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Line Design


• Given a process, find the best set of machines and buffers on 
which it can be implemented. 

• Best: least capital cost; least operating cost; least average 
inventory; greatest profit, etc. 

• Constraints: minimal production rate, maximal stockout 
probability, maximal floor space, maximal inventory, etc.. 

• To be practical, computation time must be limited. 
• Exact optimality is not necessary, especially since the 
parameters are not known perfectly. 
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Optimization


• Optimization may be performed in two ways: 
� Analytical solution of optimality conditions; or 
� Searching 

• For most problems, searching is the only realistic 
possibility. 

• For some problems, optimality cannot be achieved in 
a reasonable amount of time. 
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Quit 

Typically, many designs are tested. 
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Issues 
Optimization 

• For this to be practical, total computation time must be limited. Therefore,
we must control both computation time per iteration and the number of 
iterations . 

• Computation time per iteration includes evaluation time and the time to 
determine the next design to be evaluated. 

• The technical literature is generally focused on limiting the number of 
iterations by proposing designs efficiently. 

• The number of iterations is also limited by choosing a reasonable
termination criterion (ie, required accuracy). 

• Reducing computation time per iteration is accomplished by 
� using analytical models rather than simulations 
� using coarser approximations in early iterations and more accurate

evaluations later.
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Problem

Statement


X is a set of possible choices. J is a scalar function defined on

X. h and g are vector functions defined on X. 

Problem: Find x ← X that satisfies 
J(x) is maximized (or minimized) — the objective 
subject to 
h(x) = 0 — equality constraints 

g(x) � 0 — inequality constraints 
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Taxonomy


• static/dynamic 

• deterministic/stochastic 

• X set: continuous/discrete/mixed 

(Extensions: multi-criteria optimization, in which the set of all

good compromises between different objectives are sought; 
games, in which there are multiple optimizers, each preferring 
different xs but none having complete control; etc.) 
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Continuous

Variables and

Objective


X = Rn. J is a scalar function defined on Rn. h(← Rm) and 
g(← Rk) are vector functions defined on Rn. 

Problem: Find x ← Rn that satisfies 
J(x) is maximized (or minimized) 
subject to 
h(x) = 0


g(x) � 0
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Continuous Unconstrained 
Variables and 
Objective One-dimensional search 

Find t such that f(t) = 0.


• This is equivalent to 
Find t to maximize (or minimize) F (t) 

when F (t) is differentiable, and f(t) = dF (t)/dt is 
continuous. 

• If f(t) is differentiable, maximization or minimization 
depends on the sign of d2F (t)/dt2. 

Copyright c 9�2007 Stanley B. Gershwin. 



 

 

 

�


� �


Continuous

Variables and

Objective


Assume f(t) is decreasing. 
• Binary search: Guess t0 and f(t0 ) 

t1 such that f(t0) > 0 and 
f(t1) < 0. Let 
t2 = (t0 + t1)/2. f(t2 ) 

� If f(t2) < 0, then repeat f(t1 )

with t
 = t0 and t� 

0 1
 =
t2.


� If f(t2) > 0, then repeat 
with t0 t2 and t=
 =
t1.


Unconstrained 

One-dimensional search


f(t) 

t0 t1t2 

t’0 t’1 

t


1
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Continuous Unconstrained 
Variables and 
Objective One-dimensional search


t0 t2 t1 

Example: 

f(t) = 4 − t2


0 
1.5

1.5

1.875

1.875

1.96875

1.96875

1.9921875

1.9921875

1.998046875

1.998046875

1.99951171875

1.99951171875

1.9998779296875

1.9998779296875

1.99996948242188

1.99996948242188

1.99999237060547

1.99999237060547

1.99999809265137


1.5

2.25

1.875

2.0625

1.96875

2.015625

1.9921875

2.00390625

1.998046875

2.0009765625

1.99951171875

2.000244140625

1.9998779296875

2.00006103515625

1.99996948242188

2.00001525878906

1.99999237060547

2.00000381469727

1.99999809265137

2.00000095367432


3 
3 
2.25

2.25

2.0625

2.0625

2.015625

2.015625

2.00390625

2.00390625

2.0009765625

2.0009765625

2.000244140625

2.000244140625

2.00006103515625

2.00006103515625

2.00001525878906

2.00001525878906

2.00000381469727

2.00000381469727
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Continuous Unconstrained 
Variables and 
Objective One-dimensional search 

f(t) 

• Newton search, exact tangent: f(t0 ) 

� Guess t0. Calculate

df(t0)/dt.


