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Probability and Statistics 
Trick Question 

I flip a coin 100 times, and it shows heads every time. 

Question: What is the probability that it will show heads on the next flip? 
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Probability and Statistics 

Probability 6= Statistics 

Probability: mathematical theory that describes uncertainty. 

Statistics: set of techniques for extracting useful information from data. 
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Interpretations of probability 
Frequency 

The probability that the outcome of an experiment is A is prob (A) 

if the experiment is performed a large number of times and the fraction of 
times that the observed outcome is A is prob (A). 
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Interpretations of probability 
Parallel universes 

The probability that the outcome of an experiment is A is prob (A) 

if the experiment is performed in each parallel universe and the fraction of 
universes in which the observed outcome is A is prob (A). 
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Interpretations of probability 
Betting Odds 

The probability that the outcome of an experiment is A is 
prob (A) = P(A) 

if before the experiment is performed a risk-neutral observer would be 
willing to bet $1 against more than $ 1−P(A) 

P(A) . 
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Interpretations of probability 
State of belief 

The probability that the outcome of an experiment is A is prob (A) 

if that is the opinion (ie, belief or state of mind) of an observer before the 
experiment is performed. 

2.852 Manufacturing Systems Analysis 7/128 Copyright c�2010 Stanley B. Gershwin. 



Interpretations of probability 
Abstract measure 

The probability that the outcome of an experiment is A is prob (A) 

if prob () satisfies a certain set of axioms. 
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Interpretations of probability 
Abstract measure 

Axioms of probability 

Let U be a set of samples . Let E1, E2, ... be subsets of U. Let φ be the 
null set (the set that has no elements). 

◮ 0 ≤ prob (Ei ) ≤ 1 

◮ prob (U) = 1 

◮ prob (φ) = 0 

◮ If Ei ∩ Ej = φ, then prob (Ei ∪ Ej ) = prob (Ei ) + prob (Ej ) 
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Probability Basics 

◮ Subsets of U are called events. 

◮ prob (E ) is the probability of E . 
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Probability Basics 

◮ If 

◮ 
� 

i Ei = U, and 

◮ Ei ∩ Ej = φ for 
all i and j , 

◮ then 
� 

i prob (Ei ) = 1 

Ei 
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Probability Basics 
Set Theory 

Venn diagrams 

A 

A 

U 

prob (Ā) = 1 − prob (A) 
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Probability Basics 
Set Theory 

Venn diagrams 

U 

AUB 

U 

A B 

A B 

prob (A ∪ B) = prob (A) + prob (B) − prob (A ∩ B) 
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Probability Basics 
Independence 

A and B are independent if 

prob (A ∩ B) = prob (A) prob (B). 
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Probability Basics 
Conditional Probability 

prob (A|B) = 
prob (A ∩ B) 

prob (B) 

U 

AUB 

U 

A B 

A B 

prob (A ∩ B) = prob (A|B) prob (B). 
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Probability Basics 
Conditional Probability 

Example 
Throw a die. 

◮ A is the event of getting an odd number (1, 3, 5). 

◮ B is the event of getting a number less than or equal to 3 (1, 2, 3). 

Then prob (A) = prob (B) = 1/2 and 
prob (A ∩ B) = prob (1, 3) = 1/3. 
Also, prob (A|B) = prob (A ∩ B)/ prob (B) = 2/3. 
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Probability Basics 
Conditional Probability 

Note: prob (A|B) being large does not mean that B causes A. It only 
means that if B occurs it is probable that A also occurs. This could be 
due to A and B having similar causes. 

Similarly prob (A|B) being small does not mean that B prevents A. 
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Probability Basics 
Law of Total Probability 

U 

C 

U U 

B 

A D 

A C A D 

◮ Let B = C ∪ D and assume C ∩ D = φ. We have 

prob (A|C ) = 
prob (A ∩ C ) 

prob (C ) 
and prob (A|D) = 

prob (A ∩ D) 

prob (D) 
. 

◮ Also 

prob (C |B) = 
prob (C ∩ B) 

prob (B) 
= 

prob (C ) 

prob (B) 
because C ∩ B = C . 

Similarly, prob (D|B) = 
prob (D) 

prob (B) 
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Probability Basics 
Law of Total Probability 

U 

U

A B 

A ∩ B = A ∩ (C ∪ D) = 

A ∩ C + A ∩ D − A ∩ (C ∩ D) = 

A ∩ C + A ∩ D 

Therefore, 

prob (A ∩ B) = prob (A ∩ C ) + prob (A ∩ D) 
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Probability Basics 
Law of Total Probability 

◮ Or, 

prob (A|B) prob (B) = 
prob (A|C ) prob (C ) + prob (A|D) prob (D) 

so 

prob (A|B) = 
prob (A|C ) prob (C |B) + prob (A|D) prob (D|B). 
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Probability Basics 
Law of Total Probability 

An important case is when C ∪ D = B = U, so that A ∩ B = A. Then 

prob (A) 

= prob (A ∩ C ) + prob (A ∩ D) 

= prob (A|C ) prob (C ) + prob (A|D) prob (D). 

D = C 

U 

U 

U 

C 
A 

A D 

A C 
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Probability Basics 
Law of Total Probability 

More generally, if A and E1, . . . Ek are 
events and 

Ei and Ej = ∅, for all i 6= j 

and 



 

j 

Ej = the universal set 

(ie, the set of Ej sets is mutually exclu-
sive and collectively exhaustive ) then 
... 

