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• Finite buffers (0 � ni(t) � Ni). 
• Single closed loop – fixed population ( i ni(t) = N ). 
• Focus is on the Buzacott model (deterministic processing time; geometric
up and down times). Repair probability = ri; failure probability = pi. Many 
results are true for more general loops. 

• Goal: calculate production rate and inventory distribution. 
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Problem Motivation


Statement


• Limited pallets/fixtures. 
• CONWIP (or hybrid) control systems. 
• Extension to more complex systems and policies.
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Two-Machine Loops 
Special Case 

Refer to MSE Section 5.6, page 205.
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P loop(r1, p1, r2, p2, N1, N2) = P line(r1, p1, r2, p2, N �) 

where 
N � = min(n, N1) − max(0, n − N2) 
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Two-Machine Loops 
Special Case 
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Expected

population

method


• Treat the loop as a line in which the first machine 
and the last are the same. 

• In the resulting decomposition, one equation is 
missing. 

• The missing equation is replaced by the expected

population constraint ( i n̄i = N ). 
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Expected

population

method

Evaluate i, i − 1, i + 1 modulo k (ie, replace 0 by k and replace k + 1 by 1). 

ps(i − 1)ru(i) 
ru(i) = ru(i − 1)X(i) + ri(1 − X(i)); X(i) = 

pu(i)E(i − 1) 
1 1 pd(i − 1) 

pu(i) = ru(i) + − 2 − , i = 1, ..., k 
E(i − 1) ei rd(i − 1) 

pb(i + 1)rd(i) 
rd(i) = rd(i + 1)Y (i + 1) + ri+1(1 − Y (i + 1)); Y (i + 1) = . 

pd(i)E(i + 1) 
1 1 pu(i + 1) 

pd(i) = rd(i) + − 2 − , i = k, ..., 1 
E(i + 1) ei+1 ru(i + 1) 

This is 4k equations in 4k unknowns. But only 4k − 1 of them are independent 
because the derivation uses E(i) = E(i + 1) for i = 1, ..., k. The first k − 1 

are E(1) = E(2), E(2) = E(3), ..., E(k − 1) = E(k). But this implies 
E(k) = E(1), which is the same as the kth equation. 
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Expected

population

method


Therefore, we need one more equation. We can use 

n̄i = N 
i 

If we guess pu(1) (say), we can evaluate 
n̄ TOTAL = i n̄i as a function of pu(1). We search for 
the value of pu(1) such that n̄ TOTAL = N . 
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Expected

population

method


Behavior: 

• Accuracy good for large systems, not so good for 
small systems. 

• Accuracy good for intermediate-size populations; not 
so good for very small or very large populations. 
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Expected

population

method


• Hypothesis: The reason for the accuracy behavior of the
population constraint method is the correlation in the buffers. 
� The number of parts in the system is actually constant . 
� The expected population method treats the population as random, with a 
specified mean. 

� If we know that a buffer is almost full, we know that there are fewer parts

in the rest of the network, so probabilities of blockage are reduced and

probabilities of starvation are increased. (Similarly if it is almost empty.)


� Suppose the population is smaller than the smallest buffer. Then there 
will be no blockage. The expected population method does not take this 
into account. 
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Loop Behavior


To construct a method that deals with the invariant 
(rather than the expected value of the invariant), we 
investigate how buffer levels are related to one another 
and to the starvation and blocking of machines. 
In a line, every downstream machine could block a 
given machine, and every upstream machine could 
starve it. In a loop, blocking and starvation are more 
complicated. 
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Ranges 
Loop Behavior 

M1 

B1 M2 M3 

M6B6 M5B5 
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B4 
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• The range of blocking of a machine is the set of all machines

that could block it if they stayed down for a long enough time.


• The range of starvation of a machine is the set of all machines

that could starve it if they stayed down for a long enough time.
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Ranges 
Loop Behavior 

Range of Blocking
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• All buffer sizes are 10. 
• Population is 37. 
• If M4 stays down for a long time, it will block M1. 
• Therefore M4 is in the range of blocking of M1. 
• Similarly, M2 and M3 are in the range of blocking of M1. 
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Ranges 
Loop Behavior 

Range of starvation
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• If M5 stays down for a long time, it will starve M1. 
• Therefore M5 is in the range of starvation of M1. 
• Similarly, M6 is in the range of starvation of M1. 
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Ranges 
Loop Behavior 

Line 

• The range of blocking of a machine in a line is the entire 
downstream part of the line. 

• The range of starvation of a machine in a line is the entire 
upstream part of the line. 
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Ranges 
Loop Behavior 

Line 

In an acyclic network, if Mj is downstream of Mi, then the range 
of blocking of Mj is a subset of the range of blocking of Mi. 

