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Models 

◮ The purpose of an engineering or scientific model is to make 
predictions. 

◮ Kinds of models: 
◮ Mathematical: aggregated behavior is described by equations. 

Predictions are made by solving the equations. 
◮ Simulation: detailed behavior is described. Predictions are made by 

reproducting behavior. 

◮ Models are simplifications of reality. 
◮ Models that are too simple make poor predictions because they leave 

out important features. 
◮ Models that are too complex make poor predictions because they are 

difficult to analyze or are time-consuming to use, because they require 
more data, or because they have errors. 
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Flow Line 

... also known as a Production or Transfer Line. 

Machine Buffer 

M1 M2 M3 4 M5 M6MB1 B2 B3 B4 B5 

◮ Machines are unreliable. 

◮ Buffers are finite. 
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Flow Line 
Motivation 

◮ Economic importance. 

◮ Relative simplicity for analysis and for intuition. 
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Flow Line 

Buffers and Inventory 

◮ Buffers are for mitigating asynchronization (ie, they are shock 
absorbers). 

◮ Buffer space and inventory are expensive. 
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Flow Line 
Analysis Difficulties 

◮ Complex behavior. 

◮ Analytical solution available only for limited systems. 

◮ Exact numerical solution feasible only for systems with a small 
number of buffers. 

◮ Simulation may be too slow for optimization. 
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Flow Line 
Output Variability 

Week 

Weekly 
Production 
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Production output 
from a simulation of 
a transfer line. 
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Flow Line 
Usual General Assumptions 

◮ Unlimited repair personnel. 

◮ Uncorrelated failures. 

◮ Perfect yield. 

◮ The first machine is never starved and the last is never blocked. 

◮ Blocking before service. 

◮ Operation dependent failures. 
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Single Reliable Machine 

◮ If the machine is perfectly reliable, and its average operation time is 
τ , then its maximum production rate is 1/τ . 

◮ Note: 

◮ Sometimes cycle time is used instead of operation time , but 
BEWARE: cycle time has two meanings! 

◮ The other meaning is the time a part spends in a system. If the system 
is a single, reliable machine, the two meanings are the same. 
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Single Unreliable Machine 
ODFs 

◮ Operation-Dependent Failures 

◮ A machine can only fail while it is working. 
◮ IMPORTANT! MTTF must be measured in working time! 
◮ This is the usual assumption. 

◮ Note: MTBF = MTTF + MTTR 
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Single Unreliable Machine 
Production rate 

◮ If the machine is unreliable, and 

◮ its average operation time is τ , 
◮ its mean time to fail is MTTF, 
◮ its mean time to repair is MTTR, 

then its maximum production rate is 

1 

τ 

( 
MTTF 

MTTF + MTTR 

) 
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Single Unreliable Machine 
Production rate 

Proof 

Machine DOWNMachine UP 

◮ Average production rate, while machine is up, is 1/τ . 

◮ Average duration of an up period is MTTF. 

◮ Average production during an up period is MTTF/τ . 

◮ Average duration of up-down period: MTTF + MTTR. 

◮ Average production during up-down period: MTTF/τ . 

◮ Therefore, average production rate is 

(MTTF/τ)/(MTTF + MTTR). 

2.852 Manufacturing Systems Analysis 12/165 Copyright c©2010 Stanley B. Gershwin. 



Single Unreliable Machine 
Geometric Up- and Down-Times 

◮ Assumptions: Operation time is constant (τ). Failure and repair 
times are geometrically distributed. 

◮ Let p be the probability that a machine fails during any given 
operation. Then p = τ/MTTF. 
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Single Unreliable Machine 

◮ Let r be the probability that M gets repaired in during any operation 
time when it is down. Then r = τ/MTTR. 

◮ Then the average production rate of M is 

1 

τ 

( 
r 

r + p 

) 

. 

◮ (Sometimes we forget to say “average.”) 
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Single Unreliable Machine 
Production Rates 

◮ So far, the machine really has three production rates: 
◮ 1/τ when it is up (short-term capacity) , 
◮ 0 when it is down (short-term capacity) , 
◮ (1/τ)(r/(r + p)) on the average (long-term capacity) . 
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Infinite-Buffer Line 

M B1 1 M B2 2 B3 3 M B4 4 M B5 5 M6M 

Assumptions: 

◮ A machine is not idle if it is not starved. 

◮ The first machine is never starved. 
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Infinite-Buffer Line 

M B1 1 M B2 2 B3 3 M B4 4 M B5 5 M6M 

◮ The production rate of the line is the production rate of the slowest 
machine in the line — called the bottleneck . 

◮ Slowest means least average production rate, where average 
production rate is calculated from one of the previous formulas. 
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Infinite-Buffer Line 

M B1 1 M B2 2 B3 3 M B4 4 M B5 5 M6M 

◮ Production rate is therefore 

P = min 
i 

1 

τi 

( 
MTTFi 

MTTFi + MTTRi 

) 

◮ and Mi is the bottleneck. 
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Infinite-Buffer Line 

M B1 1 M B2 2 B3 3 M4 4 M B5 5 M6M B 

◮ The system is not in steady state. 

◮ An infinite amount of inventory accumulates in the buffer upstream of 
the bottleneck. 

◮ A finite amount of inventory appears downstream of the bottleneck. 
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Infinite-Buffer Line 

M8 8 M B9 9 M10BM B5 5 M B6 6 B7 7MM B3 3 B4 4MM B2 2M B1 1 
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Infinite-Buffer Line 

M8 8 M B9 9 M10BM B5 5 M B6 6 B7 7MM B3 3 B4 4MM B2 2M B1 1 

◮ The second bottleneck is the slowest machine upstream of the 
bottleneck. An infinite amount of inventory accumulates just 
upstream of it. 

◮ A finite amount of inventory appears between the second bottleneck 
and the machine upstream of the first bottleneck. 

◮ Et cetera. 
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Infinite-Buffer Line 

M8 8 M B9 9 M10BM B5 5 M B6 6 B7 7MM B3 3 B4 4MM B2 2M B1 1 
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A 10-machine line with bottlenecks at Machines 5 and 10. 
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Infinite-Buffer Line 

M8 8 M B9 9 M10BM B5 5 M B6 6 B7 7MM B3 3 B4 4MM B2 2M B1 1 
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Question: 

◮ What are the slopes (roughly!) of the two indicated graphs? 
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Infinite-Buffer Line 

Questions: 

◮ If we want to increase production rate, which machine should we 
improve? 

◮ What would happen to production rate if we improved any other 
machine? 
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Zero-Buffer Line 

M1 M2 M3 4M M5 M6 

◮ If any one machine fails, or takes a very long time to do an operation, 
all the other machines must wait. 

◮ Therefore the production rate is usually less — possibly much less – 
than the slowest machine. 

2.852 Manufacturing Systems Analysis 25/165 Copyright c©2010 Stanley B. Gershwin. 



Zero-Buffer Line 

M1 M2 M3 4M M5 M6 

◮ Special case: Constant, unequal operation times, perfectly reliable 
machines. 

◮ The operation time of the line is equal to the operation time of the 
slowest machine, so the production rate of the line is equal to that of 
the slowest machine. 
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Zero-Buffer Line 
Constant, equal operation times, unreliable machines 

M1 M2 M3 4M M5 M6 

◮ Assumption: Failure and repair times are geometrically distributed. 

◮ Define pi = τ/MTTFi = probability of failure during an operation. 
◮ Define ri = τ/MTTRi probability of repair during an interval of length 

τ when the machine is down. 