A 

Ei 
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Probability Basics 
Law of Total Probability 

� 

j 

prob (Ej ) = 1 

and 

prob (A) = 
� 

j prob (A|Ej ) prob (Ej ). 
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Probability Basics 
Law of Total Probability 

Some useful generalizations: 

prob (A|B) = 
� 

j 

prob (A|B and Ej ) prob (Ej |B), 

prob (A and B) = 

� 

j prob (A|B and Ej ) prob (Ej and B). 
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Probability Basics 
Random Variables 

Let V be a vector space. Then a random variable X is a mapping (a 
function) from U to V . 

If ω ∈ U and x = X (ω) ∈ V , then X is a random variable. 
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Probability Basics 
Random Variables 

Flip of One Coin 

Let U=H,T. Let ω = H if we flip a coin and get heads; ω = T if we flip a 
coin and get tails. 

Let X (ω) be the number of times we get heads. Then X (ω) = 0 or 1. 

prob (ω = T ) = prob (X = 0) = 1/2 

prob (ω = H ) = prob (X = 1) = 1/2 
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Probability Basics 
Random Variables 

Flip of Three Coins 

Let U=HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. 
Let ω = HHH if we flip 3 coins and get 3 heads; ω = HHT if we flip 3 coins and 
get 2 heads and then tails, etc. The order matters! 

◮ prob (ω) = 1/8 for all ω. 

Let X be the number of heads. The order does not matter! Then X = 0, 1, 2, 
or 3. 

◮ prob (X = 0)=1/8; prob (X = 1)=3/8; prob (X = 2)=3/8; 
prob (X = 3)=1/8. 
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Probability Basics 
Random Variables 

Probability Distributions Let X (ω) be a random variable. Then 
prob (X (ω) = x) is the probability distribution of X (usually written 
P(x)). For three coin flips: 

0 1 2 

1/8 

1/4 

3/8 

P(x) 

3 x 
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Dynamic Systems 

◮ t is the time index, a scalar. It can be discrete or continuous. 

◮ X (t) is the state. 

◮ The state can be scalar or vector. 
◮ The state can be discrete or continuous or mixed. 
◮ The state can be deterministic or random. 

X is a stochastic process if X (t) is a random variable for every t. 

The value of X is sometimes written explicitly as X (t, ω) or Xω(t). 
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Discrete Random Variables 
Bernoulli 

Flip a biased coin. If XB is Bernoulli, then there is a p such that 

prob(XB = 0) = p. 

prob(XB = 1) = 1 − p. 
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Discrete Random Variables 
Binomial 

The sum of n independent Bernoulli random variables XB 
i with the same 

parameter p is a binomial random variable X b . 

X b = 

n 
� 

i=0 

XB 
i 

prob (X b = x) = 
n! 

x!(n − x)!
p x (1 − p)(n−x) 
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Discrete Random Variables 
Geometric 

The number of independent Bernoulli random variables XB 
i tested until 

the first 0 appears is a geometric random variable X g . 

X g = min 
i 
{XB 

i = 0} 

To calculate prob (X g = t): 

◮ For t = 1, we know prob (XB = 0) = p. 

Therefore prob (X g > 1) = 1 − p. 
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Discrete Random Variables 
Geometric 

◮ For t > 1, 

prob (X g > t) 

= prob (X g > t|X g > t − 1) prob (X g > t − 1) 

= (1 − p) prob (X g > t − 1), 

so 
prob (X g > t) = (1 − p)t 

and 
prob (X g = t) = (1 − p)t−1p 
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Discrete Random Variables 
Geometric 

Alternative view 

1 0 

p 

1−p 1 

Consider a two-state system. The system can go from 1 to 0, but not from 
0 to 1. 

Let p be the conditional probability that the system is in state 0 at time 
t + 1, given that it is in state 1 at time t. That is, 

p = prob 

� 

α(t + 1) = 0 

� 

� 

� 

� 

α(t) = 1 

� 

. 
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Discrete Random Variables 
Geometric 

1 0 

p 

1−p 1 

Let p(α, t) be the probability of the system being in state α at time t. 

Then, since 

p(0, t + 1) = prob 

� 

α(t + 1) = 0 

� 

� 

� 

� 

α(t) = 1 

� 

prob [α(t) = 1] 

+ prob 

� 

α(t + 1) = 0 

� 

� 

� 

� 

α(t) = 0 

� 

prob [α(t) = 0], 

(Why?) 
we have 

p(0, t + 1) = pp(1, t) + p(0, t), 
p(1, t + 1) = (1 − p)p(1, t), 

and the normalization equation 

p(1, t) + p(0, t) = 1. 
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Discrete Random Variables 
Geometric 

1 0 

p 

1−p 1 

Assume that p(1, 0) = 1. Then the solution is 

p(0, t) = 1 − (1 − p)t , 

p(1, t) = (1 − p)t . 
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Discrete Random Variables 
Geometric 

1 0 

p 

1−p 1 

Geometric Distribution 

t 

p
ro

b
ab

ili
ty

 

0 10 20 30 
0 

0.2 

0.4 

0.6 

0.8 

1 

p(0,t)
p(1,t) 
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Discrete Random Variables 
Geometric 

1 0 

p 

1−p 1 

Recall that once the system makes the transition from 1 to 0 it can never 
go back. The probability that the transition takes place at time t is 

prob [α(t) = 0 and α(t − 1) = 1] = (1 − p)t−1 p. 