� Choose t1 so that 
df (t0)f(t0) + (t1 − t0) dt = 0. f(t1 ) 

� Repeat with t� 
0 = t1 until


|f(t� 
0)| is small enough.


t0 t1 
t 
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Continuous 
Variables and 
Objective 

Example: 

f(t) = 4 − t2 

Unconstrained 

One-dimensional search


t0 

3 
2.16666666666667 
2.00641025641026 
2.00001024002621 
2.00000000002621 
2 
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Continuous Unconstrained 
Variables and 
Objective One-dimensional search 

f(t) 
• Newton search, approximate 
tangent: 

f(t0 ) 

� Guess t0 and t1. Calculate

approximate slope


f (t1)−f (t0)
s = 
t1−t0 

. f(t2 )


� Choose t2 so that f(t1 )

f(t0) + (t2 − t0)s = 0.


� Repeat with t� 
0 = t1 and


t� = t2 until |f(t� )| is small
1 0

enough. 

t0 t1t2 
t 
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Continuous 
Variables and 
Objective 

Example: 

f(t) = 4 − t2 

Unconstrained 

One-dimensional search


t0 

0 
3 
1.33333333333333 
1.84615384615385 
2.03225806451613 
1.99872040946897 
1.99998976002621 
2.0000000032768 
1.99999999999999 
2 
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Continuous Unconstrained 
Variables and 
Objective Multi-dimensional search 

x2 

J 
Optimum 

Steepest
Ascent 
Directions Optimum often found


by steepest ascent or

hill-climbing methods.


x1 
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Continuous Unconstrained

Variables and

Objective Gradient search� 

To maximize J(x), where x is a vector (and J is a scalar function 
that has nice properties): 
0. Set n = 0. Guess x0. 
1. Evaluate �J (xn).

�x

2. Let t be a scalar. Define Jn(t) = J xn + t
�J 

(xn)
�x


Find (by one-dimensional search ) t� , the value of t that
n

maximizes Jn(t). 
3. Set xn+1 = xn + t� �J (xn). n�x

4. Set n � n + 1. Go to Step 1. 
� also called steepest ascent or steepest descent . 
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Continuous Constrained 
Variables and 
Objective 

Equality constrained: solution is 
on the constraint surface. 

Problems are much easier when 
constraint is linear, ie, when the 
surface is a plane. 
• In that case, replace �J/�x 
by its projection onto the 
constraint plane. 

• But first: find an initial 
feasible guess. 

x1 

x2 

J 

Constrained 
Optimum 

h(x , x ) = 01 2 
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Continuous Constrained 
Variables and 
Objective 

x2 

>
1 2g(x , x ) 

ConstrainedJ 
Optimum Inequality constrained:


solution is required to

be on one side of the

plane. 

0 

x1 

Inequality constraints that are satisfied with equality are called effective or 
active constraints. 

If we knew which constraints would be effective, the problem would reduce to
an equality-constrained optimization. 
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Continuous Constrained 
Variables and 
Objective 

−6 

8*(x+y)−.25*(x**4+y**4)
−4 

20 
16

−2
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 −8
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 −16
 −20
 −24

−2  0  2  4  6 

Minimize 8(x + y) − (x4 + y4)/4 

subject to x + y ≈ 0 

Solving a linearly-constrained problem is relatively easy. If the

solution is not in the interior, search within the boundary plane.
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Continuous Constrained 
Variables and 
Objective 

−6 

8*(x+y)−.25*(x**4+y**4)
−4 

20 
16

−2

 0

 2

 4

 6 

12
 8
 4
 0

 −4
 −8

 −12
 −16
 −20
 −24

−2  0  2  4  6 

Minimize 8(x + y) − (x4 + y4)/4 

subject to x − (x − y)2 + 1 ≈ 0 

Solving a nonlinearly-constrained problem is not so easy. 
Searching within the boundary is numerically difficult. 
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Continuous Nonlinear and Linear Programming 
Variables and 
Objective 
Optimization problems with continuous variables, 
objective, and constraints are called nonlinear 
programming problems, especially when at least one 
of J, h, g are not linear. 
When all of J, h, g are linear, the problem is a linear 
programming problem. 
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Continuous Multiple Optima 
Variables and 
Objective 

x1 

x2 

J 
Local (or Relative)
Maxima 

Global Maximum 

Danger: a search might find a local, rather than the 
global, optimum. 
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Continuous Primals and Duals

Variables and

Objective

Consider the two problems: 

min f(x) max j(x) 

subject to j(x) ≈ J subject to f(x) � F


f(x), F , j(x), and J are scalars. We will call these problems duals of one 
another. (However, this is not the conventional use of the term.) Under certain 
conditions when the last inequalities are effective, the same x satisfies both 
problems. 