◮ Operation-Dependent Failures (ODFs): Machines can only fail while they 
are working. 
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Zero-Buffer Line 

M1 M2 M3 4M M5 M6 

Buzacott’s Zero-Buffer Line Formula: 
Let k be the number of machines in the line. Then 

P = 
1 

τ 

1 

1 + 
k 
∑ 

i=1 

pi 

ri 
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Zero-Buffer Line 

M1 M2 M3 4M M5 M6 

◮ Same as the earlier formula (page 11, page 14) when k = 1. The 
isolated production rate of a single machine Mi is 

1 

τ 

( 
1 

1 + pi 

ri 

) 

= 
1 

τ 

( 
ri 

ri + pi 

) 

. 
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Zero-Buffer Line 
Proof of formula 

◮ Let τ (the operation time) be the time unit. 

◮ Assumption: At most, one machine can be down. 

◮ Consider a long time interval of length T τ during which Machine Mi 

fails mi times (i = 1, . . . k). 
M3 M3M5 2 M1 M4M 

All up Some machine down 

◮ Without failures, the line would produce T parts. 
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Zero-Buffer Line 

◮ The average repair time of Mi is τ/ri each time it fails, so the total 
system down time is close to 

Dτ = 

k 
∑ 

i=1 

miτ 

ri 

where D is the number of operation times in which a machine is 
down. 
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Zero-Buffer Line 

◮ The total up time is approximately 

Uτ = T τ − 
k 
∑ 

i=1 

miτ 

ri 
. 

◮ where U is the number of operation times in which all machines are 
up. 
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Zero-Buffer Line 

◮ Since the system produces one part per time unit while it is working, 
it produces U parts during the interval of length T τ . 

◮ Note that, approximately, 

mi = piU 

because Mi can only fail while it is operational. 
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Zero-Buffer Line 

◮ Thus, 

Uτ = T τ − Uτ 

k 
∑ 

i=1 

pi 

ri 
, 

or, 

U 

T 
= EODF = 

1 

1 + 
k 
∑ 

i=1 

pi 

ri 
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Zero-Buffer Line 

and 

P = 
1 

τ 

1 

1 + 

k 
∑ 

i=1 

pi 

ri 

◮ Note that P is a function of the ratio pi/ri and not pi or ri separately. 

◮ The same statement is true for the infinite-buffer line. 

◮ However, the same statement is not true for a line with finite, 
non-zero buffers. 
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Zero-Buffer Line 

Questions: 

◮ If we want to increase production rate, which machine should we 
improve? 

◮ What would happen to production rate if we improved any other 
machine? 
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Zero-Buffer Line 
ODF and TDF 

TDF= Time-Dependent Failure. Machines fail independently of one 
another when they are idle. 

PTDF = 
1 

τ 

k 
∏ 

i=1 

( 
ri 

ri + pi 

) 

> PODF 
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Zero-Buffer Line 
P as a function of pi 

All machines are the same except Mi . As pi increases, the production rate 
decreases. 
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Zero-Buffer Line 
P as a function of k 

All machines are the same. As the line gets longer, the production rate 
decreases. 
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Finite-Buffer Lines 

M B1 1 M B2 2 M B3 3 M B4 4 M B5 5 M6 

◮ Motivation for buffers: recapture some of the lost production rate. 

◮ Cost 
◮ in-process inventory/lead time 
◮ floor space 
◮ material handling mechanism 
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Finite-Buffer Lines 

M B1 1 M B2 2 M B3 3 M B4 4 M B5 5 M6 

◮ Infinite buffers: no propagation of disruptions. 

◮ Zero buffers: instantaneous propagation. 

◮ Finite buffers: delayed propagation. 
◮ New phenomena: blockage and starvation . 
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Finite-Buffer Lines 

M B1 1 M B2 2 M B3 3 M B4 4 M B5 5 M6 

◮ Difficulty: 
◮ No simple formula for calculating production rate or inventory levels. 

◮ Solution: 
◮ Simulation 
◮ Analytical approximation 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

◮ Exact solution is available to model of two-machine line. 

◮ Discrete time-discrete state Markov process: 

prob{X (t + 1) = x(t + 1)| 
X (t) = x(t), X (t − 1) = x(t − 1), X (t − 2) = x(t − 2), ...} = 

prob{X (t + 1) = x(t + 1)|X (t) = x(t)} 

◮ In the following, we construct prob{X (t + 1) = x(t + 1)|X (t) = x(t)} and 
solve the steady-state transition equations. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Here, X (t) = (n(t), α1(t), α2(t)), where 

◮ n is the number of parts in the buffer; n = 0, 1, ..., N. 

◮ αi is the repair state of Mi ; i = 1, 2. 
◮ αi = 1 means the machine is up or operational ; 
◮ αi = 0 means the machine is down or under repair. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Motivation: 

◮ We can develop intuition from these systems that is useful for 
understanding more complex systems. 

◮ Two-machine lines are used as building blocks in decomposition 
approximations of realistic-sized systems. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Several models available: 

◮ Deterministic processing time, or Buzacott model: deterministic 
processing time, geometric failure and repair times; discrete state, 
discrete time. 

◮ Exponential processing time: exponential processing, failure, and 
repair time; discrete state, continuous time. 

◮ Continuous material, or fluid: deterministic processing, exponential 
failure and repair time; mixed state, continuous time. 

◮ Extensions 
◮ Models with multiple up and down states. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Outline: Details of two-machine, deterministic processing time line. 

◮ Assumptions 

◮ Performance measures 

◮ Transient states 

◮ Transition equations 

◮ Identities 

◮ Analytical solution 

◮ Limits 

◮ Behavior 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Assumptions, etc. 

Assumptions, etc. for deterministic processing time systems (including 
long lines) 

◮ All operation times are deterministic and equal to 1. 

◮ The amount of material in Buffer i at time t is ni(t), 0 ≤ ni(t) ≤ Ni . 
A buffer gains or loses at most one piece during a time unit. 

◮ The state of the system is s = (n1, . . . , nk−1, α1, . . . , αk). 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Assumptions, etc. 

◮ Operation dependent failures: 

prob [αi (t + 1) = 0 | ni−1(t) = 0, αi (t) = 1, ni (t) < Ni ] = 0, 
prob [αi (t + 1) = 1 | ni−1(t) = 0, αi (t) = 1, ni (t) < Ni ] = 1, 

prob [αi (t + 1) = 0 | ni−1(t) > 0, αi (t) = 1, ni (t) = Ni ] = 0, 
prob [αi (t + 1) = 1 | ni−1(t) > 0, αi (t) = 1, ni (t) = Ni ] = 1, 

prob [αi (t + 1) = 0 | ni−1(t) > 0, αi (t) = 1, ni (t) < Ni ] = pi , 
prob [αi (t + 1) = 1 | ni−1(t) > 0, αi (t) = 1, ni (t) < Ni ] = 1 − pi . 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Assumptions, etc. 

◮ Repairs: 

prob [αi(t + 1) = 1 | αi (t) = 0] = ri , 

prob [αi (t + 1) = 0 | αi (t) = 0] = 1 − ri . 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Assumptions, etc. 

◮ Timing convention: In the absence of blocking or starvation: 

ni (t + 1) = ni(t) + αi (t + 1) − αi+1(t + 1). 

More generally, 

ni(t + 1) = ni (t) + Iui (t + 1) − Idi(t + 1), 

where 

Iui (t + 1) = 

{ 
1 if αi (t + 1) = 1 and ni−1(t) > 0 and ni(t) < Ni , 

0 otherwise. 

Idi (t + 1) = 

{ 
1 if αi+1(t + 1) = 1 and ni (t) > 0 and ni+1(t) < Ni+1 

0 otherwise. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Assumptions, etc. 

◮ In the Markov chain model, there is a set of transient states, and a 
single final class. Thus, a unique steady state distribution exists. The 
model is studied in steady state. That is, we calculate the stationary 
probability distribution. 

◮ We calculate performance measures (production rate and average 
inventory) from the steady state distribution. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Performance measures 

◮ The steady state production rate (throughput , flow rate , or efficiency ) of 
Machine Mi is the probability that Machine Mi produces a part in a time 
step. 

◮ Units: parts per operation time. 