The time of the transition from 1 to 0 is said to be geometrically 
distributed with parameter p. The expected transition time is 1/p. (Prove 
it!) 

Note: If the transition represents a machine failure, then 1/p is the Mean 
Time to Fail (MTTF). The Mean Time to Repair (MTTR) is similarly 
calculated. 

2.852 Manufacturing Systems Analysis 38/128 Copyright c�2010 Stanley B. Gershwin. 



Discrete Random Variables 
Geometric 1 0 

p 

1−p 1 

Memorylessness: if T is the transition time, 

prob (T > t + x |T > x) = prob (T > t). 
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Digression: Difference Equations 
Definition 

A difference equation is an equation of the form 

x(t + 1) = f (x(t), t) 

where t is an integer and x(t) is a real or complex vector. 
To determine x(t), we must also specify additional information, for example 
initial conditions: 

x(0) = c 

Difference equations are similar to differential equations. They are easier to solve 

numerically because we can iterate the equation to determine x(1), x(2), .... In fact, 

numerical solutions of differential equations are often obtained by approximating them 

as difference equations. 
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Digression: Difference Equations 
Special Case 

A linear difference equation with constant coefficients is one of the form 

x(t + 1) = Ax(t) 

where A is a square matrix of appropriate dimension. 

Solution: 
x(t) = At c 

However, this form of the solution is not always convenient. 
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Digression: Difference Equations 
Special Case 

We can also write 

x(t) = b1λ
t 
1 + b2λ

t 
2 + ... + bk λ

t 
k 

where k is the dimensionality of x , λ1, λ2, ..., λk are scalars and 
b1, b2, ..., bk are vectors. The bj satisfy 

c = b1 + b2 + ... + bk 

λ1, λ2, ..., λk are the eigenvalues of A and b1, b2, ..., bk are its eigenvectors, but we don’t 

always have to use that explicitly to determine them. This is very similar to the solution 

of linear differential equations with constant coefficients. 

2.852 Manufacturing Systems Analysis 42/128 Copyright c�2010 Stanley B. Gershwin. 



Digression: Difference Equations 
Special Case 

The typical solution technique is to guess a solution of the form 

x(t) = bλt 

and plug it into the difference equation. We find that λ must satisfy a kth 
order polynomial, which gives us the k λs. We also find that b must 
satisfy a set of linear equations which depends on λ. 
Examples and variations will follow. 
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Markov processes 

◮ A Markov process is a stochastic process in which the probability of 
finding X at some value at time t + δt depends only on the value of 
X at time t. 

◮ Or, let x(s), s ≤ t, be the history of the values of X before time t and 
let A be a set of possible values of X (t + δt). Then 

prob {X (t + δt) ∈ A|X (s) = x(s), s ≤ t} = 

prob {X (t + δt) ∈ A|X (t) = x(t)} 

◮ In words: if we know what X was at time t, we don’t gain any more 
useful information about X (t + δt) by also knowing what X was at 
any time earlier than t. 
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Markov processes 
States and transitions 

Discrete state, discrete time 

◮ States can be numbered 0, 1, 2, 3, ... (or with multiple indices if that 
is more convenient). 

◮ Time can be numbered 0, 1, 2, 3, ... (or 0, Δ, 2Δ, 3Δ, ... if more 
convenient). 

◮ The probability of a transition from j to i in one time unit is often 
written Pij , where 

Pij = prob{X (t + 1) = i |X (t) = j} 
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Markov processes 
States and transitions 

Discrete state, discrete time 
Transition graph 
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Pij is a probability. Note that Pii = 1 − 
� 

m , m 6=i Pmi . 
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Markov processes 
States and transitions 

Discrete state, discrete time 

◮ Define pi (t) = prob{X (t) = i}. 

◮ {pi (t)for all i} is the probability distribution at time t. 

◮ Transition equations: pi (t + 1) = 
� 

j Pij pj (t). 

◮ Initial condition: pi (0) specified. For example, if we observe that the system 
is in state j at time 0, then pj (0) = 1 and pi (0) = 0 for all i 6= j . 

◮ Let the current time be 0. The probability distribution at time t > 0 
describes our state of knowledge at time 0 about what state the system will 
be in at time t. 

◮ Normalization equation: 
� 

i pi (t) = 1. 
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Markov processes 
States and transitions 

Discrete state, discrete time 

◮ Steady state: pi = limt→∞ pi (t), if it exists. 

◮ Steady-state transition equations: pi = 
� 

j Pij pj . 

◮ Steady state probability distribution: 

◮ Very important concept, but different from the usual concept of steady 
state. 

◮ The system does not stop changing or approach a limit. 
◮ The probability distribution stops changing and approaches a limit. 
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Markov processes 
States and transitions 

Discrete state, discrete time 

Steady state probability distribution: Consider a typical (?) Markov process. 
Look at a system at time 0. 

◮ Pick a state. Any state. 

◮ The probability of the system being in that state at time 1 is very different from 
the probability of it being in that state at time 2, which is very different from it 
being in that state at time 3. 