M M 

Range of blocking of M 

Range of blocking of M 

j 

i 

i j 

Similarly for the range of starvation. 
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In an acyclic network, if Mj is downstream of Mi

Ranges 
Loop Behavior 

Line 
, any real machine whose 

failure could cause Md(j) to appear to be down could also cause Md(i) to 
appear to be down. 

M B M
i i j 

M (i)d 

M (j)d 

Consequently, we can express rd(i) as a function of the parameters of L(j). 
This is not possible in a network with a loop because some machine that 
blocks Mj does not block Mi. 
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Ranges 
Loop Behavior 

Difficulty for decomposition
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Ranges of blocking and starvation of adjacent machines are not subsets or 
supersets of one another in a loop. 
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Ranges 
Loop Behavior 

Difficulty for decomposition
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Range of blocking of M 
Range of blocking of M 

1 

2 

M5 can block M2. Therefore the parameters of M5 should directly affect the 
parameters of Md(1) in a decomposition. However, M5 cannot block M1 so 
the parameters of M5 should not directly affect the parameters of Md(6). 
Therefore, the parameters of Md(6) cannot be functions of the parameters of 
Md(1). 
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Multiple Failure

Mode Line

Decomposition


• To deal with this issue, we introduce a new 
decomposition. 

• In this decomposition, we do not create failures of 
virtual machines that are mixtures of failures of real 
machines. 

• Instead, we allow the virtual machines to have 
distinct failure modes, each one corresponding to the 
failure mode of a real machine. 
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Multiple Failure
Mode Line 
Decomposition 

1,2 3 4 85,6,7 9,10 

1,2, 
3,4 

5,6,7, 
8,9,10 

• There is an observer in each buffer who is told that 
he is actually in the buffer of a two-machine line. 
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Multiple Failure
Mode Line 
Decomposition 

1,2 3 4 85,6,7 9,10 

1,2, 
3,4 

5,6,7, 
8,9,10 

• Each machine in the original line may and in the two-machine 
lines must have multiple failure modes. 

• For each failure mode downstream of a given buffer, there is a 
corresponding mode in the downstream machine of its 
two-machine line. 

• Similarly for upstream modes. 
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Multiple Failure
Mode Line 
Decomposition 

1,2 3 4 85,6,7 9,10 

1,2, 
3,4 

5,6,7, 
8,9,10 

• The downstream failure modes appear to the observer after 
propagation through blockage . 

• The upstream failure modes appear to the observer after 
propagation through starvation . 

• The two-machine lines are more complex that in earlier 
decompositions but the decomposition equations are simpler. 
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Multiple Failure Two-Machine Line 
Mode Line 
Decomposition 

down 

up 

Form a Markov chain and find the steady-state probability 
distribution. The solution technique is very similar to that of the 
two-machine-state model. Determine the production rate, 
probability of starvation and probability of blocking in each down 
mode, average inventory. 
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Multiple Failure Line Decomposition

Mode Line

Decomposition


• A set of decomposition equations are formulated. 
• They are solved by a Dallery-David-Xie-like 
algorithm. 

• The results are a little more accurate than earlier 
methods, especially for machines with very different 
failures. 
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Multiple Failure Line Decomposition 
Mode Line 
Decomposition 

1,2 3 4 85,6,7 9,10 

1,2, 
3,4 

5,6,7, 
8,9,10 

• In the upstream machine of the building block, failure mode 4 is a local 
mode; modes 1, 2, and 3 are remote modes. Modes 5, 6, and 7 are local 
modes of the downstream machine; 8, 9, and 10 are remote modes. 

• For every mode, the repair probability is the same as the repair probability 
of the corresponding mode in the real line. 

• Local modes: the probability of failure into a local mode is the same as the
probability of failure in that mode of the real machine. 
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Multiple Failure Line Decomposition 
Mode Line 
Decomposition 

1,2 3 4 85,6,7 9,10 

1,2, 
3,4 

5,6,7, 
8,9,10 

• Remote modes: i is the building block number; j and f are the machine

number and mode number of a remote failure mode. Then


Ps,jf (i − 1) Pb,jf (i)u d pjf (i) = rjf ; pjf (i − 1) = rjf 
E(i) E(i − 1) 

uwhere pjf (i) is the probability of failure of the upstream machine into mode 
jf ; Ps,jf (i − 1) is the probability of starvation of line i − 1 due to mode jf ; 
rjf is the probability of repair of the upstream machine from mode jf ; etc. 

• Also, E(i − 1) = E(i). 
u d 

• pjf (i), pjf (i) are used to evaluate E(i), Ps,jf (i),Pb,jf (i) from

two-machine line i in an iterative method.
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Multiple Failure Line Decomposition

Mode Line

Decomposition 

Consider 
Ps,jf (i − 1) Pb,jf (i)u d pjf (i) = rjf ; pjf (i − 1) = rjf 

E(i) E(i − 1) 
In a line, jf refers to all modes of all upstream machines in the 
first equation; and all modes of all downstream machines in the 
second equation. 