◮ It is the probability that Machine Mi is operational and neither starved nor 
blocked in time step t. 

◮ It is equivalent, and more convenient, to express it as the probability that 
Machine Mi is operational and neither starved nor blocked in time step t + 1: 

Ei = prob (αi (t + 1) = 1, ni−1(t) > 0, ni(t) < Ni ) 

For a useful analytical expression, we must rewrite this so that all states are 
evaluated at the same time. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Performance measures 

Ei = prob (αi (t + 1) = 1, ni−1(t) > 0, ni(t) < Ni) 

= prob (αi (t + 1) = 1 | ni−1(t) > 0, αi(t) = 1, ni(t) < Ni ) 
prob (ni−1(t) > 0, αi(t) = 1, ni(t) < Ni) 

+ prob (αi (t + 1) = 1 | ni−1(t) > 0, αi(t) = 0, ni(t) < Ni ) 
prob (ni−1(t) > 0, αi(t) = 0, ni(t) < Ni). 

= (1 − pi) prob (ni−1(t) > 0, αi(t) = 1, ni(t) < Ni) 
+ri prob (ni−1(t) > 0, αi(t) = 0, ni(t) < Ni ). 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Performance measures 

In steady state, there is a repair for every failure of Machine i , or 

ri prob (ni−1(t) > 0, αi (t) = 0, ni (t) < Ni ) = 
pi prob (ni−1(t) > 0, αi (t) = 1, ni (t) < Ni ) 

Therefore, 

Ei = prob (αi = 1, ni−1 > 0, ni < Ni ). 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Performance measures 

The steady state average level of Buffer i is 

n̄i = 
∑ 

s 

ni prob (s). 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

State Space 

s = (n, α1, α2) 

where 

n = 0, 1, ..., N 

αi = 0, 1 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Transient states 

◮ (0,1,0) is transient because it cannot be reached from any state. If 
α1(t + 1) = 1 and α2(t + 1) = 0, then n(t + 1) = n(t) + 1. 

◮ (0,1,1) is transient because it cannot be reached from any state. If n(t) = 0 
and α1(t + 1) = 1 and α2(t + 1) = 1, then n(t + 1) = 1 since M2 is starved 
and thus not able to operate. If n(t) > 0 and α1(t + 1) = 1 and 
α2(t + 1) = 1, then n(t + 1) = n(t). 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Transient states 

◮ (0,0,0) is transient because it can be reached only from itself or (0,1,0). It can be 
reached from itself if neither machine is repaired; it can be reached from (0,1,0) if 
the first machine fails while attempting to make a part. It cannot be reached from 
(0,0,1) or (0,1,1) since the second machine cannot fail. Otherwise, if 
α1(t + 1) = 0 and α2(t + 1) = 0, then n(t + 1) = n(t). 

◮ (1,1,0) is transient because it can be reached only from (0,0,0) or (0,1,0). If 
α1(t + 1) = 1 and α2(t + 1) = 0, then n(t + 1) = n(t) + 1. Therefore, n(t) = 0. 
However, (1,1,0) cannot be reached from (0,0,1) since Machine 2 cannot fail. (For 
the same reason, it cannot be reached from (0,1,1), but since the latter is 
transient, that is irrelevant.) 

◮ Similarly, (N, 0, 0), (N, 0, 1), (N, 1, 1), and (N − 1, 0, 1) are transient. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

State space 

out of transient states 

transitions 

out of non−transient states 

to increasing buffer level 

to decreasing buffer level 

unchanging buffer level 
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(α ,α ) 
=N 

n=12 
=N−1 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Transition equations 

Internal equations 2 ≤ n ≤ N − 2 

p(n, 0, 0) = (1 − r1)(1 − r2)p(n, 0, 0) + (1 − r1)p2p(n, 0, 1) 
+p1(1 − r2)p(n, 1, 0) + p1p2p(n, 1, 1) 

p(n, 0, 1) = (1 − r1)r2p(n + 1, 0, 0) + (1 − r1)(1 − p2)p(n + 1, 0, 1) 
+p1r2p(n + 1, 1, 0) + p1(1 − p2)p(n + 1, 1, 1) 

p(n, 1, 0) = r1(1 − r2)p(n − 1, 0, 0) + r1p2p(n − 1, 0, 1) 
+(1 − p1)(1 − r2)p(n − 1, 1, 0) + (1 − p1)p2p(n − 1, 1, 1) 

p(n, 1, 1) = r1r2p(n, 0, 0) + r1(1 − p2)p(n, 0, 1) + (1 − p1)r2p(n, 1, 0) 
+(1 − p1)(1 − p2)p(n, 1, 1) 

2.852 Manufacturing Systems Analysis 61/165 Copyright c©2010 Stanley B. Gershwin. 



Two-Machine, Finite-Buffer Lines 
M1 M2B 

Transition equations 

Lower boundary equations n ≤ 1 

p(0, 0, 1) = (1 − r1)p(0, 0, 1) + (1 − r1)r2p(1, 0, 0) 
+(1 − r1)(1 − p2)p(1, 0, 1) + p1(1 − p2)p(1, 1, 1). 

p(1, 0, 0) = (1 − r1)(1 − r2)p(1, 0, 0) + (1 − r1)p2p(1, 0, 1) + p1p2p(1, 1, 1) 

p(1, 0, 1) = (1 − r1)r2p(2, 0, 0) + (1 − r1)(1 − p2)p(2, 0, 1)+ 
p1r2p(2, 1, 0) + p1(1 − p2)p(2, 1, 1) 

p(1, 1, 1) = r1p(0, 0, 1) + r1r2p(1, 0, 0) + r1(1 − p2)p(1, 0, 1) 
+(1 − p1)(1 − p2)p(1, 1, 1) 

p(2, 1, 0) = r1(1 − r2)p(1, 0, 0) + r1p2p(1, 0, 1) + (1 − p1)p2p(1, 1, 1) 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Transition equations 

Upper boundary equations n ≥ N − 1 

p(N − 2, 0, 1) = (1 − r1)r2p(N − 1, 0, 0) + p1r2p(N − 1, 1, 0) 
+p1(1 − p2)p(N − 1, 1, 1) 

p(N − 1, 0, 0) = (1 − r1)(1 − r2)p(N − 1, 0, 0) + p1(1 − r2)p(N − 1, 1, 0) 
+p1p2p(N − 1, 1, 1) 

p(N − 1, 1, 0) = r1(1 − r2)p(N − 2, 0, 0) + r1p2p(N − 2, 0, 1) 
+ (1 − p1)(1 − r2)p(N − 2, 1, 0) + (1 − p1)p2p(N − 2, 1, 1) 

p(N − 1, 1, 1) = r1r2p(N − 1, 0, 0) + (1 − p1)r2p(N − 1, 1, 0) 
+(1 − p1)(1 − p2)p(N − 1, 1, 1) + r2p(N, 1, 0) 

p(N, 1, 0) = r1(1 − r2)p(N − 1, 0, 0) + (1 − p1)(1 − r2)p(N − 1, 1, 0) 
+(1 − p1)p2p(N − 1, 1, 1) + (1 − r2)p(N, 1, 0) 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Performance measures 

E1 is the probability that M1 is operational and not blocked: 

E1 = 
∑ 

n < N 
α1 = 1 

p(n, α1, α2). 

n=2 n=3 

1 2 

(0,0) 

(0,1) 

(1,1) 

(1,0) 

n=4 n=5 n=6n=0 n=1 n=7 n=8 n=9 n=10 n=11 n=13 

(α ,α ) 
=N 

n=12 
=N−1 

2.852 Manufacturing Systems Analysis 64/165 Copyright c©2010 Stanley B. Gershwin. 



Two-Machine, Finite-Buffer Lines 
M1 M2B 

Performance measures 

E2 is the probability that M2 is operational and not starved: 

E2 = 
∑ 

n > 0 
α2 = 1 

p(n, α1, α2). 

n=2 n=3 

1 2 

(0,0) 

(0,1) 

(1,1) 

(1,0) 

n=4 n=5 n=6n=0 n=1 n=7 n=8 n=9 n=10 n=11 n=13 

(α ,α ) 
=N 

n=12 
=N−1 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Performance measures 

The probabilities of starvation and blockage are: 

ps = p(0, 0, 1), the probability of starvation, 

pb = p(N , 1, 0), the probability of blockage. 