◮ The probability of the system being in that state at time 1000 is very close to the 
probability of it being in that state at time 1001, which is very close to the 
probability of it being in that state at time 2000. 

Then, the system has reached steady state at time 1000. 
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Markov processes 
States and transitions 

Discrete state, discrete time 
Transition equations are valid for steady-state and non-steady-state 
conditions. 

(Self-loops suppressed for clarity.) 
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Markov processes 
States and transitions 

Discrete state, discrete time 
Balance equations — steady-state only. Probability of leaving node i = 
probability of entering node i . 

pi 

� 

m,m 6=i 

Pmi = 
� 

j,j 6=i 

Pij pj 

(Prove it!) 
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Markov processes 
Unreliable machine 

1=up; 0=down. 

p 

1 0 

1−p 1−rr 
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Markov processes 
Unreliable machine 

The probability distribution satisfies 

p(0, t + 1) = p(0, t)(1 − r) + p(1, t)p, 

p(1, t + 1) = p(0, t)r + p(1, t)(1 − p). 
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Markov processes 
Unreliable machine 

Solution 

Guess 

p(0, t) = a(0)X t 

p(1, t) = a(1)X t 

Then 

a(0)X t+1 = a(0)X t (1 − r) + a(1)X t p, 

a(1)X t+1 = a(0)X t r + a(1)X t (1 − p). 
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Markov processes 
Unreliable machine 

Solution 

Or, 

a(0)X = a(0)(1 − r) + a(1)p, 

a(1)X = a(0)r + a(1)(1 − p). 

or, 

X = 1 − r + 
a(1) 

a(0)
p, 

X = 
a(0) 

a(1) 
r + 1 − p. 

so 
X = 1 − r + 

rp 
X − 1 + p 

or, 
(X − 1 + r)(X − 1 + p) = rp. 
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Markov processes 
Unreliable machine 

Solution 
Two solutions: 

X = 1 and X = 1 − r − p. 

If X = 1, a(1) 
a(0) = r 

p . If X = 1 − r − p, a(1) 
a(0) = −1. Therefore 

p(0, t) = a1(0)X t 
1 + a2(0)X t 

2 = a1(0) + a2(0)(1 − r − p)t 

p(1, t) = a1(1)X t 
1 + a2(1)X t 

2 = a1(0) 
r 

p 
− a2(0)(1 − r − p)t 
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Markov processes 
Unreliable machine 

Solution 
To determine a1(0) and a2(0), note that 

p(0, 0) = a1(0) + a2(0) 

p(1, 0) = a1(0) 
r 

p 
− a2(0) 

Therefore 

p(0, 0) + p(1, 0) = 1 = a1(0) + a1(0) 
r 

p 
= a1(0) 

r + p 

p 

So 

a1(0) = 
p 

r + p 
and a2(0) = p(0, 0) − 

p 

r + p 
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Markov processes 
Unreliable machine 

Solution 
After more simplification and some beautification, 

p(0, t) = p(0, 0)(1 − p − r)t 

+ 
p 

r + p 

� 

1 − (1 − p − r)t 
� 

, 

p(1, t) = p(1, 0)(1 − p − r)t 

+ 
r 

r + p 

� 

1 − (1 − p − r)t 
� 

. 
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Markov processes 
Unreliable machine 

Solution 
Discrete Time Unreliable Machine 
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Markov processes 
Unreliable machine 

Steady-state solution 
As t → ∞, 

p(0) → 
p 

r + p 
, 

p(1) → 
r 

r + p 

which is the solution of 

p(0) = p(0)(1 − r) + p(1)p, 

p(1) = p(0)r + p(1)(1 − p). 
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Markov processes 
Unreliable machine 

Steady-state solution 
If the machine makes one part per time unit when it is operational, the 
average production rate is 

p(1) = 
r 

r + p 
= 

1 

1 + 
p 

r 
. 
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Markov processes 
States and Transitions 

Classification of states 
A chain is irreducible if and only if each state can be reached from each 
other state. 

Let fij be the probability that, if the system is in state j , it will at some 
later time be in state i . State i is transient if fij < 1. If a steady state 
distribution exists, and i is a transient state, its steady state probability is 
0. 
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Markov processes 
States and Transitions 

Classification of states 
The states can be uniquely divided into sets T , C1, . . . Cn such that T is the set 
of all transient states and fij = 1 for i and j in the same set Cm and fij = 0 for i 
in some set Cm and j not in that set. If there is only one set C , the chain is 
irreducible. The sets Cm are called final classes or absorbing classes and T is the 
transient class. 

Transient states cannot be reached from any other states except possibly other 

transient states. If state i is in T , there is no state j in any set Cm such that 

there is a sequence of possible transitions (transitions with nonzero probability) 

from j to i . 
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Markov processes 
States and Transitions 

Classification of states 

C2 C3 

C4 

C5 

C6C7 

C1 
T 
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Markov processes 
States and Transitions 

Discrete state, continuous time 

◮ States can be numbered 0, 1, 2, 3, ... (or with multiple indices if that 
is more convenient). 

◮ Time is a real number, defined on (−∞,∞) or a smaller interval. 

◮ The probability of a transition from j to i during [t, t + δt] is 
approximately λij δt, where δt is small, and 

λij δt = prob{X (t + δt) = i |X (t) = j} + o(δt) for j 6= i . 
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Markov processes 
States and Transitions 

Discrete state, continuous time 

Transition graph no self loops!!!! 