We will call one the primal problem and the other the dual problem . 
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Continuous 
Variables and 
Objective 
Generalization: 

min f(x) 

subject to	 h(x) = 0 

g(x) � 0 

j(x) ≈ J 

Primals and Duals


max j(x) 

subject to h(x) = 0 

g(x) � 0 

f(x) � F 
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Buffer Space Problem statement 
Allocation 

M B1 1 M B2 2 M B3 3 M B4 4 M B5 5 M6 

Problem: Design the buffer space for a line. The 
machines have already been selected. Minimize the 
total buffer space needed to achieve a target 
production rate. 
Other problems: minimize total average inventory; 
maximize profit (revenue - inventory cost - buffer space 
cost); choose machines as well as buffer sizes; etc. 
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Buffer Space Problem statement

Allocation


Assume a deterministic processing time line with k machines with ri and pi 

known for all i = 1, ..., k. Assume minimum buffer size N MIN. Assume a 
target production rate P �. Then the function P (N1, ..., Nk−1) is known — it 
can be evaluated using the decomposition method. The problem is: 

Primal problem: 
k−1


Minimize 
� 

Ni


i=1


subject to P (N1, ..., Nk−1) ≈ P � 

Ni ≈ N MIN, i = 1, ..., k − 1. 

In the following, we treat the Nis like a set of continuous variables. 
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Properties of P (N1, ..., Nk−1)Buffer Space

Allocation


P (∗, ..., ∗) = min ei 
i=1,...,k 

P (N MIN, ..., N MIN) � 
1 

<< P (∗, ..., ∗)
k−1 
� pi 

1 +

rii 

• Continuity: A small change in any Ni creates a small change in P . 
• Monotonicity: The production rate increases monotonically in each Ni . 
• Concavity: The production rate appears to be a concave function of the 
vector (N1, ..., Nk−1). 
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Buffer Space Properties of P (N1, ..., Nk−1) 

Allocation	 Example — 3-machine line

200 

Optimal curve
P=0.8800 
P=0.8825 
P=0.8850 
P=0.8875 
P=0.8900P	 P=0.8925 

0.91	 150 P=0.8950 
P=0.8975 

0.9	 P=0.9000 

0.89 
0.88 
0.87
 N2 100 
0.86 
0.85 
0.84 
0.83 

100 50 
90

80
70

6010 20 30 40 50 60	 30
40

50 N2 

N1 70 80 90 10
20	 0

0 50 100 150 200
100	 N1 

r1 = .35 r2 = .15 r3 = .4 
p1 = .037 p2 = .015 p3 = .02 
e1 = .904 e2 = .909 e3 = .952 
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Minimize 
k−1 
� 

Ni 

Buffer Space Solution 

Allocation Primal problem 

i=1 

subject to P (N1, ..., Nk−1) � P � 

Ni � N MIN, i = 1, ..., k − 1. 

Difficulty: If all the buffers are larger than N MIN, the solution will satisfy 
P (N1, ..., Nk−1) = P �. (Why?) But P (N1, ..., Nk−1) is nonlinear and 
cannot be expressed in closed form. Therefore any solution method will have 
to search within this constraint and all steps will be small and there will be
many iterations. 

It would be desirable to transform this problem into one with linear constraints.
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Buffer Space Solution 

Allocation Dual problem 

Maximize P (N1, ..., Nk−1) 

k−1 

subject to Ni � N TOTAL specified 
i=1 

Ni � N MIN, i = 1, ..., k − 1. 

All the constraints are linear. The solution will satisfy the N TOTAL constraint 
with equality (assuming the problem is feasible). (1. Why? 2. When would the 
problem be infeasible?) This problem is consequently relatively easy to solve. 
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Buffer Space Solution


Allocation N2
 Dual problem 

N1 +N2 +N3 = N
TOTAL 

N3

Constraint set 
(if N MIN = 0). N1 
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Buffer Space Solution


Allocation Primal strategy


Solution of the primal problem: 

1. Guess N TOTAL. 

2. Solve the dual problem. Evaluate 
P = P MAX(N TOTAL). 

3. Use a one-dimensional search method to find N TOTAL 

such that P MAX(N TOTAL) = P �. 