The average buffer level is: 

n̄ = 
∑ 

all s 

np(n, α1, α2). 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Repair frequency equals failure frequency For every repair, there is a failure 
(in steady state). When the system is in steady state, 

r1 prob [{α1 = 0} and {n < N}] = 
p1 prob [{α1 = 1} and {n < N}] . 

Let 

D1 = prob [{α1 = 0} and {n < N}] , 

then 

r1D1 = p1E1. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Proof: The left side is the probability that the state leaves the set of states 

S0 = {{α1 = 0} and {n < N}} . 

since the only way the system can leave S0 is for M1 to get repaired. (M1 is 
down, so the buffer cannot become full.) 

n=2 n=3 

1 2 

(0,0) 

(0,1) 

(1,1) 

(1,0) 

n=4 n=5 n=6n=0 n=1 n=7 n=8 n=9 n=10 n=11 n=13 

(α ,α ) 
=N 

n=12 
=N−1 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

The right side is the probability that the state enters S0. When the system is in 
steady state, the only way for the state to enter S0 is for it to be in set 

S1 = {{α1 = 1} and {n < N}} 

in the previous time unit. 
n=2 n=3 

1 2 

(0,0) 

(0,1) 

(1,1) 

(1,0) 

n=4 n=5 n=6n=0 n=1 n=7 n=8 n=9 n=10 n=11 n=13 

(α ,α ) 
=N 

n=12 
=N−1 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Conservation of Flow E1 = E2 = E 

Proof: E1 = 

N−1 
∑ 

n=0 

p(n, 1, 0) + 

N−1 
∑ 

n=0 

p(n, 1, 1), 

E2 = 

N 
∑ 

n=1 

p(n, 0, 1) + 

N 
∑ 

n=1 

p(n, 1, 1). 

Then E1 − E2 = 
N−1 
∑ 

n=0 

p(n, 1, 0)− 
N 
∑ 

n=1 

p(n, 0, 1) 

= 
N−2 
∑ 

n=1 

p(n + 1, 1, 0)− 
N−2 
∑ 

n=1 

p(n, 0, 1) 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Or, 

E1 − E2 = 
N−2 
∑ 

n=1 

( 
p(n + 1, 1, 0) − p(n, 0, 1) 

) 

Define δ(n) = p(n + 1, 1, 0) − p(n, 0, 1). Then 

E1 − E2 = 

N−2 
∑ 

n=1 

δ(n) 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Add lots of lower boundary equations: 

p(0, 0, 1) + p(1, 0, 0) + p(1, 1, 1) + p(2, 1, 0) = 

(1 − r1)p(0, 0, 1) + (1 − r1)r2p(1, 0, 0) 
+(1 − r1)(1 − p2)p(1, 0, 1) + p1(1 − p2)p(1, 1, 1) 

+(1 − r1)(1 − r2)p(1, 0, 0) + (1 − r1)p2p(1, 0, 1) + p1p2p(1, 1, 1) 

+r1p(0, 0, 1) + r1r2p(1, 0, 0) + r1(1 − p2)p(1, 0, 1) 
+(1 − p1)(1 − p2)p(1, 1, 1) 

+r1(1 − r2)p(1, 0, 0) + r1p2p(1, 0, 1) + (1 − p1)p2p(1, 1, 1) 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Or, 

p(0, 0, 1) + p(1, 0, 0) + p(1, 1, 1) + p(2, 1, 0) = 

p(0, 0, 1) + p(1, 0, 0) + p(1, 0, 1) + p(1, 1, 1) 

Or, 

p(2, 1, 0) = p(1, 0, 1) 

Then δ(1) = 0. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Now add all the internal equations, after changing the index of two of them: 

p(n, 0, 0) + p(n − 1, 0, 1) + p(n + 1, 1, 0) + p(n, 1, 1) = 

(1 − r1)(1 − r2)p(n, 0, 0) + (1 − r1)p2p(n, 0, 1) 
+p1(1 − r2)p(n, 1, 0) + p1p2p(n, 1, 1) 

(1 − r1)r2p(n, 0, 0) + (1 − r1)(1 − p2)p(n, 0, 1) 
+p1r2p(n, 1, 0) + p1(1 − p2)p(n, 1, 1) 

r1(1 − r2)p(n, 0, 0) + r1p2p(n, 0, 1) 
+(1 − p1)(1 − r2)p(n, 1, 0) + (1 − p1)p2p(n, 1, 1) 

r1r2p(n, 0, 0) + r1(1 − p2)p(n, 0, 1) + (1 − p1)r2p(n, 1, 0) 
+(1 − p1)(1 − p2)p(n, 1, 1) 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Or, for n = 2, . . . , N − 2, 

p(n, 0, 0) + p(n − 1, 0, 1) + p(n + 1, 1, 0) + p(n, 1, 1) = 

p(n, 0, 0) + p(n, 0, 1) + p(n, 1, 0) + p(n, 1, 1), 

or, 

p(n + 1, 1, 0) − p(n, 0, 1) = p(n, 1, 0) − p(n − 1, 0, 1) 

or, 
δ(n) = δ(n − 1) 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Since 

δ(1) = 0 and δ(n) = δ(n − 1), n = 2, . . . , N − 2 

we have 

δ(n) = 0, n = 1, . . . , N − 2 

Therefore 

E1 − E2 = 
N−2 
∑ 

n=1 

δ(n) = 0 

QED 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Alternative interpretation of p(n + 1, 1, 0) − p(n, 0, 1) = 0:

 n n+11 2 

(0,0) 

(0,1) 

(1,1) 

(1,0) 

(α ,α ) 
◮ The only way the buffer can go 

from n + 1 to n is for the state 
to go to (n, 0, 1). 

◮ The only way the buffer can go 
from n to n + 1 is for the state 
to go to (n + 1, 1, 0). 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Identities 

Flow rate/idle time 

E = e1(1 − pb). 

Proof: From the definitions of E1 and D1, we have 

prob [n < N] = E + D1, 

or, 1−pb = E + 
p1 

r1 
E = 

E 

e1 
. 

Similarly, 

E = e2(1 − ps) 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

1. Guess a solution for the internal states of the form 
p(n, α1, α2) = ξj(n, α1, α2) = X nY α1 

1 Y α2 
2 . 

2. Determine sets of Xj ,Y1j ,Y2j that satisfy the internal equations. 

3. Extend ξj(n, α1, α2) to all of the boundary states using some of the 
boundary equations. 

4. Find coefficients Cj so that p(n, α1, α2) = 
∑ 

j Cjξj(n, α1, α2) satisfies 
the remaining boundary equationss and normalization. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Internal equations: 

X n = (1 − r1)(1 − r2)X n + (1 − r1)p2X nY2 + p1(1 − r2)X nY1 + p1p2X nY1Y2 

X n−1Y2 = (1 − r1)r2X n + (1 − r1)(1 − p2)X nY2 + p1r2X nY1 

+p1(1 − p2)X nY1Y2 

X n+1Y1 = r1(1 − r2)X n + r1p2X nY2 + (1 − p1)(1 − r2)X nY1 + (1 − p1)p2X nY1Y2 

X nY1Y2 = r1r2X n + r1(1 − p2)X nY2 + (1 − p1)r2X nY1 + (1 − p1)(1 − p2)X nY1Y2 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Or, 

