Topic one: Production line profit maximization subject to a
production rate constraint
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Production line profit maximization

The profit maximization problem

k—1 k—1
max  J(N) = AP(N) - ZbiNZ- - Zcmi(N)
=1 =1
st. P(N) > P,
N; > Nppn,Vi=1,---,k—1.
where  P(N) production rate, parts/time unit
P = required production rate, parts/time unit
A = profit coefficient, $/part
ni(N) = average inventory of buffer i,i =1,--- |k —1
b; = buffer cost coefficient, $/part/time unit
¢; = inventory cost coefficient, $/part/time unit
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An example about the research goal
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Figure 2. J(N) vs. Ny and N,
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Two problems

Original constrained problem

k—

max J(N) = AP(N) - ZbN Zcznz

=1

k—1 k—1
max J(N) = AP(N) =) "biN; — > cing(N
=1 =1

st. N; > Npm,Vi=1-- k—1.
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An example for algorithm derivation

DataA

r=.1,p1 =.01,r9 = .11, ps = .01, 75 = .1, p3 = .009, P = .88
COST FUNCTION

J(N) = QOOOP(N) — N1 — Ny — ﬁ1(N) — ﬁQ(N)

P(N..N,)>P

N

N

P(N;Ny)<P

Figure 3: J(N) vs. Ny and N, Figure 4: P(N)
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An example for algorithm derivation
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Figure 5: J(N) vs. Ny and N,
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Algorithm derivation

TWO CASES

Case 1

The solution of the unconstrained problem is N* s.t. P(N*) > P. In this
case, the solution of the constrained problem is the same as the solution
of the unconstrained problem. We are done.

Unconstrained problem ol
E_1 50 (N, Nz)
max J(N) = AP(N) - Z b;N; g
=1 60 [
2
o ol P(NiN2) = P
= Z c;; (N)
i=1 *
st. N;, > Npin,Vi=1,---  k—1. o .
J w wm e e n w w w
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Algorithm derivation

TWO CASES (CONTINUED)
Case 2

problem.

N® satisfies P(N") < P. This is not the solution of the constrained

(©2010 Chuan Shi —

Topic one:

Line optimization
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Algorithm derivation

TWO CASES (CONTINUED)

Case 2 (continued)

In this case, we consider the following unconstrained problem:

k—1 k—1
N) = A'P(N) - N; — (N
max J(N) (N) ;b i ;cmz( )
s.t. N; > Npm,Vi=1,--- k—1.

in which A is replaced by A". Let N*(A’) be the solution to this problem
and P*(A’) = P(N*(A")).
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Assertion

The constrained problem

k—1 k—1
max J(N) = A'P(N) = biN; = > eing(N
=1 =1

A~

st. P(N) > P,

Ni > Ny ,Vi=1,---,k— 1.

has the same solution for all A" in which the solution of the corresponding
unconstrained problem
k—1 k—1
max J(N) = b;N; — cini(N)
=1 =1

.

s.t. N;

v

Nopin, Vi =1, -+, k — 1.

has P*(A") < P
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Interpretation of the assertion

WE CLAIM
If the optimal solution of the unconstrained problem is not that of the constrained
problem, then the solution of the constrained problem, (N7, .-+, N}_,), satisfies

P(Nt,--- ,Ny_,)=P.

maxJ(N) = 500P(N)— N —a(N)
470 | 170 N
wr e st P(N) > P
450 N > Nmin
z &
Q440 3
< Q
(]
410 10
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Interpretation of the assertion

WE CLAIM
If the optimal solution of the unconstrained problem is not that of the constrained
problem, then the solution of the constrained problem, (N7, .-+, N}_,), satisfies

P(Nt,--- ,Ny_,)=P.

max J(N) = 500P(N)— N —a(N)
470 | 170 N
wr e st P(N) > P
450 N > Nmin
z s
Q440 3
< 8 .
430 m'\iax J(N) = 500P — N — 'FL(N)
st. P(N) > P=PN)=P
410 10 N > Nun
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Interpretation of the assertion

WE CLAIM
If the optimal solution of the unconstrained problem is not that of the constrained
problem, then the solution of the constrained problem, (N7, .-+, N}_,), satisfies

P(Nt,--- ,Ny_,)=P.

max J(N) = B500P(N)— N — n(N)
470 | 170
w0 © st. P(N) > P
450 50 N Z Nmin
z
o a0
<

500P — N — ii(N)

P=P(N)=P
Nmin

VIV

AN

0 5 10 s 20 2 30 35 40
\ P(N*(A")) <P N

We formally prove this by the Karush-Kuhn-Tucker (KKT) conditions of nonlin-
ear programming.
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Interpretation of the assertion