1 

2 

3 

4 

5 

6 

7 

1414

λ 
24 

λ 
45 

λ 
64 

λ 

λij is a probability rate. λij δt is a probability. 
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Markov processes 
States and Transitions 

Discrete state, continuous time 

◮ Define pi (t) = prob{X (t) = i} 

◮ It is convenient to define λii = − 
� 

j 6=i λji 

◮ Transition equations: dpi (t) 
dt = 

� 

j λij pj (t). 

◮ Normalization equation: 
� 

i pi (t) = 1. 
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Markov processes 
States and Transitions 

Discrete state, continuous time 

◮ Steady state: pi = limt→∞ pi (t), if it exists. 

◮ Steady-state transition equations: 0 = 
� 

j λij pj . 

◮ Steady-state balance equations: pi 
� 

m , m 6=i λmi = 
� 

j ,j 6=i λij pj 

◮ Normalization equation: 
� 

i pi = 1. 

2.852 Manufacturing Systems Analysis 68/128 Copyright c�2010 Stanley B. Gershwin. 



Markov processes 
States and Transitions 

Discrete state, continuous time 

Sources of confusion in continuous time models: 

◮ Never Draw self-loops in continuous time Markov process graphs. 

◮ Never write 1 − λ14 − λ24 − λ64. Write 
◮ 1 − (λ14 + λ24 + λ64)δt, or 
◮ −(λ14 + λ24 + λ64) 

◮ λii = − 
� 

j 6=i λji is NOT a probability rate and NOT a probability. It 
is ONLY a convenient notation. 
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Markov processes 
Exponential 

Exponential random variable: the time to move from state 1 to state 0. 

1 0 

p 

pδt = prob 

� 

α(t + δt) = 0 

� 

� 

� 

� 

α(t) = 1 

� 

+ o(δt). 
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Markov processes 
Exponential 

1 0 

p 

p(0, t + δt) = 

prob 

� 

α(t + δt) = 0 

� 

� 

� 

� 

α(t) = 1 

� 

prob [α(t) = 1]+ 

prob 

� 

α(t + δt) = 0 

� 

� 

� 

� 

α(t) = 0 

� 

prob[α(t) = 0]. 

or 
p(0, t + δt) = pδtp(1, t) + p(0, t) + o(δt) 

or 
dp(0, t) 

dt 
= pp(1, t). 
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Markov processes 
Exponential 

1 0 

p 

Since p(0, t) + p(1, t) = 1, 

dp(1, t) 

dt 
= −pp(1, t). 

If p(1, 0) = 1, then 
p(1, t) = e−pt 

and 
p(0, t) = 1 − e−pt 
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Markov processes 
Exponential 

Density function 

The probability that the transition takes place in [t, t + δt] is 

prob [α(t + δt) = 0 and α(t) = 1] = e −pt pδt. 

The exponential density function is pe−pt . 
The time of the transition from 1 to 0 is said to be exponentially 
distributed with rate p. The expected transition time is 1/p. (Prove it!) 
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Markov processes 
Exponential 

Density function 

◮ f (t) = pe −pt for t ≥ 0; f (t) = 0 otherwise; 
F (t) = 1 − e−pt for t ≥ 0; F (t) = 0 otherwise. 

◮ ET = 1/p,VT = 1/p2 . Therefore, cv=1. 

t
1 p 

F(t) 

t
1 p 

f(t) 

0 
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0.9 
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Markov processes 
Exponential 

Density function 

◮ Memorylessness: prob (T > t + x |T > x) = prob (T > t) 

◮ prob (t ≤ T ≤ t + δt) ≈ µδt for small δt. 

◮ If T1, ..., Tn are exponentially distributed random variables with 
parameters µ1..., µn and T = min(T1, ..., Tn), then T is an 
exponentially distribution random variable with parameter 
µ = µ1 + ... + µn. 
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Markov processes 
Exponential 

Density function 

Exponential density 
function and a small 
number of actual 
samples. 
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Markov processes 
Unreliable machine 

Continuous time 

p 

1 0 

r 
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Markov processes 
Unreliable machine 

Continuous time 
The probability distribution satisfies 

p(0, t + δt) = p(0, t)(1 − rδt) + p(1, t)pδt + o(δt) 
p(1, t + δt) = p(0, t)rδt + p(1, t)(1 − pδt) + o(δt) 

or 

dp(0, t) 

dt 
= −p(0, t)r + p(1, t)p 

dp(1, t) 

dt 
= p(0, t)r − p(1, t)p. 
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Markov processes 
Unreliable machine 

Solution 

p(0, t) = 
p 

r + p 
+ 

� 

p(0, 0) − 
p 

r + p 

� 

e −(r+p)t 

p(1, t) = 1 − p(0, t). 

As t → ∞, 

p(0) → 
p 

r + p 
, 

p(1) → 
r 

r + p 
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Markov processes 
Unreliable machine 

Steady-state solution 
If the machine makes µ parts per time unit on the average when it is 
operational, the overall average production rate is 

µp(1) = 
µr 

r + p 
= µ 

1 

1 + 
p 

r 
. 
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Markov processes 
The M/M/1 Queue 

λ 
µ 

◮ Simplest model is the M/M/1 queue: 
◮ Exponentially distributed inter-arrival times — mean is 1/λ; λ is arrival 

rate (customers/time). (Poisson arrival process.) 
◮ Exponentially distributed service times — mean is 1/µ; µ is service rate 

(customers/time). 
◮ 1 server. 
◮ Infinite waiting area. 
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Markov processes 
The M/M/1 Queue 

◮ Exponential arrivals: 

◮ If a part arrives at time s, the probability that the next part arrives 
during the interval [s + t, s + t + δt] is e−λt λδt + o(δt) ≈ λδt. λ is 
the arrival rate. 