1 = (1 − r1)(1 − r2) + (1 − r1)p2Y2 + p1(1 − r2)Y1 + p1p2Y1Y2 

X −1Y2 = (1 − r1)r2 + (1 − r1)(1 − p2)Y2 + p1r2Y1 

+p1(1 − p2)Y1Y2 

XY1 = r1(1 − r2) + r1p2Y2 + (1 − p1)(1 − r2)Y1 + (1 − p1)p2Y1Y2 

Y1Y2 = r1r2 + r1(1 − p2)Y2 + (1 − p1)r2Y1 + (1 − p1)(1 − p2)Y1Y2 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Or, 

1 = (1 − r1 + Y1p1) (1 − r2 + Y2p2) 

X−1Y2 = (1 − r1 + Y1p1) (r2 + Y2(1 − p2)) 

XY1 = (r1 + Y1(1 − p1)) (1 − r2 + Y2p2) 

Y1Y2 = (r1 + Y1(1 − p1)) (r2 + Y2(1 − p2)) 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Since the last equation is a product of the other three, there are only three 
independent equations in three unknowns here. They may be simplified further: 

1 = (1 − r1 + Y1p1) (1 − r2 + Y2p2) 

XY1 = 
r1 + Y1(1 − p1) 

1 − r1 + Y1p1 

X−1Y2 = 
r2 + Y2(1 − p2) 

1 − r2 + Y2p2 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Eliminating X and Y2, this becomes 

0 = Y 2 
1 (p1 + p2 − p1p2 − p1r2) 

− Y1 (r1 (p1 + p2 − p1p2 − p1r2) + p1 (r1 + r2 − r1r2 − r1p2)) 

+r1 (r1 + r2 − r1r2 − r1p2) , 

which has two solutions: 

Y11 = 
r1 
p1 

, Y12 = 
r1 + r2 − r1r2 − r1p2 

p1 + p2 − p1p2 − p1r2 
. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

The complete solutions are: 

Y11 = 
r1 
p1 

Y21 = 
r2 
p2 

X1 = 1 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Y12 = 
r1 + r2 − r1r2 − r1p2 

p1 + p2 − p1p2 − p1r2 

Y22 = 
r1 + r2 − r1r2 − p1r2 

p1 + p2 − p1p2 − p2r1 

X2 = 
Y22 

Y12 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Recall that ξ(n, α1, α2) = X nY α1 
1 Y α2 

2 . 

We now have the complete internal solution: 

p(n, α1, α2) = C1ξ1(n, α1, α2) + C2ξ2(n, α1, α2) 

= C1X
n 
1 Y

α1 
11 Y

α2 
21 + C2X

n 
2 Y

α1 
12 Y

α2 
22 . 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Boundary conditions: 

If we plug the internal expression for ξ(n, α1, α2) = X nY α1 
1 Y α2 

2 into the 
right side of 

ξ(1, 0, 1) = (1 − r1)r2ξ(2, 0, 0) + (1 − r1)(1 − p2)ξ(2, 0, 1)+ 
p1r2ξ(2, 1, 0) + p1(1 − p2)ξ(2, 1, 1), 

we find 

ξ(1, 0, 1) = XY2 

which implies that 

p(1, 0, 1) = C1Y21 + C2X2Y22. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Recall that 

p(2, 1, 0) = p(1, 0, 1). 

Then 
C1X

2 
1 Y11 + C2X

2 
2 Y12 = C1X1Y21 + C2X2Y22, 

or, 
( 
C1X

2 
1 Y11 − C1X1Y21 

) 
+ 
( 
C2X

2 
2 Y12 − C2X2Y22 

) 
= 0, 

or, 

C1X1 

( 
X1Y11 − Y21 

) 
+ C2X2 

( 
X2Y12 − Y22 

) 
= 0, 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Recall 

X2 = 
Y22 

Y12 

Consequently, 

C1X1 

( 
X1Y11 − Y21 

) 
= 0, 

or, 

C1 

( 
r1 

p1 
− 

r2 

p2 

) 

= 0, 

Therefore, 

if 
r1 

p1 
6= 

r2 

p2 
, then C1 = 0. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

In the following, we assume 
r1 
p1 

6= 
r2 
p2 

and we drop the j subscript. 

But what happens when 
r1 
p1 

= 
r2 
p2 

? 

And what does 
r1 

p1 
= 

r2 

p2 
mean? 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Combining the following two boundary conditions ... 

r1p(0, 0, 1) = (1 − r1)r2p(1, 0, 0) + (1 − r1)(1 − p2)p(1, 0, 1) 

+p1(1 − p2)p(1, 1, 1). 

p(1, 1, 1) = r1p(0, 0, 1) + r1r2p(1, 0, 0) + r1(1 − p2)p(1, 0, 1) 
+(1 − p1)(1 − p2)p(1, 1, 1) 

gives 

p(1, 1, 1) = r2p(1, 0, 0) + (1 − p2)CXY2 + (1 − p2)p(1, 1, 1) 

or, 
p2p(1, 1, 1) = r2p(1, 0, 0) + (1 − p2)CXY2. 

There are three unknown quantities: p(1, 0, 0), p(1, 1, 1), and C . 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Another boundary condition, 

p(1, 0, 0) = (1 − r1)(1 − r2)p(1, 0, 0) + (1 − r1)p2p(1, 0, 1) + p1p2p(1, 1, 1) 

can be written 

(r1 + r2 − r1r2)p(1, 0, 0) = (1 − r1)p2CXY2 + p1p2p(1, 1, 1). 

which also has three unknown quantities: p(1, 0, 0), p(1, 1, 1), and C . If we eliminate 
p(1, 1, 1) and simplify, we get 

(r1 + r2 − r1r2 − p1r2)p(1, 0, 0) = (p1 + p2 − p1p2 − p2r1)CXY2. 

From the definition of Y22 (slide 85), 

p(1, 0, 0) = CX . 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

If we plug this into the last equation on slide 91, we get 

p2p(1, 1, 1) = CX (r2 + (1 − p2)Y2) 

or 

p(1, 1, 1) = 
CX 

p2 

r1 + r2 − r1r2 − r1p2 

p1 + p2 − p1p2 − r1p2 
. 

Finally, the first equation on slide 91 gives 

p(0, 0, 1) = CX 
r1 + r2 − r1r2 − r1p2 

r1p2 
. 

The upper boundary conditions are determined in the same way. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Summary of Steady-State Probabilities: Boundary values 

p(0, 0, 0) = 0 

p(0, 0, 1) = CX 
r1 + r2 − r1r2 − r1p2 

r1p2 

p(0, 1, 0) = 0 

p(0, 1, 1) = 0 

p(1, 0, 0) = CX 

p(1, 0, 1) = CXY2 

p(1, 1, 0) = 0 

p(1, 1, 1) = 
CX 

p2 

r1 + r2 − r1r2 − r1p2 

p1 + p2 − p1p2 − r1p2 

p(N − 1, 0, 0) = CX
N−1 

p(N − 1, 0, 1) = 0 

p(N − 1, 1, 0) = CX
N−1

Y1 

p(N − 1, 1, 1) = 
CXN−1 

p1 

r1 + r2 − r1r2 − p1r2 

p1 + p2 − p1p2 − p1r2 

p(N, 0, 0) = 0 

p(N, 0, 1) = 0 

p(N, 1, 0) = CX
N−1 r1 + r2 − r1r2 − p1r2 

p1r2 

p(N, 1, 1) = 0 
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Analytical Solution 

Summary of Steady-State Probabilities: Internal states, etc. 

p(n, α1, α2) = CX nY α1 

1 Y α2 

2 , 

2 ≤ n ≤ N − 2; α1 = 0, 1; α2 = 0, 1 

where 

Y1 = 
r1 + r2 − r1r2 − r1p2 

p1 + p2 − p1p2 − p1r2 

Y2 = 
r1 + r2 − r1r2 − p1r2 

p1 + p2 − p1p2 − r1p2 

X = 
Y2 

Y1 

and C is a normalizing constant. 
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Two-Machine, Finite-Buffer Lines 
M1 M2B 

Analytical Solution 

Observations: 

Typically, we can expect that ri < .2 since a repair is likely to take at least 5 
times as long as an operation. Also, since, typically, efficiency = ri/(ri + pi ) > .7, 
pi < .4ri , p(0, 0, 1), p(1, 1, 1), p(N − 1, 1, 1), p(N , 1, 0) are much larger than 
internal probabilities. 