Copyright �2007 Stanley B. Gershwin. c 33 



Buffer Space Solution 

Allocation Dual Algorithm 

Maximize P (N1, ..., Nk−1) 
Pk−1subject to 

i=1 Ni = N TOTAL specified

MIN
Ni � N , i = 1, ..., k − 1. 

• Start with an initial guess (N1, ..., Nk−1) that satisfies 
�k−1 Ni = N TOTAL.i=1 

• Calculate the gradient vector (g1, ..., gk−1): 
P (N1, . . . , Ni + �N, . . . , Nk−1) − P (N1, . . . , Ni, . . . , Nk−1) 

gi = 
�N 

• Calculate the projected gradient vector (ĝ1, ..., ĝk−1): 
k−1 

ĝi = gi − ḡ where ḡ = 
1 � 

gi 
k − 1 

i=1 

Copyright �2007 Stanley B. Gershwin. c 34 



� � � 

� � � � 

Buffer Space Solution 

Allocation Dual Algorithm 

• The projected gradient ĝ satisfies 
k−1 k−1 k−1 

ĝi = (gi − ḡ) = gi − (k − 1)ḡ = 0 
i=1 i=1 i=1 

• Therefore, if A is a scalar, then 
k−1 k−1 k−1 k−1 

(Ni + Aĝi) = Ni + Aĝi = Ni 

i=1 i=1 i=1 i=1 
�k−1so if (N1, ..., Nk−1) satisfies i=1 Ni = N TOTAL and Ni 

� = Ni + Aĝi for 
�k−1any scalar A, then (N1

�, ..., N k
�
−1) satisfies i=1 Ni 

� = N TOTAL. 
• That is, if N is on the constraint, then N + Aĝ is also on the constraint (as 
long as all elements ≈ N MIN). 
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Buffer Space Solution 

Allocation Dual Algorithm 

• The gradient g is the direction of greatest increase of P . 
• The projected gradient ĝ is the direction of greatest increase of 

P within the constraint plane . 
• Therefore, once we have a point N on the constraint plane, the 
best improvement is to move in the direction of ĝ; that is, 
N + Aĝ. 

• To find the best possible improvement, we find A�, the value of 
A that maximizes P (N + Aĝ). A is a scalar, so this is a 
one-dimensional search. 

• N + A�ĝ is the next guess for N , and the process repeats. 
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Buffer Space Solution 

Allocation Dual Algorithm 

Find such that 
is maximized. Define 

Is close to ? 

P(N+ p)A

N = ^ 

^ N ^ N 

YES 

direction 

g. 

Specify initial guess
N = 

A

AN+ p 

N N = 

and search parameters.
(N , ..., N ) 

SetNO 

1 k-1 

Calculate gradient 

Calculate search 
p. 

(Here, p = ĝ.)


Terminate. 
N is the solution. 
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Buffer Space Solution 

Allocation Dual Algorithm 

Initial Guess 
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Buffer Space Solution 

Allocation Primal algorithm 

• We can solve the dual problem for any N TOTAL. 
• We can calculate N1(N TOTAL), N2(N TOTAL), ..., Nk−1(N TOTAL), 

200P MAX(N TOTAL). 

150 

100 

50 

0 

N2
 

0 50 100 150 200 

P=0.8950 
P=0.8975 
P=0.9000 

Optimal curve
P=0.8800 
P=0.8825 
P=0.8850 
P=0.8875 
P=0.8900 
P=0.8925 

N1 
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Buffer Space Solution 

Allocation Primal algorithm 

M
ax

im
um

 a
ve

ra
ge

 p
ro

du
ct

io
n 

ra
te

 
0.92 

0.9 

0.88 

0.86 

0.84 

0.82 

0.8 

0.78 
0 50 100 150 200 

Total buffer space 

P MAX(N TOTAL) as a function of N TOTAL. 
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Buffer Space Solution 

Allocation Primal algorithm 

Then, we can find, by 1-dimensional search, N TOTAL 

such that 
P MAX(N TOTAL) = P � . 
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Buffer Space Solution 

Allocation Primal algorithm 

N 0 MIN 0Set = (k-1)N . Calculate PMAX (N ).

Specify initial guess N1 and search parameters.


1Solve the dual to obtain PMAX (N ). Set j = 2. 

*P

Call the dual algorithm to 

NO 

evaluate P (N ).MAX 

Calculate from (7).N j 

j 

Increment j by 1. 
MAXP (N )jIs close enough to ? 

(Here, (7) refers to a 
one-dimensional search.) 