A= 1500 Original Problem)

1220 “infeasible’ ——
1200 feasiblet” ——

1160 0

1080 i
1060 K
1040 <

J(N) 2000 ) D
1980 . 650 i
1960 000 ——— josss
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Karush-Kuhn-Tucker (KKI) conditions

Let «* be a local minimum of the problem

min  f(x)
st. hi(z) =0, hy(x) =0,
gl(x) <0,--- 7gr(x) <0,
where f, h;, and g; are continuously differentiable functions from R™
to . Then there exist unique Lagrange multipliers A7,---, A%, and
Wy, -+, pr, satisfying the following conditions:

VIL(:U*7 )\*7 M*) = 01

M;g](x*) - 07] - 17' T

where L(z, A\, 1) = f(z) + 370 Nihi(x) + 375 pjgj(x) is called the
Lagrangian function.
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Conwert the constrained problem to minimization form

Minimization form

The constrained problem

k—1 k—1
min  —J(N) = —AP(N) + > " biNi + > eini(N)
=1 =il

st. P —P(N)

IA
o

Nupin —N; < 0Vi=1,--- k-1

We have argued that we treat N; as continuous variables, and P(N) and
J(N) as continuously differentiable functions.
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Applying KKT conditions

The Slater constraint qualification for convex inequalities guarantees the
existence of Lagrange multipliers for our problem. So, there exist unique
Lagrange multipliers i, ¢ = 0,--- ,k — 1 for the constrained problem to
satisfy the KKT conditions:

k—1
— VJ(N*) + V(P — P(N)) + > i V(Nugin — Ni) =0 (1)
i=1
or
8J(N*) OP(N¥)
ON ON
aJ(N") OP(N*) (1) 8 8
- ‘9]_\72 — 15 6]_\72 —pi ||k =
2J(N*) aP(N*) 0 1 0
ONp_1 ONk_1
(2)
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Applying KKT conditions

and
py>0,¥i=0,---,k—1, (3)
(P — P(N%)) =0, (4)
pr (Nppin — NJ) =0,Vi=1,--- ,k—1, (5)

where N* is the optimal solution of the constrained problem. Assume
that N > Npin for all 3. In this case, by equation (5), we know that
i =0,vi=1,---  k—1.
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Applying KKT conditions

The KKT conditions are simplified to

8J(N¥) oP(N*)
aN, ON, 0
8J(N*) oP(N*) ;
N P Y O I e G
9. (N¥) OP(N*) 0
ONk_1 ONk_1
pi(P — P(N¥)) =0, (7)

where 5 > 0. Since N* is not the optimal solution of the unconstrained
problem, VJ(N*) # 0. Thus, ufy # 0 since otherwise condition (6)
would be violated. By condition (7), the optimal solution N* satisfies
P(N*) = P.
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Applying KKT conditions

The KKT conditions are simplified to

8.J (N¥) dP(N*)
0N1 6N1 0
oJ(N*) OP(N™) 0
_ ONs — :US ON, = ) ,
dJ(N¥) dP(N¥) 0
ONp_1 ONp_1

uo(P — P(N™) =0,

In addition, conditions (6) and (7) reveal how we could find p§ and N*.
For every p, condition (6) determines N* since there are k — 1 equations
and k — 1 unknowns. Therefore, we can think of N* = N*(uf5). We
search for a value of u% such that P(N*(u)) = P. As we indicate in the
following, this is exactly what the algorithm does.
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Applying KKT conditions

Replacing p§ by o > 0 in constraint (6) gives

0J(N°) OP(N°)
ONy ONy 0
0J(N°) OP(N°) 0
— ON> — 1o ONs = ) , (8)
8.J(N°) dP(N°) 0
o\ ONy_1

where N is the unique solution of (8). Note that N is the solution of
the following optimization problem:

min —J(N) = —J(N) + pio(P — P(N))

(9)
st. Nupim—N;, <0,Vi=1,---,k—1.
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Applying KKT conditions

The problem above is equivalent to

max J(N) = J(N) - po(P — P(N))

st. Npm—N; <0,Vi=1,--- ,k—1.
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Applying KKT conditions

The problem above is equivalent to

max J(N) = J(N) - po(P — P(N))

st. Npm—N; <0,Vi=1,--- ,k—1.

or
k—1 k—1 .
max J(N) = AP(N) =) "b;N; = > ciny — po(P — P(N))
=1 =1

St. Ny —N; <O,Vi=1,--- k—1.