This is because the system tends to spend much more time at those states than 
at internal states. 

Refer to transition graph on page 60 to trace out typical scenarios. 
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Limits 

If r1 → 0, then E → 0, ps → 1, pb → 0, n̄ → 0. 

If r2 → 0, then E → 0, pb → 1, ps → 0, n̄ → N . 

If p1 → 0, then ps → 0, E → 1 − pb → e2, n̄ → N − e2. 

If p2 → 0, then pb → 0, E → 1 − ps → e1, n̄ → e1. 

If N → ∞ 

and e1 < e2, then E → e1, pb → 0, ps → 1 − 
e1 

e2 
. 
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Limits 

Proof: 

Many of the limits follow from combining conservation of flow and the 
flow rate-idle time relationship: 

E = 
r1 

r1 + p1 
(1 − pb) = 

r2 
r2 + p2 

(1 − ps). 

The last set comes from the analytic solution and the observation that if 
e1 > e2, X > 1, and if e1 < e2, X < 1. 
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Behavior

 0

 2

 4

 6

 8

 10

 0  200  400  600  800  1000 

n(
t)

 

t 

r1 = .1, p1 = .01, r2 = .1, p2 = .01, N = 10 
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Behavior
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Behavior
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Behavior
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Behavior 

τ = 1. 
p1 = .1 
r2 = .1 
p2 = .1 

Deterministic Processing Time 
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Behavior 

Discussion: 

◮ Why are the curves 
increasing? 

◮ Why do they reach an 
asymptote? 

◮ What is P when N = 0? 

◮ What is the limit of P as 
N → ∞? 

◮ Why are the curves with 
smaller r1 lower? 

Deterministic Processing Time 
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Behavior 

Discussion: 

◮ Why are the curves increasing? 

◮ Why different asymptotes? 

◮ What is n̄ when N = 0? 

◮ What is the limit of n̄ as N → ∞? 

◮ Why are the curves with smaller 
r1 lower? 

Deterministic Processing Time 
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Behavior 

Deterministic Processing Time 
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Deterministic Processing Time 
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◮ What can you say about the optimal buffer size? 

◮ How should it be related to ri , pi? 
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Behavior 

Questions: 

◮ If we want to increase production rate, which machine should we 
improve? 

◮ What would happen to production rate if we improved any other 
machine? 
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Production rate vs. storage space 

Improvements to 
non-bottleneck 
machine. 

20 40 60 80 100 120 140 160 180 200 
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P 

Identical machines 

Machine 1 improved 

Machine 1 more improved 

Note: Graphs would be the same if we improved Machine 2. 
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Average inventory vs. storage space 

Inventory increases as the 
(non-bottleneck) upstream 
machine is improved and as 
the buffer space is increased. 
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Average inventory vs. storage space 

◮ Inventory decreases as 
the (non-bottleneck) 
downstream machine 
is improved. 

◮ Inventory increases as 
the buffer space is 
increased. 
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Frequency and Production Rate 

Should we prefer short, frequent, disruptions or long, infrequent, 
disruptions? 

◮ r2 = 0.8, p2 = 0.09, N = 10 

◮ r1 and p1 vary together and r1 
r1+p1 

= .9 

◮ Answer: evidently, short, frequent 
failures. 

◮ Why? 

r 

P 
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Frequency and Production Rate 
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Frequency and Production Rate 
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Frequency and Production Rate 
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Frequency and Production Rate 
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Frequency and Production Rate 
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Frequency and Average Inventory 
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Frequency and Average Inventory 
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Frequency and Average Inventory 
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Exponential processing time model 

Exponential processing time: exponential processing, failure, and repair time; 
discrete state, continuous time; discrete material. 

Assumptions are similar to deterministic processing time model, except: 

◮ µiδt = the probability that Mi completes an operation in (t, t + δt); 

◮ piδt = the probability that Mi fails during an operation in (t, t + δt); 

◮ riδt = the probability that Mi is repaired, while it is down, in (t, t + δt); 

We can assume that only one event occurs during (t, t + δt). 
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Exponential processing time model 

n=2 n=3 
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Exponential processing time model 

Performance measures for general exponential lines 

The probability that Machine Mi is processing a workpiece is the efficiency: 

Ei = prob [αi = 1, ni−1 > 0, ni < Ni ]. 

The production rate (throughput rate) of Machine Mi , in parts per time 
unit, is 

Pi = µiEi . 
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Exponential processing time model 

Conservation of Flow 

P = P1 = P2 = . . . = Pk . 

This should be proved from the model. 
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Exponential processing time model 

Flow Rate-Idle Time Relationship 

The isolated efficiency ei of Machine Mi is, as usual, 

ei = 
ri 

ri + pi 

and it represents the fraction of time that Mi is operational. The isolated 
production rate is 

ρi = µiei . 
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Exponential processing time model 

The flow rate-idle time relation is 

Ei = ei prob [ni−1 > 0 and ni < Ni ]. 

or 

P = ρi prob [ni−1 > 0 and ni < Ni ]. 

This should also be proved from the model. 
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Exponential processing time model 

Balance equations — steady state only 

α1 = a2 = 0 : 

p(n, 0, 0)(r1 + r2) = p(n, 1, 0)p1 + p(n, 0, 1)p2, 
1 ≤ n ≤ N − 1, 

p(0, 0, 0)(r1 + r2) = p(0, 1, 0)p1 , 

p(N, 0, 0)(r1 + r2) = p(N, 0, 1)p2 . 
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Exponential processing time model 

α1 = 0, α2 = 1 : 

p(n, 0, 1)(r1 + µ2 + p2) = p(n, 0, 0)r2 + p(n, 1, 1)p1 

+p(n + 1, 0, 1)µ2, 1 ≤ n ≤ N − 1 

p(0, 0, 1)r1 = p(0, 0, 0)r2 + p(0, 1, 1)p1 + p(1, 0, 1)µ2 

p(N, 0, 1)(r1 + µ2 + p2) = p(N, 0, 0)r2 
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Exponential processing time model 

α1 = 1, α2 = 0 : 

p(n, 1, 0)(p1 + µ1 + r2) = p(n − 1, 1, 0)µ1 + p(n, 0, 0)r1 

+p(n, 1, 1)p2, 1 ≤ n ≤ N − 1 

p(0, 1, 0)(p1 + µ1 + r2) = p(0, 0, 0)r1 

p(N, 1, 0)r2 = p(N − 1, 1, 0µ1 + p(N, 0, 0)r1 + p(N, 1, 1)p2 
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Exponential processing time model 

α1 = 1, α2 = 1 : 

p(n, 1, 1)(p1 + p2 + µ1 + µ2) = p(n − 1, 1, 1)µ1 + p(n + 1, 1, 1)µ2 

+p(n, 1, 0)r2 + p(n, 0, 1)r1, 1 ≤ n ≤ N − 1 

p(0, 1, 1)(p1 + µ1) = p(1, 1, 1)µ2 + p(0, 1, 0)r2 + p(0, 0, 1)r1 

p(N , 1, 1)(p2 + µ2) = p(N − 1, 1, 1)µ1 + p(N , 1, 0)r2 + p(N , 0, 1)r1 
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Exponential processing time model 

Performance measures 

Efficiencies: 

E1 = 
N−1 
∑ 

n=0 

1 
∑ 

α2=0 

p(n, 1, α2), 

E2 = 
N 
∑ 

n=1 

1 
∑ 

α1=0 

p(n, α1, 1). 
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Exponential processing time model 

Production rate: 

P = µ1E1 = µ2E2. 