◮ Exponential service: 

◮ If an operation is completed at time s and the buffer is not empty, the 
probability that the next operation is completed during the interval 
[s + t, s + t + δt] is e−µt µδt + o(δt) ≈ µδt. µ is the service rate. 
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Markov processes 
The M/M/1 Queue 

Sample path 
Number of customers in the system as a function of time. 

1 

2 

3 

4 

5 

6 

t 

n 
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Markov processes 
The M/M/1 Queue 

State Space 

µ 

λ 

µ 

λ 

µ 

λ 

µ 

λ 

µ 

λ 

µ 

λ 

0 1 2 

µ 

λ 

n−1 n n+1 
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Markov processes 
The M/M/1 Queue 

Performance Evaluation 
Let p(n, t) be the probability that there are n parts in the system at time 
t. Then, 

p(n, t + δt) = p(n − 1, t)λδt + p(n + 1, t)µδt 

+p(n, t)(1 − (λδt + µδt)) + o(δt) 

for n > 0 

and 

p(0, t + δt) = p(1, t)µδt + p(0, t)(1 − λδt) + o(δt). 
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Markov processes 
The M/M/1 Queue 

Performance Evaluation 
Or, 

dp(n, t) 

dt 
= p(n − 1, t)λ + p(n + 1, t)µ − p(n, t)(λ + µ), 

n > 0 
dp(0, t) 

dt 
= p(1, t)µ − p(0, t)λ. 

If a steady state distribution exists, it satisfies 

0 = p(n − 1)λ + p(n + 1)µ − p(n)(λ + µ), n > 0 
0 = p(1)µ − p(0)λ. 

Why “if”? 
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Markov processes 
The M/M/1 Queue 

Performance Evaluation 
Let ρ = λ/µ. These equations are satisfied by 

p(n) = (1 − ρ)ρn , n ≥ 0 

if ρ < 1. The average number of parts in the system is 

n̄ = 
� 

n 

np(n) = 
ρ 

1 − ρ 
= 

λ 

µ − λ 
. 

From Little’s law , the average delay experienced by a part is 

W = 
1 

µ − λ 
. 
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Markov processes 
The M/M/1 Queue 

Performance Evaluation 

Delay in a M/M/1 Queue 

Arrival Rate 

D
el

ay
 

0 0.25 0.5 0.75 1 
0 

10 

20 

30 

40 

Define the utilization ρ = λ/µ. 

What happens if ρ > 1? 
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Markov processes 
The M/M/1 Queue 

Performance Evaluation 

W 

λ 
µ=2µ=1

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2 

◮ To increase capacity, increase µ. 

◮ To decrease delay for a given λ, 
increase µ. 
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Markov processes 
The M/M/1 Queue 

Other Single-Stage Models 
Things get more complicated when: 

◮ There are multiple servers. 

◮ There is finite space for queueing. 

◮ The arrival process is not Poisson. 

◮ The service process is not exponential. 

Closed formulas and approximations exist for some cases. 
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Continuous random variables 
Philosophical issues 

1. Mathematically, continuous and discrete random variables are very 
different. 

2. Quantitatively , however, some continuous models are very close to 
some discrete models. 

3. Therefore, which kind of model to use for a given system is a matter 
of convenience . 

Example: The production process for small metal parts (nuts, bolts, 
washers, etc.) might better be modeled as a continuous flow than a large 
number of discrete parts. 
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Continuous random variables 
Probability density 

Low density 

High density 

The probability of a two-dimensional 
random variable being in a small square is 
the probability density times the area of 
the square. (Actually, it is more general 
than this.) 
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Continuous random variables 
Probability density 
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Continuous random variables 
Spaces 

◮ Continuous random variables can be defined 
◮ in one, two, three, ..., infinite dimensional spaces; 
◮ in finite or infinite regions of the spaces. 

◮ Continuous random variables can have 

◮ probability measures with the same dimensionality as the space; 
◮ lower dimensionality than the space; 
◮ a mix of dimensions. 
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Continuous random variables 
Dimensionality 

M1 B1 M 2 B 2 M3 

M1 

M 2 

M3 

B1 

x 1 

B 2 

x 2 
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Continuous random variables 
Dimensionality 

M1 B1 M 2 B 2 M3 

M1 

M 2 

M3 

B1 

x 1 

B 2 

x 2 
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Continuous random variables 
Spaces 

Dimensionality 
One−dimensional density 

Two−dimensional density 

Zero−dimensional density 

(mass) 

M1 

2x

B M B M1 2 2 3 

x 1 

Probability distribution 
of the amount of 
material in each of the 
two buffers. 
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Continuous random variables 
Spaces 

Discrete approximation 

M1 

2x

B M B M1 2 2 3 

x 1 

Probability distribution 
of the amount of 
material in each of the 
two buffers. 
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Continuous random variables 
Example 

Problem 

Production surplus from an unreliable machine 

Production rate = µ 
p 

1 0 

r 

Production rate = 0 

Demand rate = d < µ 

� 

r 

r + p 

� 

. (Why?) 