(11)
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Applying KKT conditions

The problem above is equivalent to

max J(N) = J(N) — uo(P — P(N))

N
st. Nmin—N; <0,¥i=1,---,k—1.
or
k—1 k—1 .
max J(N) = AP(N) =) "b;N; = > ciny — po(P — P(N))
=1 =1
st. Npin—N; <0,Vi=1,--- ,k—1.
or

N
st. N; > Npin, Ve =1,--- k—1.

k—1 k—1
max j(N) = (A + M())P(N) — Z b;N; — Zciﬁi
=1 =1

(11)

(12)

(©2010 ChuanShi — Topic ome: Line optimization : Proofs of the algorithm by KKT conditions

41/79



Applying KKT conditions

or, finally,
k—1 k—1
max j(N) = A/P(N) — Z b;N; — Zciﬁi
N i=1 i=1 (13)
st. N; > Npin, Ve =1,---  k—1.

where A" = A + pg. This is exactly the unconstrained problem, and N°¢
is its optimal solution. Note that o > 0 indicates that A’ > A.
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Applying KKT conditions

or, finally,

k—1 k—1
ml\EliJX j(N) = A/P(N) — Z b;N; — chﬂi
i=1 i=1 (13)

st. N; > Npin, Ve =1,---  k—1.

where A" = A + pg. This is exactly the unconstrained problem, and N°¢
is its optimal solution. Note that o > 0 indicates that A’ > A.

In addition, the KKT conditions indicate that the optimal solution of the
constrained problem N* satisfies P(N*) = P. This means that, for every
A" > A (or o > 0), we can find the corresponding optimal solution N¢
satisfying condition (8) by solving problem (13). We need to find the
A’ such that the solution to problem (13), denoted as N*(A4’), satisfies
P(N*(A")) = P.
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Applying KKT conditions

Then, pg = A" — A and N*(A’) satisfy conditions (6) and (7):
~VJ(N*(A") + 15V (P = P(N*(4))) =0,
(P — P(N*(A))) = 0.

Hence, p§ = A’ — A is exactly the Lagrange multiplier satisfying the KKT
conditions of the constrained problem, and N* = N*(A’) is the optimal
solution of the constrained problem.
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Applying KKT conditions

Then, pg = A" — A and N*(A’) satisfy conditions (6) and (7):
~VJ(N*(A") + 15V (P = P(N*(4))) =0,
(P — P(N*(A))) = 0.

Hence, p§ = A’ — A is exactly the Lagrange multiplier satisfying the KKT
conditions of the constrained problem, and N* = N*(A’) is the optimal
solution of the constrained problem.

Consequently, solving the constrained problem through our algorithm is
essentially finding the unique Lagrange multipliers and optimal solution
of the problem.
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Algorithm summary for case 2

Solve unconstrained problem

Solve, by a gradient method, the unconstrained prob-
lem for fixed A’

k—1 k—1
max J(N) = A'P(N) =) "biNi — > cini(N)
i=1 i=1

s.t. N; > Nmin,Vi: 1, ,k—l.

v

Search: Choose A’

Solve unconstrained problem

~ No
. . . P(N*(A"))=P?

Do a one-dimensional search on A’ > A to find A’

such that the solution of the unconstrained problem, Yes

N*(A’), satisfies

. p A Quit
P(N*(A")) = P.
v
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Numerical results

NUMERICAL EXPERIMENT OUTLINE
m Experiments on short lines.
m Experiments on long lines.

m Computation speed.

METHOD WE USE TO CHECK THE ALGORITHM

P surface search in (Nl, , Nk—1) space. All buffer size allocations, N,
such that P(N) = P compose the P surface.
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P surface search
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Figure 6: P Surface search
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Experiment on short lines (4-buffer line)

m Line parameters: P =88

machine M1 M2 M3 M4 M5
r A1 12 .10 .09 .10
P .008 .01 .01 .01 .01

m Machine 4 is the least reliable machine (bottleneck) of the line.

m Cost function
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Experiment on short lines (4-buffer line)

RESULTS

m Optimal solutions

P Surface Search  The algorithm Error | Rounded N*

Prod. rate .8800 .8800 .8800
NY 28.85 28.8570 0.02% 29.0000
N3 58.46 58.5694  0.19% 59.0000
N3 92.98 92.9068 0.08% 93.0000
Ni 87.39 87.4415 0.06% 87.0000
n1 19.0682 19.0726 0.02% 19.1791

N2 34.3084 34.3835 0.23% 34.7289

n3 48.7200 48.6981 0.04% 48.9123

i 31.9894 32.0063 0.05% 31.9485
Profit ($) 1798.2 1798.1  0.006% 1797.4000

m The maximal error is 0.23% and appears in ns.

m Computer time for this experiment is 2.69 seconds.
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Experiment on long lines (11-buffer line)