YES 

Terminate. 

jN . 
Minimum total buffer space is 
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Buffer Space Example 
Allocation The “Bowl Phenomena” 

• Problem: how to allocate space in a line with identical machines. 
• Case: 20-machine continuous material line, ri = .0952, pi = .005, and 

µi = 1, i = 1, ..., 20. 

First, we show the 
average WIP
distribution if all 
buffers are the 
same size: 
Ni = 53, 
i = 1, ..., 19
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Buffer Space Example 
Allocation The “Bowl Phenomena” 

• This shows the optimal distribution of buffer space and the resulting 
distribution of average inventory .
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Buffer Space Example 
Allocation The “Bowl Phenomena” 

Observations: 

• The optimal distribution of buffer space does not look like the 
distribution of inventory in the line with equal buffers. Why not? 
Explain the shape of the optimal distribution. 

• The distribution of average inventory is not symmetric. 
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Buffer Space Example 
Allocation The “Bowl Phenomena” 

• This shows the ratios of average inventory to buffer size with equal buffers 
and with optimal buffers.
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Buffer Space Example

Allocation


• Design the buffers for a 20-machine production line.

• The machines have been selected, and the only 
decision remaining is the amount of space to 
allocate for in-process inventory. 

• The goal is to determine the smallest amount of 
in-process inventory space so that the line meets a 
production rate target. 
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Buffer Space Example

Allocation


• The common operation time is one operation per 
minute. 

• The target production rate is .88 parts per minute.
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Buffer Space Example

Allocation


• Case 1 MTTF= 200 minutes and MTTR = 10.5 
minutes for all machines (P = .95 parts per minute). 
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Buffer Space Example

Allocation


• Case 1 MTTF= 200 minutes and MTTR = 10.5 
minutes for all machines (P = .95 parts per minute). 

• Case 2 Like Case 1 except Machine 5. For 
Machine 5, MTTF = 100 and MTTR = 10.5 minutes 
(P = .905 parts per minute). 
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Buffer Space Example

Allocation


• Case 1 MTTF= 200 minutes and MTTR = 10.5 
minutes for all machines (P = .95 parts per minute). 

• Case 2 Like Case 1 except Machine 5. For 
Machine 5, MTTF = 100 and MTTR = 10.5 minutes 
(P = .905 parts per minute). 

• Case 3 Like Case 1 except Machine 5. For 
Machine 5, MTTF = 200 and MTTR = 21 minutes 
(P = .905 parts per minute). 
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Buffer Space Example 
Allocation 

Are buffers really needed? 
Line


Case 1

Case 2

Case 3


Production rate with no buffers,

parts per minute 

.487 

.475 

.475 

Yes. How were these numbers calculated? 
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Buffer Space Example 
Allocation 

Solution 

Bu
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Bottleneck 

Line 
30 Case 1


Case 2

20


Case 3

10


Buffer 

Space

430

485

523
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Buffer Space Example

Allocation


• This shows the optimal distribution of buffer space and the resulting 
distribution of average inventory for Case 3.
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Buffer Space Example

Allocation


• This shows the ratio of average inventory to buffer size with optimal buffers 
for Case 3.
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Buffer Space Example

Allocation

• Case 4: Same as Case 3 except bottleneck is at Machine 15. 
• This shows the optimal distribution of buffer space and the resulting 
distribution of average inventory for Case 4.
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Buffer Space Example

Allocation


• This shows the ratio of average inventory to buffer size with optimal buffers 
for Case 4.
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Buffer Space Example

Allocation

• Case 5: MTTF bottleneck at Machine 5, MTTR bottleneck at Machine 15.

• This shows the optimal distribution of buffer space and the resulting 
distribution of average inventory for Case 5.
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Buffer Space Example

Allocation


• This shows the ratio of average inventory to buffer size with optimal buffers 
for Case 5.
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Buffer Space Example

Allocation

• Case 6: Like Case 6, but 50 machines, MTTR bottleneck at Machine 45.

• This shows the optimal distribution of buffer space and the resulting 
distribution of average inventory for Case 6.
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Buffer Space Example

Allocation


• This shows the ratio of average inventory to buffer size with optimal buffers 
for Case 6.
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Buffer Space Example

Allocation


• Observation from studying buffer space allocation 
problems: 
� Buffer space is needed most where buffer level 
variability is greatest! 
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Profit as a function of buffer sizesBuffer Space

Allocation
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• Three-machine, continuous 
material line. 

• ri = .1, pi = .01,µi = 1. 

• � = 1000P (N1, N2) 
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