Problem: producing more than has been demanded creates inventory and is 

wasteful. Producing less reduces revenue or customer goodwill. How can we 

anticipate and respond to random failures to mitigate these effects? 
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Continuous random variables 
Example 

Solution 

We propose a production policy. Later we show that it is a solution to an 
optimization problem. 
Model: 

0 < u < µ 

= 0α 

= 1α 

u = 0 

u = 0 

u 

u d 
x 

How do we choose u? 
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Continuous random variables 
Example 

Solution 

Surplus, or inventory/backlog: 
dx(t) 

dt 
= u(t) − d 

Production policy: Choose Z 
(the hedging point ) Then, 

◮ if α = 1, 

◮ if x < Z , u = µ, 
◮ if x = Z , u = d , 
◮ if x > Z , u = 0; 

◮ if α = 0, 

◮ u = 0. 

d t + Z 

t 

demand dt 

hedging point Z 

production 

surplus x(t) 

Production and Demand 
Cumulative 

How do we choose Z? 
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Continuous random variables 
Example 

Mathematical model 

Definitions: 
f (x , α, t) is a probability density function. 

f (x , α, t)δx = prob (x ≤ X (t) ≤ x + δx 

and the machine state is α at time t). 

prob (Z , α, t) is a probability mass. 

prob (Z , α, t) = prob (x = Z 

and the machine state is α at time t). 

Note that x > Z is transient. 
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Continuous random variables 
Example 

Mathematical model 

State Space: 

α=1 

x 

= − dµ dx 
dt 

= − d 

α=0 
dx 
dt 

x=Z 

2.852 Manufacturing Systems Analysis 103/128 Copyright c�2010 Stanley B. Gershwin. 



Continuous random variables 
Example 

Mathematical model 

Transitions to α = 1, [x , x + δx ]; x < Z : 

α=1 

δx 

α=0 

x=Z 

repair 
no failure 

x 
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Continuous random variables 
Example 

Mathematical model 

Transitions to α = 0, [x , x + δx ]; x < Z : 

α=1 

δx 

α=0 

x=Z 

failure 
no repair 

x 

2.852 Manufacturing Systems Analysis 105/128 Copyright c�2010 Stanley B. Gershwin. 



Continuous random variables 
Example 

Mathematical model 

Transitions to α = 1, [x , x + δx ]; x < Z : 

x + d t 

x−( −d) tx(t) = 

x(t) = 

x(t+ t) 

α=1 

α=0 

δ 

δµ 
δ 

f (x , 1, t + δt)δx = 

[f (x + dδt, 0, t)δx ]rδt + [f (x − (µ − d)δt, 1, t)δx ](1 − pδt) 

+o(δt)o(δx) 
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Continuous random variables 
Example 

Mathematical model 

Or, 

f (x , 1, t + δt) = 
o(δt)o(δx) 

δx 

+f (x + dδt, 0, t)rδt + f (x − (µ − d)δt, 1, t)(1 − pδt) 

In steady state, 

f (x , 1) = 
o(δt)o(δx) 

δx 

+f (x + dδt, 0)rδt + f (x − (µ − d)δt, 1)(1 − pδt) 
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Continuous random variables 
Example 

Mathematical model 

Expand in Taylor series: 
f (x , 1) = 

� 

f (x , 0) + 
df (x , 0) 

dx 
dδt 

� 

rδt 

+ 

� 

f (x , 1) − 
df (x , 1) 

dx 
(µ − d)δt 

� 

(1 − pδt) 

+ 
o(δt)o(δx) 

δx 
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Continuous random variables 
Example 

Mathematical model 

Multiply out: 

f (x , 1) = f (x , 0)rδt + 
df (x , 0) 

dx 
(d)(r)δt2 

+f (x , 1) − 
df (x , 1) 

dx 
(µ − d)δt 

−f (x , 1)pδt − 
df (x , 1) 

dx 
(µ − d)pδt2 

+ 
o(δt)o(δx) 

δx 
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Continuous random variables 
Example 

Mathematical model 

Subtract f (x , 1) from both sides and move one of the terms: 

df (x , 1) 

dx 
(µ − d)δt = 

o(δt)o(δx) 

δx 

+f (x , 0)rδt + 
df (x , 0) 

dx 
(d)(r)δt2 

−f (x , 1)pδt − 
df (x , 1) 

dx 
(µ − d)pδt2 
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Continuous random variables 
Example 

Mathematical model 

Divide through by δt: 

df (x , 1) 

dx 
(µ − d) = 

o(δt)o(δx) 

δtδx 

+f (x , 0)r + 
df (x , 0) 

dx 
(d)(r)δt 

−f (x , 1)p − 
df (x , 1) 

dx 
(µ − d)pδt 
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Continuous random variables 
Example 

Mathematical model 

Take the limit as δt −→ 0: 

df (x , 1) 

dx 
(µ − d) = f (x , 0)r − f (x , 1)p 
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Continuous random variables 
Example 