Expected in-process inventory: 

n̄ = 
N 
∑ 

n=0 

1 
∑ 

α1=0 

1 
∑ 

α2=0 

np(n, α1, α2). 
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Solution of balance equations 

Assume 

p(n, α1, α2) = cX nY α1 
1 Y α2 

2 , 1 ≤ n ≤ N − 1 

where c ,X ,Y1,Y2 are parameters to be determined. Plugging this into the 
internal equations gives 

p1Y1 + p2Y2 − r1 − r2 = 0 

µ1 

( 
1 

X 
− 1 

) 

− p1Y1 + r1 + 
r1 
Y1 

− p1 = 0 

µ2(X − 1) − p2Y2 + 
r2 
Y2 

+ r2 − p2 = 0 
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Exponential processing time model 

These equations can be reduced to one fourth-order polynomial (quartic) 
equation in one unknown. One solution is 

Y11 = 
r1 

p1 

Y21 = 
r2 

p2 

X1 = 1 

This solution of the quartic equation has a zero coefficient in the expression for 
the probabilities of the internal states: 

p(n, α1, α2) = 

4 
∑ 

j=1 

cjX
n 
j Y

α1 

1j Y α2 

2j for n = 1, . . . , N − 1. 

The other three solutions satisfy a cubic polynomial equation. Compare with slide 
85. In general, there is no simple expression for them. 
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Exponential processing time model 

Just as for the deterministic processing time line, 

◮ we obtain the coefficients c1, c2, c3, c4 from the boundary conditions and the 
normalization equation; 

◮ we find c1 = 0; (What does this mean? Why is this true?) 

◮ we construct all the boundary probabilities. Some are 0. 

◮ we use the probabilities to evaluate production rate, average buffer level, etc; 

◮ we prove statements about conservation of flow, flow rate-idle time, limiting values 
of some quantities, etc. 

◮ we draw graphs, and observe behavior which is qualitatively very similar to 
deterministic processing time line behavior (e.g., P vs. N, n̄ vs N, etc.). 

We also draw some new graphs (P vs. µi , n̄ vs µi ) and observe new behavior. This is 
discussed below with the discussion of continuous material lines. 
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Continuous Material model 

Continuous material, or fluid: deterministic processing, exponential failure and 
repair time; mixed state, continuous time.; continuous material. 

◮ µiδt = the amount of material that Mi processes, while it is up, in 
(t, t + δt); 

◮ piδt = the probability that Mi fails, while it is up, in (t, t + δt); 

◮ riδt = the probability that Mi is repaired, while it is down, in (t, t + δt); 
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Model assumptions, notation, terminology, and conventions 

During time interval (t, t + δt): 

When 0 < x < N 

1. the change in x is (α1µ1 − α2µ2)δt 

2. the probability of repair of Machine i , that is, the probability that 
αi(t + δt) = 1 given that αi (t) = 0, is riδt 

3. the probability of failure of Machine i , that is, the probability that 
αi(t + δt) = 0 given that αi (t) = 1, is piδt. 
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When x = 0 

1. the change in x is (α1µ1 − α2µ2)
+δt 

(That is, when x = 0, it can only increase.) 

2. the probability of repair is riδt 

3. if Machine 1 is down, Machine 2 cannot fail. If Machine 1 is up, the 
probability of failure of Machine 2 is pb 

2δt, where 

p b 
2 = 

p2µ 

µ2 
, µ = min(µ1, µ2) 

The probability of failure of Machine 1 is p1δt. 
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When x = N 

1. the change in x is (α1µ1 − α2µ2)
−δt 

2. the probability of repair is riδt 

3. if Machine 2 is down, Machine 1 cannot fail. If Machine 2 is up, the 
probability of failure of Machine 1 is pb 

1δt, where 

p b 
1 = 

p1µ 

µ1 
. 

The probability of failure of Machine 2 is p2δt. 
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Transition equations — internal 

f (x , α1, α2, t)δx + o(δx) is the probability of the buffer level being between 
x and x + δx and the machines being in states α1 and α2 at time t. 

δx 

1 2 
1 − (p +p ) tδ

µ 
δ 1 

x 
− 

t 

µ 
δ 2 

µ 
δ 1 

x 
− 

t +
 

t 

µ 
δ 2 

x 

(0,1) 

(0,0) 

2δr t 

1δr t 

(1,1) 

(1,0) 

Transitions into ([x,x+ x],1,1)δ 
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Then 

f (x , 1, 1, t + δt) = (1 − (p1 + p2)δt)f (x − µ1δt + µ2δt, 1, 1, t) 

+r1δtf (x + µ2δt, 0, 1, t) + r2δtf (x − µ1δt, 1, 0, t) 

+o(δt) 

or 

f (x , 1, 1, t + δt) = 

(1 − (p1 + p2)δt) 

( 

f (x , 1, 1, t) + 
∂f 

∂x 
(x , 1, 1, t)(−µ1δt + µ2δt) 

) 

+r1δtf (x + µ2δt, 0, 1, t) + r2δtf (x − µ1δt, 1, 0, t) + o(δt) 
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or 
f (x , 1, 1, t + δt) = 

(1 − (p1 + p2)δt) 

( 

f (x , 1, 1, t) + 
∂f 

∂x 
(x , 1, 1, t)(µ2 − µ1)δt 

) 

+r1δt 

( 

f (x , 0, 1, t) + 
∂f 

∂x 
(x , 0, 1, t)µ2δt 

) 

+r2δt 

( 

f (x , 1, 0, t) − 
∂f 

∂x 
(x , 1, 0, t)µ1δt 

) 

+ o(δt) 
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or 
f (x , 1, 1, t + δt) = 

f (x , 1, 1, t) − (p1 + p2)f (x , 1, 1, t)δt + (µ2 − µ1) 
∂f 

∂x 
(x , 1, 1, t)δt 

+r1f (x , 0, 1, t)δt + r2f (x , 1, 0, t)δt 

or, finally, 

∂f 

∂t 
(x , 1, 1) = −(p1 + p2)f (x , 1, 1) + (µ2 − µ1) 

∂f 

∂x 
(x , 1, 1) 

+r1f (x , 0, 1) + r2f (x , 1, 0) 
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Similarly, 

∂f 

∂t 
(x , 0, 0) = −(r1 + r2)f (x , 0, 0) + p1f (x , 1, 0) + p2f (x , 0, 1) 

∂f 

∂t 
(x , 0, 1) = µ2 

∂f 

∂x 
(x , 0, 1) − (r1 + p2)f (x , 0, 1) + p1f (x , 1, 1) + r2f (x , 0, 0) 

∂f 

∂t 
(x , 1, 0) = −µ1 

∂f 

∂x 
(x , 1, 0)− (p1 + r2)f (x , 1, 0) + p2f (x , 1, 1) + r1f (x , 0, 0) 
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Transition equations — boundary 

p(x , α1, α2, t) is the probability of the buffer level being x (where x = 0 or 
N) and the machines being in states α1 and α2 at time t. 

Boundary equations describe transitions from boundary states to boundary 
states; from boundary states to interior states; and from interior states to 
boundary states. 

Boundary equations are relationships among p(x , α1, α2, t) and 
f (x , α1, α2, t) and their derivatives for x = 0 or x = N. 
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(0,1) 

x = 0 

(1,1) 

(1,0) 

x = 0 µ δ 

(0,0) 

t2 

Transitions into (0,0,0) 

We must construct an equation of the form 

p(0, 0, 0, t + δt) = p(0, 0, 0, t) + Aδt + o(δt) 
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(0,1) 

(0,0) 

p t1δ1δr t + 2δr t1 − 

(1,1) 

(1,0) 

x = 0 

Transitions from boundary states into (0,0,0) 

The system can go from (0,0,0) to (0,0,0) if there is no repair. It can go from 
(0,1,0) if the first machine does not fail. 