We can interpret the upstream machines as the range of 
starvation and the downstream machines as the range of 
blockage of the line. 
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Multiple Failure Extension to Loops 
Mode Line 
Decomposition 

M1 

B1 M M3 

M6B6 M5B5 
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M4 

B4 

22 B 

• Use the multiple-mode decomposition, but adjust the 
ranges of blocking and starvation accordingly. 

• However, this does not take into account the local 
information that the observer has. 
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Thresholds
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• The B6 observer knows how many parts there are in his buffer. 
• If there are 5, he knows that the modes he sees in M d(6) could 
be those corresponding to the modes of M1, M2, M3, and M4. 
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Thresholds
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• However, if there are 8, he knows that the modes he sees in 
M d(6) could only be those corresponding to the modes of M1, 
M2, and M3; and not those of M4. 

• The transition probabilities of the two-machine line therefore 
depend on whether the buffer level is less than 7 or not. 
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Thresholds


• This would require a new model of a two-machine 
line. 

• The same issue arises for starvation. 
• In general, there can be more than one threshold in 
a buffer. 

• Consequently, this makes the two-machine line very 
complicated. 
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Transformation


• Purpose: to avoid the complexities caused by 
thresholds. 

• Idea: Wherever there is a threshold in a buffer, 
break up the buffer into smaller buffers separated by 
perfectly reliable machines. 
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Transformation


20 

buffer size 
• When M1 fails for a long time, 

3 
B4 and B3 fill up, and there B1 18 

M2 
B2 is one part in B2. Therefore 13 1 

there is a threshold of 1 in B2. 
• When M2 fails for a long time, 

M1 
M3 B1 fills up, and there is one 

part in B4. Therefore there is 
a threshold of 1 in B4. 

1 

B4 M4 B3 
• When M3 fails for a long time, 

5 B2 fills up, and there are 18 15 

parts in B1. Therefore there is threshold population = 21 
a threshold of 18 in B1.Copyright c 34�2007 Stanley B. Gershwin. 



Transformation


B1 18 
13 
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• When M4 fails for a long time, 

B3 and B2 fill up, and there 
are 13 parts in B1. Therefore 
there is a threshold of 13 in 
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Transformation
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• Break up each buffer into a sequence of buffers of size 1 and 
reliable machines. 

• Count backwards from each real machine the number of 
buffers equal to the population. 

• Identify the reliable machine that the count ends at. 
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Transformation
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• Collapse all the sequences of unmarked reliable 
machines and buffers of size 1 into larger buffers. 
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Transformation


• Ideally, this would be equivalent to the original 
system. 

• However, the reliable machines cause a delay, so 
transformation is not exact for the discrete/ 
deterministic case. 

• This transformation is exact for continuous-material 
machines. 
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Small populations 
Transformation 

• If the population is smaller than the largest buffer, at 
least one machine will never be blocked. 

• However, that violates the assumptions of the 
two-machine lines. 

• We can reduce the sizes of the larger buffers so that 
no buffer is larger than the population. This does not 
change performance. 
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Numerical Accuracy

Results


• Many cases were compared with simulation: 
� Three-machine cases: all throughput errors under 1%; buffer 
level errors averaged 3%, but were as high as 10%. 

� Six-machine cases: mean throughput error 1.1% with a

maximum of 2.7%; average buffer level error 5% with a

maximum of 21%.


� Ten-machine cases: mean throughput error 1.4% with a

maximum of 4%; average buffer level error 6% with a

maximum of 44%.
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Numerical Other algorithm attributes 
Results 

• Convergence reliability: almost always. 
• Speed: execution time increases rapidly with loop 
size. 

• Maximum size system: 18 machines. Memory 
requirements grow rapidly also. 

Copyright �2007 Stanley B. Gershwin. c 41 



Numerical 
Results 
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Numerical Behavior 
Results 

* M1 

B1 M2 B2 

M3 

B3M4B4 

• All buffer sizes 10. Population 15. Identical machines 
except for M1. 

• Observe average buffer levels and production rate as 
a function of r1. 
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• Production rate vs. r1. 
• Usual saturating graph. 
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• When r1 is small, M1 is a bottleneck, so B4 holds 10

parts, B3 holds 5 parts, and the others are empty.


• As r1 increases, material is more evenly distributed.

When r1 = 0.1, the network is totally symmetrical.
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Applications


• Design system with pallets/fixtures. The fixtures and 
the space to hold them in are expensive. 

• Design system with tokens/kanbans (CONWIP). By 
limiting population, we reduce production rate, but 
we also reduce inventory. 
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