N

m Line parameters: P = .88

machine M1 M2 M3 M4 M5 M5
T A1 12010 .09 .10 A1
P .008 .01 .01 .01 .01 .01

machine M7 Ms Mg M10 M11 M12
T .10 A1 12 .10 12 .09
D .009 .01 .009 .008 .01 .009

m Cost function

11
J(N) = 6000P(N) — > N; —
i=1

11
Zﬁi(N)
i=1
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Experiment on long lines (11-buffer line)

RESULTS

m Optimal solutions, buffer sizes:

P Surface Search  The algorithm Error | Rounded N*

Prod. rate .8800 .8800 .8799
Nt 29.10 29.1769 0.26% 29.0000
N3 59.20 59.2830 0.14% 59.0000
N3 97.80 97.7980  0.002% 98.0000
Ni 107.50 107.4176 0.08% 107.0000
NZ 84.50 84.4804 0.02% 84.0000
Ng 70.80 70.6892 0.17% 71.0000
N7 63.10 63.1893 0.14% 63.0000
Ng 53.10 52.9274 0.33% 53.0000
Ng 47.20 47.2232 0.05% 47.0000
N7y 47.90 47.7967 0.22% 48.0000
Nty 48.80 48.7716 0.06% 49.0000
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Experiment on long lines (11-buffer line)

RESULTS (CONTINUED)

m Optimal solutions, average inventories:

P Surface Search  The algorithm Error | Rounded N*

1 19.2388 19.2986 0.31% 19.1979
T2 34.9561 35.0423 0.25% 34.8194
N3 52.5423 52.6032 0.12% 52.6833
N4 45.1528 45.1840 0.07% 45.0835
5 34.4289 34.4770 0.14% 34.2790
N6 30.7073 30.7048 0.01% 30.8229
ny 28.0446 28.1299 0.30% 28.0902
ng 21.5666 21.5438 0.11% 21.5932
ng 21.5059 21.5442 0.18% 21.4299
10 22.6756 22.6496 0.11% 22.7303
ni1 20.8692 20.8615 0.04% 20.9613
Profit ($) 4239.3 4239.2  0.002% 4239.5000

m Computer time is 91.47 seconds.
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Experiments for Tolio, Matta, and Gershwin (2002) model

Consider a 4-machine 3-buffer line with constraints P = .87. In addition, A =
2000 and all b; and ¢; are 1.

machine M; M Ms M

Ti1 100 .12 10 .20
it .01 .008 .01 .007
Ti2 - .20 - .16
pi2 - 005 - .004

P Surf. Search  The algorithm Error

P(N¥) 8699 8699
Nt 29.8600 29.9930  0.45%
N3 38.2200 38.0206  0.52%
N3 20.6800 20.7616  0.39%
1 17.2779 17.3674  0.52%
fio 17.2602 17.1792  0.47%
fis 6.1996 6.2121  0.20%

Profit ($) 1610.3000 1610.3000  0.00%
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Experiments for Levantesi, Matta, and Tolio (2003) model

Consider a 4-machine 3-buffer line with constraints P = .87. In addition, A =
2000 and all b; and ¢; are 1.

machine  M; M> Ms My
i 1.0 1.02 1.0 1.0

i1 100 12 100 .20
pi1 .01 .008 .01 .012
Ti2 - .20 - .16
Pi2 - 005 - .006

P* Surf. Search  The algorithm Error

P(N%) 8699 8700
Nt 27.7200 27.9042  0.66%
N3 38.7900 38.9281  0.34%
N3 34.0700 34.1574  0.26%
i1 15.4288 155313 0.66%
Mo 19.8787 19.9711  0.46%
i 13.8937 13.9426  0.35%

Profit ($) 1590.0000 1589.7000  0.02%
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Computation speed

EXPERIMENT

m Run the algorithm for a series of experiments for lines having iden-
tical machines to see how fast the algorithm could optimize longer
lines.

m Length of the line varies from 4 machines to 30 machines.
m Machine parameters are p = .01 and r = .1.
m In all cases, the feasible production rate is P = 88.

m The objective function is

k—1 k—1
J(N) = AP(N) = Y "N; = ) " ni(N).
=1 i=1

where A = 500k for the line of length k.
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Computation speed
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Algorithm reliability

We run the algorithm on 739 randomly generated 4-machine 3-buffer lines.
98.92% of these experiments have a maximal error less than 6%.
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Algorithm reliability

Taking a closer look at those 98.92% experiments, we find a more accurate
distribution of the maximal error. We find that, out of the total 739 experiments,
83.90% of them have a maximal error less than 2%.
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