Other policies 
systems CONWIP, kanban, and hybrid 

CONWIP 
Supply Demand 

Token flow 

Demand is less than capacity. 
How does the number of tokens affect performance (production 
rate, inventory)? 
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Multi-stage Other policies

systems Basestock


Demand 
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Multi-stage Other policies 
systems FIFO 

• First-In, First Out. 
• Simple conceptually, but you have to keep track of 
arrival times. 

• Leaves out much important information: 
� due date, value of part, current surplus/backlog 
state, etc. 
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Multi-stage Other policies 
systems EDD 

• Earliest due date. 
• Easy to implement. 
• Does not consider work remaining on the item, value 
of the item, etc.. 
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Multi-stage Other policies 
systems SRPT 

• Shortest Remaining Processing Time 
• Whenever there is a choice of parts, load the one 
with least remaining work before it is finished. 

• Variations: include waiting time with the work time. 
Use expected time if it is random. 
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Multi-stage Other policies 
systems Critical ratio 

• Widely used, but many variations. One version: 
Processing time remaining until completion 

δ Define CR = 
Due date - Current time 

δ Choose the job with the highest ratio (provided it is positive). 
δ If a job is late, the ratio will be negative, or the denominator 
will be zero, and that job should be given highest priority. 

δ If there is more than one late job, schedule the late jobs in 
SRPT order. 
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Multi-stage Other policies 
systems Least Slack 

• This policy considers a part’s due date. 
• Define slack = due date - remaining work time 
• When there is a choice, select the part with the least 
slack. 

• Variations involve different ways of estimating 
remaining time. 
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Multi-stage Other policies 
systems Drum-Buffer-Rope 

• Due to Eli Goldratt. 
• Based on the idea that every system has a bottleneck. 
• Drum: the common production rate that the system operates 
at, which is the rate of flow of the bottleneck. 

• Buffer: DBR establishes a CONWIP policy between the 
entrance of the system and the bottleneck. The buffer is the 
CONWIP population. 

• Rope: the limit on the difference in production between 
different stages in the system. 

• But: What if bottleneck is not well-defined? 
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Conclusions


• Many policies and approaches. 
• No simple statement telling which is better. 
• Policies are not all well-defined in the literature or in practice. 
• My opinion: 

δ This is because policies are not derived from first principles. 
δ Instead, they are tested and compared. 
δ Currently, we have little intuition to guide policy development 
and choice. 
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