Mathematical model 

Transitions to α = 0, [x , x + δx ]; x < Z : 

x + d tx(t) = 

x−( −d) tx(t) = 

x(t+ t) 
α=1 

δ 

δµ 

δ 

α=0 

failure 
no repair 

f (x , 0, t + δt)δx = 

[f (x + dδt, 0, t)δx ](1 − rδt) + [f (x − (µ − d)δt, 1, t)δx ]pδt 

+o(δt)o(δx) 
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Continuous random variables 
Example 

Mathematical model 

By following essentially the same steps as for the transitions to 
α = 1, [x , x + δx ]; x < Z , we have 

df (x , 0) 

dx 
d = f (x , 0)r − f (x , 1)p 

Note: 

df (x , 1) 

dx 
(µ − d) = 

df (x , 0) 

dx 
d 

Why? 
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Continuous random variables 
Example 

Mathematical model 

Transitions to α = 1, x = Z : 

1−p t 

1−p t 

Z − ( − d) t 

α=1 

α=0 

no failure 

µ 
x=Z 

no failure 

δ 

δ 

δ 

P(Z , 1) = P(Z , 1)(1 − pδt) 
+ prob (Z − (µ − d)δt < X < Z , α = 1)(1 − pδt) 

+o(δt). 
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Continuous random variables 
Example 

Mathematical model 

Or, 

P(Z , 1) = P(Z , 1) − P(Z , 1)pδt 

+f (Z − (µ − d)δt, 1)(µ − d)δt(1 − pδt) + o(δt), 

or, 
P(Z , 1)pδt = o(δt)+ 

+ 

� 

f (Z , 1) − 
df (Z , 1) 

dx 
(µ − d)δt 

� 

(µ − d)δt(1 − pδt), 
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Continuous random variables 
Example 

Mathematical model 

Or, 
P(Z , 1)pδt = f (Z , 1)(µ − d)δt + o(δt) 

or, 

P(Z , 1)p = f (Z , 1)(µ − d) 
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Continuous random variables 
Example 

Mathematical model 

α=1 

x 

= − dµ dx 
dt 

= − d 

α=0 
dx 
dt 

x=Z 

P(Z , 0) = 0. Why? 
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Continuous random variables 
Example 

Mathematical model 

Transitions to α = 0,Z − (µ − d)δt < x < Z : 

p t 1−r t 

Z − d t 

α=1 
δ 

failure 

α=0 

x=Z 

no repairδ 

δ 

prob (Z − dδt < X < Z , 0) = f (Z , 0)dδt + o(δt) 
= P(Z , 1)pδt + o(δt) 
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Continuous random variables 
Example 

Mathematical model 

Or, 

f (Z , 0)d = P(Z , 1)p = f (Z , 1)(µ − d) 
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Continuous random variables 
Example 

Mathematical model 

df 

dx
(x , 0)d = f (x , 0)r − f (x , 1)p 

df (x , 1) 

dx 
(µ − d) = f (x , 0)r − f (x , 1)p 

f (Z , 1)(µ − d) = f (Z , 0)d 

0 = −pP(Z , 1) + f (Z , 1)(µ − d) 

1 = P(Z , 1) + 
� Z 
−∞ 

[f (x , 0) + f (x , 1)] dx 
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Continuous random variables 
Example 

Solution 

Solution of equations: 
f (x , 0) = Aebx 

f (x , 1) = A d 
µ−d e

bx 

P(Z , 1) = A d 
p e

bZ 

P(Z , 0) = 0 

where 
b = 

r 

d 
− 

p 

µ − d 

and A is chosen so that normalization is satisfied. 
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Continuous random variables 
Example 

Solution 
Density Function -- Controlled Machine 

-40 -20 0 20 
0 

1E-2 

0.02 

0.03 

x 
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Continuous random variables 
Example 

Observations 

1. Meanings of b: 
Mathematical: 
In order for the solution on the previous slide to make sense, b > 0. 
Otherwise, the normalization integral cannot be evaluated. 
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Continuous random variables 
Example 

Observations 

Intuitive: 

◮ The average duration of an up period is 1/p. The rate that x increases 
(while x < Z ) while the machine is up is µ − d . Therefore, the average 
increase of x during an up period while x < Z is (µ − d)/p. 

◮ The average duration of a down period is 1/r . The rate that x decreases 
while the machine is down is d . Therefore, the average decrease of x during 
an down period is d/r . 

◮ In order to guarantee that x does not move toward −∞, we must have 
(µ − d)/p > d/r . 
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Continuous random variables 
Example 

Observations 

If (µ − d)/p > d/r , 

then 
p 

µ − d 
< 

r 

d 

or b = 
r 

d 
− 

p 

µ − d 
> 0. 

That is, we must have b > 0 so that there is enough capacity for x to increase on 

the average when x < Z. 
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Continuous random variables 
Example 

Observations 

Also, note that b > 0 =⇒ 
r 

d 
> 

p 

µ − d 
=⇒ 

r(µ − d) > pd =⇒ 

rµ − rd > pd =⇒ 

rµ > rd + pd =⇒ 

µ 
r 

r + p 
> d 

which we assumed. 
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Continuous random variables 
Example 

Observations 

2. Let C = AebZ . Then 

f (x , 0) = Ce−b(Z −x) 

f (x , 1) = C d 
µ−d e

−b(Z −x) 

P(Z , 1) = C d 
p 

P(Z , 0) = 0 

That is, the probability distribution really depends on Z − x . If Z is 
changed, the distribution shifts without changing its shape. 
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