It cannot go from (0,0,1) to (0,0,0) because the second machine is starved and 

cannot fail. To go from (0,1,1) to (0,0,0) require two simultaneous failures, which 

has a probability on the order of δt2 . 
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(0,1) 

(0,0) 

(1,1) 

(1,0) 

x = 0 µ δ 

Transitions from internal states into (0,0,0) 

t2 

To go from (x , α1, α2), x > 0 to (0,0,0), we must have 

0 < x < α2µ2δt − α1µ1δt 

For example, if α1 = 0 and α2 = 1, we are considering transitions from (x , 0, 1) 
to (0,0,0) where 0 < x < µ2δt. 
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(0,1) 

(0,0) 

(1,1) 

(1,0) 

x = 0 µ δ 

Transitions from internal states into (0,0,0) 

t2 

But 

prob ([0 < x < µ2δt], 0, 1) = f (x , 0, 1)µ2δt + o(δt) = f (0, 0, 1)µ2δt + o(δt) 

and the transition probability from (0,1) to (0,0) is 

(1 − r1δt)p2δt + o(δt) = p2δt + o(δt). 
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(0,1) 

(0,0) 

(1,1) 

(1,0) 

x = 0 µ δ 

Transitions from internal states into (0,0,0) 

t2 

Therefore, the probability of going from ([0 < x < µ2δt], 0, 1) to (0,0,0) is 

f (x , 0, 1)µ2p2δt
2 + (δt)o(δt) = o(δt) 

For other transitions from (x , α1, α2), x > 0 to (0,0,0), the probabilities 
are similar or smaller. 
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(0,1) 

(0,0) 

p t1δ1δr t + 2δr t1 − 

(1,1) 

(1,0) 

x = 0 

Transitions from boundary states into (0,0,0) 

Therefore 

p(0, 0, 0, t + δt) = (1 − r1δt − r2δt)p(0, 0, 0, t) + p(0, 1, 0, t)p1δt 

or 
d 

dt
p(0, 0, 0) = −(r1 + r2)p(0, 0, 0) + p1p(0, 1, 0) 
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Consider state (0,1,0). As soon as the system enters this state, it leaves. 
This is because x must immediately increase. Therefore 

p(0, 1, 0) = 0 

even if the system is not in steady state . Therefore 

d 

dt
p(0, 0, 0) = −(r1 + r2)p(0, 0, 0) 

In steady state, 

p(0, 0, 0) = 0 
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(0,1) 

(0,0) 

1δr t1 − 

p t1δ 

tδ

µ δ 

(1,1) 

(1,0) 

x = 0 

Transitions into (0,0,1) 

t2 

p(0, 0, 1, t + δt) = r2δtp(0, 0, 0, t) + (1 − r1δt)p(0, 0, 1, t) 

+p1δtp(0, 1, 1, t) + 

∫ µ2δt 

0 

f (x , 0, 1, t)dx 
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(0,1) 

(0,0) 

1δr t1 − 

p t1δ 

tδ

µ δ 

(1,1) 

(1,0) 

x = 0 

Transitions into (0,0,1) 

t2 

or, 

d 

dt
p(0, 0, 1) = r2p(0, 0, 0)− r1p(0, 0, 1) + p1p(0, 1, 1) + µ2f (0, 0, 1). 
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 µ > µ 

r t1δ 

(0,0) 

(0,1) 

1δp t +1 − δp t2 

b 

(µ − µ )δ 

(1,1) 

(1,0) 

x = 0 

Transitions into (0,1,1), 

2 t1 

12 

p(0, 1, 1, t + δt) = (1 − (p1 + p b 
2 )δt)p(0, 1, 1, t) + r1δtp(0, 0, 1, t) 

+ 

∫ (µ2−µ1)δt 

0 

f (x , 1, 1, t)dx , 
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 µ > µ 

r t1δ 

(0,0) 

(0,1) 

1δp t +1 − δp t2 

b 

(µ − µ )δ 

(1,1) 

(1,0) 

x = 0 

Transitions into (0,1,1), 

2 t1 

12 

d 

dt
p(0, 1, 1) = −(p1 + p b 

2 )p(0, 1, 1) + r1p(0, 0, 1) 

+(µ2 − µ1)f (0, 1, 1), if µ1 ≤ µ2. 

2.852 Manufacturing Systems Analysis 155/165 Copyright c©2010 Stanley B. Gershwin. 



Two-Machine, Finite-Buffer Lines 
M1 M2B 

Transitions into (0,1,1), µ2 ≤ µ1 

If x(t) = 0, the transition from any (α1(t), α2(t)) to 
(α1(t + δt), α2(t + δt)) = (1, 1) would cause x to increase immediately. 
Therefore 

p(0, 1, 1) = 0 
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To come: 

◮ Other boundary equations 

◮ Normalization 

1 
X 

α1=0 

1 
X 

α2=0 

»
Z N 

0 

f (x , α1, α2)dx + p(0, α1, α2) + p(N, α1, α2) 

– 

= 1. 

◮ Production rate 

P2 = µ2 

»Z N 

0 

(f (x , 0, 1) + f (x , 1, 1))dx + p(N, 1, 1) 

– 

+ µ1p(0, 1, 1). 

= P1 = µ1 

»
Z N 

0 

(f (x , 1, 0) + f (x , 1, 1))dx + p(0, 1, 1) 

– 

+ µ2p(N, 1, 1). 

◮ Average in-process inventory 

x̄ = 

1 
X 

α1=0 

1 
X 

α2=0 

»
Z N 

0 

xf (x , α1, α2)dx + Np(N, α1, α2) 

– 

. 
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Also to come: 

◮ Identities (in steady state) 

◮ Conservation of flow; Blocking, Starvation, and Production Rate; 
Repair frequency equals failure frequency; Flow Rate-Idle Time; Limits 

◮ Solution technique 
◮ Internal solution; transient states; 

f (x , α1, α2) = Ceλx Y α1 
1 Y α2 

2 

Cases (µ1 < µ2, µ1 = µ2, µ1 > µ2); boundary probabilities 
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Exponential and continuous line performance 

◮ r1 = 0.09, p1 = 0.01, µ1 = 1.1 

◮ r2 = 0.08, p1 = 0.009 

◮ N = 20 

◮ Explain the shapes of the graphs. 

Exponential and Continuous Two−Machine Lines 

µ 

P 

0 1 2 
0 

0.2 

0.4 
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1 
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Continuous 
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Exponential and continuous line performance 

◮ Explain the shapes of the 
graphs. 

µ 

n 

0 1 2 
0 

5 

10 

15 

20 
Exponential
Continuous 

2 
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Exponential and continuous line performance 

The no-variability limit: 
Consider a new continuous-material two-machine line. It is has parameters 
µ ′ 1, r 

′ 

1, p ′ 1, µ ′ 2, r 
′ 

2, p ′ 2, N
′ . Assume it is perfectly reliable and its machines have the 

same isolated production rates as those of the first continuous-material 
two-machine line. It also has the same buffer size. 
Its parameters are therefore given by 

µ ′ 1 = ρ1; r ′ 1 unspecified; p ′ 1 = 0; N ′ = N 
µ ′ 2 = ρ2; r ′ 2 unspecified; p ′ 2 = 0 

where 
ρi = µi 

ri 
ri + pi 
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Exponential and continuous line performance 

µ 

P 
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0 
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Exponential and continuous line performance 

Exponential and Continuous Two-Machine Lines 
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Continuous material and Deterministic Processing Time Lines 
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Figure 6.8 in Schick, Irvin C. "Analysis of a multistage transfer line 
with unreliable components and interstage buffer storages with 
applications to chemical engineering problems." Master's thesis, MIT, 1978.
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Continuous material and Deterministic Processing Time Lines 

delta transformation 
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